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Abstract. This paper deals with Watson statistic Tw and likelihood ratio
(LR) statistic Tp, for testing hypothesis Ho, : 4 € V (a given s-dimensional
subspace) based on a sample of size n from a p-variate Langevin distribution
My(u, k). Asymptotic expansions of the null and non-null distributions of Tw
and T7 are obtained when n is large. Asymptotic expressions of those powers
are also obtained. It is shown that the powers of them are coincident up to the
order n~! when k is unknown.
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1. Introduction

A random vector  in R? of its length ||z| unity is said to have a p-variate
Langevin distribution M, (u, «) if its probability density function is given by

(1.1) {ap(%)} ™" exp(rp'z)

on the (p — 1)-dimensional unit sphere S~ = {z | ¢ € R?, ||z| = (z'x)l/? = 1},
where p/'p =1 and k > 0. The normalizing constant is given by

(1.2) ap(k) = (27r)”/2Ip/2_1(n)n—”/2+1,

where I,(k) is the modified Bessel function of the first kind of order v. The
parameters u and « are called the mean direction vector and the concentration
parameter, respectively.

Some statistics have been proposed for testing hypotheses about u and k.
Watson (19835, 1984) obtained asymptotic null and non-null distributions of these
statistics in both of the situations where the sample size is large and & is large.
Chou (1986) obtained asymptotic expansions of the null and non-null distributions
of the Watson statistic Ty for testing the mean direction

(13) H()l CH = g VS. Hll 7] ;é Ho-
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Hayakawa (1990) obtained similar asymptotic expansions of the null and non-null
distributions of the LR statistic 77 and other ones for the same problem, and
made numerical comparisons of the powers of these statistics. In this paper we
make some extension of their results for the case when the testing problem is

(1.4) Hos:peV  vs. Hy:ugV.

The hypothesis Hp, is a generalization of Hy; in some sense, and can be used
when Hy,; is rejected and we wish to examine whether the mean direction lies in
a little wider range. In Section 3 we shall see that there is the case where p = g
is rejected for some given py but p € V is not rejected nevertheless u, € V. We
obtain asymptotic expansions of the null and non-null distributions of Ty and Ty,
and power functions of them. Well, Ty does not change when p, is replaced by
—po and neither the asymptotic expansion of 71, does because the terms of odd
order of u, vanish in the derivation process. So it is noted that the asymptotic
expansions of Ty and T, under the hypothesis 4 = i, are the same as those under
4 = —po. Thus we get asymptotic expansions of the distributions of the Watson
statistic and the LR statistic for (1.3) if we put s = 1 in those for (1.4). This
means our results contain a part of Chou and Hayakawa’s results as special cases.

2. Main results

Let £ ~ M(u, k). Then it is shown that the expectation vector and covariance
matrix are given as follows, respectively.

E(x) = Ap(k)w, and

Ak
D(z) = Ay + 221, iy =5, say,

where A,(k) = ap(k)/ap(x) and Ay(k) = (d/dk)Ap(k). It is noted that the de-
terminant of ¥ is explicitly positive when 0 < x < oo. As far as it seems not to
occur any confusion, we write Ap(x) as A for simplicity. We consider testing the
hypotheses (1.4) based on a random sample @; of size n from M, (i, k) in the both
cases when « is known and unknown. Without loss of generality, we may express
V as

(2.1) V={plp=B¢=1}
where By is a given p x s matrix such that B{By = I,. So we can rewrite Hp, as
(2.2) Hos :p=BoC, |I{] =1.

In a special case By = pg, the hypothesis becomes p = py or u = —pg, and so
different from Hy;, but asymptotic expansions of Ty and T, are the same as we
noted before. As a sequence of the alternatives, we consider

(2.3) p= (o +n~26) || +n~1/26) 7!
= (g +n"28)(1 + 207 N) 12,
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where p, = BoC, B46 = 0 and X = §'8/2. Let B, be a p x (p— s) matrix such that

(Bo Bs) € O(p) and «. = > _ x;.

Now we consider the two statistics. Watson statistic Ty and LR statistic 77,
are given as follows

K
Tw, = n_A"(I” — BoBp)z.|?,
Tr = 26(||l=|| — | Boz. ),

when « is known and

3
Twe = ——— (I, — BoBS)z.||?,

T2 = 2{nlogay(k) — nlogay(k) — &|| Boz|| + &l 1},

when & is unknown, respectively. The statistics Tw’s have been proposed by
Watson (1983a, 1983b), and & denotes the maximum likelihood estimator (m.l.e.)
of k given by

(2:4) k= A (I1z])-
Further & satisfies A,(R) = || ByZ||, that is, & is given by
(2.5) k= A7 (I1Bozl),

and this is the m.l.e. of x under the hypothesis (2.2).

THEOREM 2.1. Under a sequence of the alternatives (2.3) the distribution
function of Tw1 and Tpy can be asymptotically expanded, respectively as

(26)  P(Tw1 <) = POC_,(4x)) < 7)

4
1
1 DA PO 25 (ARX) < ) + O(n /%),
j=0

and
(2.7)  P(Tu <) = P(xj_,(4r)) < 2)

3
1 —
+ R jzzohjp(xz_s.;,gj(AKm\) < .’L') + O(n 3/2),
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where
/
do = 2(A'K? + 3AK)A + 2(p — s) (%-1))\
1 A1
+3o-m-s+2 (G- 4.).
/
d1=—8AnA2—2(p—s)(%—-1))\
A 1
28) ~p-9-s+3 (5 -1 ).
r 2 9 Ak
dy = — 44’ — AN = 2p—s+2) (== — 1) A
1 A 1
+50-9p-s+2) (- 5 ).
Ak , .
d3 =2(p—s+2) 7‘“1 A, dy=2(A'K* — AR)A,
and

ho = 2(A'K* + 3AK)A2 - 2(p — s)A + %E(p —s)(p+s—4),

(2.9) hy = — 4(A'K% +24K)N2 +2(2p — s — 1)\ — ﬁ(p —3s)(p+s—4),

ho = 2(A'k2 + 24k)A2 — 2(p— 1)),  hz = —24r)2.

Here X% (Ak)) denotes a noncentral x*-variate with f degrees of freedom and non-
centrality parameter Ax.

Letting § = 0 in (2.7), we obtain asymptotic expansions of the null distribu-
tions of Tr; and Ty ;. This result implies that 77y = {1+ (p + s — 4)/4nAx}T11
gives a better x2-approximation, since

P(Tp1 < 2) = P(xp_, < 2) + O(n™%?),

When & is unknown similar expansions can be derived in the same way.

THEOREM 2.2. Under a sequence of the alternatives (2.3) the distribution
functions of Tiwa and Tro can be asymptotically expanded, respectively as

(210)  P(Twe < z) = P(x2_,(Ar)) < 1)
1, _
e S POy (ARN) < 7) + O(0™/2),
=0

and
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(2.11)  P(Tp2 < 7) = P(x3_,(Ak)) < x)

3
1 * _
™ E B P(X5_s42i(ARA) < 2) +O(n 3/%),
=0

where
4 = 24K + 3AR)N2 + L (p— 8)(p+ 35— 6) [ — -
’ 2 Ak A'K?
AII
+ (p - s)ma
A 2AA"
di = —4(A,K2+AI€)/\2+4(S—2) (1— X’;) )\+T,2—,\
1 1 AI/
~2(p-5)s-2) (5= - 2 ) ~ 0~ )
(2.12) . A2 , 4
dy =2(An —2AF"+T>’\ +2(p—3s+6) (l—m—))\
2AA" 1 1 1
— A5 s)p-s+2) (E - W)’
. A? A
d; =4<AI€— ZT) )\2—2(])—3-}-2) (]_— m) A,
x A?
d4 = —Q(AK— 7) Az,
and
hy = 2(A'k? + 34K))\? + il-(p— s)(p+s—4) .L __
0 2 Ax A'k2?
AII
+ (p - s)m’
A 2AA"
hi = — 4(A'K* + Ak)A? +2(s - 3) (1 - m) A+ A
(2.13)

1 1 1 A"
~ 3650+ (4~ 5 ) ~ 0 o)

2 A "
stk ) )2 2

Letting § = 0 in (2.10) and (2.11), we obtain asymptotic expansions of the
null distributions of Ty 2 and Tro, respectively. This implies that the Bartlett
correction factor for Tr» is given by

1 1 1 A"
1+ E(p+s -4 (ﬂ - A’n2) NETY P
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Next we consider the powers of these statistics. Let Sw; and 8L ; be the powers
of Tw; and Ty; with a level of significance « for j = 1,2. Then from Theorems 2.1
and 2.2 it is possible to obtain asymptotic expansions for G ; and Br;. A useful
expression for such powers has been obtained by Fujikoshi (1988). Applying his
result to previous theorems, we obtain the following theorem.

THEOREM 2.3. Under a sequence of the alternatives (2.3) the powers By
and Br1 of Tw1 and Tr1 with a level of significance a are given by

(2.14)  Bw1 = P(2_,(AKN) > z4)
+ % [{—(A’n2 +34k)A2 - (p— 3) (ATIH - 1) ,\}
“ Gp—s+2(Ta; AKA)
- Op—s+4(Za; AKA)
+(A'K? — AK’))‘29P—8+6($¢1;AK)\)] +0(n%/%),

and
(215)  Bi1 = POC_,(ARN) > za)

+ % [{—(A’nz +34r)A% + (p— s)/\}gp_3+2(xa; ArX)
+ {(A'/@2 + Ax)A\? — %(p -s+ 2)A}gp_s+4(xa;AK,)\)

— AkN%gp_s16(Ta; Am\)] +0(n=3?).

Further, Bweo and Bra are coincident up to the order n=1 and given by
Bwz = P(x3_,(AK)) > za)
+ % [~(A’ﬁ2 + 3AK) N2 gp—s12(Ta; AKN)
+ < (A'K? —An))\2+1(p—s+2) 1- A A
2 Ak
‘Gp—s+4 (Ta; AKA)
A% g 3/2
+ (4= 57) ¥ ssolan; A1) + O3,

where z, is the upper a point of xf,~s and g¢(zq; AKN) is the probability density
function of x3(ArM).

Then taking the difference between (2.14) and (2.15),

1 Ak
(2.16) Pwi1 = Br1 + ol (p— S)TAgp—s+2($a; Ax)
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/

1
{24023 4 50— 549 20N gy A

+ A'k*N2g,_ o 16(Ta; An)\)] +0(n~%?).

In Fig. 1 some graphs are given for the 1/n terms of the difference between Gy
and Fz; in some special cases that & = 0.01, 0.05, x = 1, 5, 10 and (p, s) = (3,2),
(3,1), (2,1). These show that for small x, Bw1 > Fr1 at first, i.e., as A is small,
next Swi < Br1 as A becomes larger and finally it goes to zero. So when k is quite
small Ty is better for small A but for a moderate A, Ty, is preferable. The larger
the x is, the smaller the difference is and for larger » that is very small. Theorem
2.3 also shows that the differences between the powers of Tyo and Tyq are very
small when n is large.

As mentioned in Section 1, when we take s = 1 in each theorem, we get the
results of testing fIOl.

3. Numerical example

We consider a data set “Measurements of magnetic remanence in specimens
of Palaeozoic red-beds from Argentina” (Fisher et al. (1987, p. 279), Embleton
(1970)). First we test

Ho : p = (cos55°, cos 150° sin 55°, sin 150°sin 55°) = y,,  say.

The sample mean direction is given as (0.54, —0.66,0.49) so that the resultant
length is 0.99. We need to calculate the m.l.e. & of x which satisfies (2.4). From
the fact that Apy(x) is an increasing function of « taking its value in (0,1} for
K € (0,00), it is easily seen that & is quite large. It is noted that this example is
for p =3 so

as(K) = 47rs,1inhn and  Ag(k) = coshs 1

sinhs &

3

see Watson (1980). Thus & and & are obtained by numerical calculations precisely.
Then £ is 73.28 and & is equal to 55.95, where % satisfies now Az(k) = pz. Two
statistics are given as follows: Ty = 16.08, T;, = 14.04. These are quite large and
we reject the hypothesis. Next consider the hypothesis

H02 TH= BOC) ”C” = 1?

where
cos 55° 0

By = | cos150°sin55°  sin 150°
sin 150°sin 55° —cos 150°

It is obvious that the subspace V = {u = By(,||¢|| = 1} contains p, with ¢’ =
(1,0). Now two statistics become Ty, = 1.06, T; = 1.05, and these are not
significant at 5% level.
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a =001
p=3, 8=2

a=0.01
p=3 s=1

a=0.01
p=2,s=1

Fig. 1. The n~! terms of the difference between Sy and 8.
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a =0.05
p=3, s=2

a=0.08
P=3) s=1

0 e 4 A
=10 k=3 \—\ b
k
-1
a =0.05
p=2 s=1
1
0 — A
/ 4
R=10 k=3 T -
-1

Fig. 1. (continued)
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