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A b s t r a c t .  This paper deals with Watson statistic Tw and likelihood ratio 
(LR) statistic TL for testing hypothesis H08 : # 6 V (a given s-dimensional 
subspace) based on a sample of size n from a p-variate Langevin distribution 
Mp(#, a). Asymptotic expansions of the null and non-null distributions of Tw 
and TL are obtained when n is large. Asymptotic expressions of those powers 
are also obtained. It is shown that the powers of them are coincident up to the 
order n -1 when a is unknown. 
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1. Introduction 

A random vector x in R p of its length Ilxll unity is said to have a p-variate 
Langevin distribution Mp(#, a) if its probability density function is given by 

(1.1) {ap(~;)} -1 exp(a#'x)  

on the (p - 1)-dimensional unit sphere Sp-1 _- {x I x 6 Up, Ilxll = (x ' x )W2 = 1}, 
where # '#  = 1 and a > 0. The normalizing constant is given by 

(1.2) ap(g) = (2"K)P/2Ip/2_ 1 ( g ) ~ - p / 2 + i ,  

where I~(a) is the modified Bessel function of the first kind of order v. The 
parameters # and a are called the mean direction vector and the concentration 
parameter, respectively. 

Some statistics have been proposed for testing hypotheses about # and a. 
Watson (1983b, 1984) obtained asymptotic null and non-null distributions of these 
statistics in both of the situations where the sample size is large and a is large. 
Chou (1986) obtained asymptotic expansions of the null and non-null distributions 
of the Watson statistic T w  for testing the mean direction 

(1.3) /4oi : ~ = ]'~0 VS. /~11 : ]~ ~ #0" 
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Hayakawa (1990) obtained similar asymptotic expansions of the null and non-null 
distributions of the LR statistic TL and other ones for the same problem, and 
made numerical comparisons of the powers of these statistics. In this paper we 
make some extension of their results for the case when the testing problem is 

(1.4) Hos : D E V vs. His : D q[ V. 

The hypothesis H08 is a generalization of H01 in some sense, and can be used 
when Hol is rejected and we wish to examine whether the mean direction lies in 
a little wider range. In Section 3 we shall see that there is the case where D = D0 
is rejected for some given/~0 but D E V is not rejected nevertheless/Jo E V. We 
obtain asymptotic expansions of the null and non-null distributions of Tw and TL 
and power functions of them. Well, Tw does not change when Do is replaced by 
-D0 and neither the asymptotic expansion of TL does because the terms of odd 
order of/~0 vanish in the derivation process. So it is noted that the asymptotic 
expansions of Tw and TL under the hypothesis D = D0 are the same as those under 
D = -Do. Thus we get asymptotic expansions of the distributions of the Watson 
statistic and the LR statistic for (1.3) if we put s = 1 in those for (1.4). This 
means our results contain a part of Chou and Hayakawa's results as special cases. 

2. Main results 

Let x ~ M(D, a). Then it is shown that the expectation vector and covariance 
matrix are given as follows, respectively. 

E(x) = Ap(a)g, and 

D(:r) = Ap(a)##' + Av(a) (I n - D#') = E, say, 
a 

where An(n ) = a~(a)/ap(a) and A~(a) = (d/da)Ap(a). It is noted that the de- 
terminant of E is explicitly positive when 0 < a < oo. As far as it seems not to 
occur any confusion, we write Av(a ) as A for simplicity. We consider testing the 
hypotheses (1.4) based on a random sample xj of size n from Mp(D, a) in the both 
cases when a is known and unknown. Without  loss of generality, we may express 
V a s  

(2.1) V = { # l #  = B0ff,~'~ = 1}, 

where B0 is a given p × s matrix such that B~Bo = I8. So we can rewrite H08 as 

(2.2) H08: D = Bo¢, I1¢11 = 1. 

In a special case B0 = D0, the hypothesis becomes/~ = D0 or / J  = -/~0, and so 
different from H01, but asymptotic expansions of Tw and TL are the same as we 
noted before. As a sequence of the alternatives, we consider 

(2.3) D = (#o + n-1/26)llDo + n-:/2'511 
= (Do + n-1/~6)( 1 + 2n-lA) -1/2, 
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where/~o -- Bo(, B~i = 0 and A = ff6/2. Let B~ be a p x (p - s) matrix such that 
(Bo B~) E O(p) and x. = ~_, x.i. 

Now we consider the two statistics. Watson statistic Tw and LR statistic TL 
are given as follows 

Tw1 = ~ II(Ip - BoB~)x. II 2, 

TL1 ---- 2,~(llx.II - IIB~x.ll), 

when a is known and 

k 
Tw2 -- II (Ip - BoB~)x. II ~, 

nAp(k) 

TL2 ---- 2{n log ap(~) - n log ap(k) --kllB~x.II + kllx.ll}, 

when a is unknown, respectively. The statistics Tw's have been proposed by 
Watson (1983a, 1983b), and k denotes the maximum likelihood estimator (m.l.e.) 
of a given by 

(2.4) ,~ = A;I(II~II). 

Further k satisfies Ap(k) -- IIBS~II, that  is, k is given by 

(2.5) ~ = A;I(IIBS~II),  

and this is the m.l.e, of a under the hypothesis (2.2). 

THEOREM 2.1. Under a sequence of the alternatives (2.3) the distribution 
function of Tw1 and TL1 can be asymptotically expanded, respectively as 

(2.6) 

and 

(2.7) 

P(Tw1 <_ x) -- P(X2p_8(A~A) < x) 
4 

1 2 T -~n E djP(Xp-s+2J (A~)~) ~ x) + 0(n-3/2), 
j=o 

P(TL1 <_ x) = P(X2_8(AaA) <_ x) 
3 1 

+ ~ E hJp(X2p-8+2J (AaA) <- x) + 0(n-3/2),  
j=O 
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where 

(2.8) 

do = 2(A'~2 + 3A~)A2 + 2 ( p -  s) ( ~ - ~  - I )  A 

N ' 

- ( p - s ) ( p - s + 2 )  --~ tf~ ' 

+ l ( p - s ) ( P  - s + 2 )  ~ A~ ' 

d3 = 2 ( p -  s + 2) ( ~ - ~  - l )  A, d4 = 2(A'~2 - A~)A 2, 

and 

(2.9) 

1 
ho = 2(A'a 2 + 3Ax)A 2 - 2(p - s)A + ~ - ~  (p - s)(p + s - 4), 

hi = - 4 (A 'a  2 + 2Aa)A 2 + 2(2p - s - 1)A _ 2__~ ( p l  _ s)(p + s - 4), 

h2 = 2(A'a 2 + 2Aa)A 2 - 2(p - 1)A, h3 = - 2 A a A  2. 

Here x~(AgA) denotes a noncentral X2-variate with f degrees of freedom and non- 
centrality parameter AaA. 

Lett ing 6 = 0 in (2.7), we obtain asymptot ic  expansions of the null distribu- 
tions of TL1 and Tw1. This result implies tha t  TL1 = {1 + (p + s -- 4)/4nA~}TLi 
gives a bet ter  x2-approximation,  since 

P(TL1 <- x) = P(X~-,  <- x) + 0(n-3/2).  

When  n is unknown similar expansions can be derived in the same way. 

THEOREM 2.2. Under a sequence of the alternatives (2.3) the distribution 
functions of Tw2 and TL2 can be asymptotically expanded, respectively as 

(2.10) P(Tw2 <_ x) = p(X2_~(A~A) <_ x) 
4 

+ 4 H E 1  d~P(Xp_s+2j(A~A)* 2 ~ x) + 0(n-3 /2) ,  
j=o 

and 
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(2.11) 

where 

(2.12) 

and 

(2.13) 

P(TL2 <_ x) = p(X2p_s(AnA) < x) 
3 1 

+ -~n Z h;e(X2p-"+2J (A'~A) <- x) + 0(n-3/2), 
j=O 

d~=2(A',~2+3A,~)A2+ ~ ( p - s ) ( p +  3s-6)(1An AT-a 21 ) 

A" 
+ (p -  S) A--~, 

( A )  2AA" 
d~ = - 4(A't~ 2 + At~)A 2 + 4(s - 2) 1 - ~ A + ~ A  

- 2 ( p  - ~ ) (~  - 2) .g,~ A r ~  - (P - ~)A--a-,~' 

( d~ = 2 A't~ 2 - 2A,~ + ~7 + 2(p - 3s + ~ A 

2 A A " I  ( 1  1 ) 
A, 2 A -  ~ (p -  s ) (p-  s + 2) ~ A,~2 , 

d~=4  A,~-~- 7 - 2 ( p - s +  ~ A, 

d~= - 2  Am--~- ),2, 

1 (1 
h~ = 2 ( A ' a  2 + 3 A a ) A  2 + ~ ( p  - s ) ( p  + s - 4) ~A-~ 

h~= 

A" 
+ (p -  S) A,2 , 

( A )  2AA" -4(a'~ 2+aa)A 2+2(s-3) 1 - ~  A + ~ A  

1 ( i  1 ) A" 
-~(p-s)(p+s-4) At~ ATx3 -(P-S)A-i2-,~' 

( ) * A2 A 2 - 2 ( s - 3 )  1 - ~  A h 2 = 2 A',~ 2 - 2A,~ + -~ 

h; = 2 A,~- ~ 

2AA" 
A, 2 A, 

Letting 6 = 0 in (2.10) and (2.11), we obtain asymptotic expansions of the 
null distributions of Tw2 and TL2, respectively. This implies that the Bartlett 
correction factor for TL2 is given by 

1 (I 1) A" 
1 + ~nn(P + s - 4) ~ A,t~ 2 + 2nAt2----- ~.  
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Next we consider the powers of these statistics. Let/~wj and j3Lj be the powers 
of Twj and TLj with a level of significance a for j = 1, 2. Then from Theorems 2.1 
and 2.2 it is possible to obtain asymptotic expansions for ~wj  and DLj. A useful 
expression for such powers has been obtained by Fujikoshi (1988). Applying his 
result to previous theorems, we obtain the following theorem. 

THEOREM 2.3. Under a sequence of the alternatives (2.3) the powers ~wl 
and ~L1 Of TW1 and TL1 with a level of significance ~ are given by 

(2.14) ~w1 = P(X2p-~(An) ~) >_ x~) 
1 

and 
(2.15) 

+ n [ { - ( A ' ~ 2 + 3 A t ~ ) A 9 ~ - ( p - s ) ( ~ - ~ - l ) ) ~ }  

• gp-~+2(x~; A~)~) 

+ {-(Xtc2 - At~))t2 + l (p - s + 2) ( - ~  - l )  A } 

• gp-~+4(x~; AnA) 

+ (A't¢ 2 - Aa)A2gp_8+6(x~; AaA)] + 0(n-3/2), 
J 

~L1 = p(X2p-s(At¢A) >- x,~) 

+ - + 3Aa)~ 2 + (p - s)A gp-~+2(x~; AreA) 
n 

{ 1 } 
+ (A '~  2 + A ~ ) a  2 - ~ (p  - s + 2))~ gp_~+4(x~ ;A~a)  

- A~),2gp_~+~(z~; A~,~)] + 0(n-3/2). 
J 

• gp-s+4(xa; AaA) 

+ ( A a -  ~ )  )~2gp-~+6(x~;AaA)J + O(n-3/2), 

0 2 where x~ is the upper ~ point 'f Xv-~ and gf(x~; At¢)~) is the probability density 
f~nction of X~ (AreA). 

Then taking the difference between (2.14) and (2.15), 

_ [ A't¢ 
(2.16) ~w1 = ~L1 + 1 _ (p_ s)--~-)~gp-s+2(x~;A~)~) 

n 

Further, ~w2 and ~L2 are coincident up to the order n -1 and given by 

~w2 = P(X~-8(A~) >- x~) 

1 [_(A,t¢2 + - + 3Atc)A2gp_8+2(x~; AaA) 
n 
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÷ (-2A'  a2A2 + ~(p - s + 2)-A-~ A } gp-s+a(xa; AaA) 

+ A'a2A2gp_8+6(x~; AaA)] + 0(n-3/2). 

In Fig. 1 some graphs are given for the 1/n terms of the difference between ~w1 
and ~L1 in some special cases tha t  a = 0.01, 0.05, a = 1, 5, 10 and (p,s) = (3,2), 
(3, 1), (2, 1). These show that  for small ~, ~w1 > f i l l  at  first, i.e., as A is small, 
next ~w1 < fiLl as A becomes larger and finally it goes to zero. So when ~ is quite 
small Tw1 is be t te r  for small A bu t  for a modera te  A, TL1 is preferable. The larger 
the  ~ is, the  smaller the difference is and for larger n tha t  is very small. Theorem 
2.3 also shows that  the differences between the powers of Tw2 and TL2 are very 
small when n is large. 

As ment ioned in Section 1, when we take s -- 1 in each theorem, we get the 
results of testing Hol.  

3. Numerical example 

We consider a da ta  set "Measurements  of magnetic remanence in specimens 
of Palaeozoic red-beds from Argentina" (Fisher et al. (1987, p. 279), Embleton 
(1970)). First  we test  

/~01 : # = (cos 55 °, cos 150 ° sin 55 °, sin 150 ° sin 55 °) = #0, say. 

The sample mean direction is given as (0 .54, -0 .66,  0.49) so that  the resultant 
length is 0.99. We need to calculate the  m.l.e, k of ~ which satisfies (2.4). From 
the fact tha t  Ap(n) is an increasing function of a taking its value in (0,1) for 

E (0, (x)), it is easily seen tha t  k is quite  large. It is noted that  this example is 
for p = 3 so 

4 r  sinh a cosh a 1 
- and A3(a) - , 

a3 (~) ~; sinh ~ 

see Watson  (1980). Thus ~ and k are obta ined by numerical calculations precisely. 
Then ~ is 73.28 and k is equal to 55.95, where ~ satisfies now A3(~) = D ~ .  Two 
statistics are given as follows: Tw = 16.08, TL = 14.04. These are quite large and 
we reject the hypothesis.  Next  consider the  hypothesis 

H0 : = B0 , Igll = 1, 

where 

B 0 

cos 55 ° 0 ) 
cos 150 ° sin 55 ° sin 150 ° . 
sin 150 ° sin 55 ° - cos 150 ° 

It is obvious that  the subspace V = {D = B0~, I1¢11 = 1} contains #o with ~' = 
(1,0). Now two statistics become T ~  = 1.06, T~ = 1.05, and these are not 
significant at 5% level. 
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a : 0.01 

p = 3 ,  s = 2  

7- - -  
~ = ! 0  

A 
4 

-1  

a : 0.01 

p=3, s = l  

~ : i 0  

4 
I ,  II m|  

a = 0.01 

p = 2 ,  s = l  

1 

0 
~ = i 0  / 

- 1  

Fig. 1. The n -1  terms of the difference between ~w1 and OL1. 



T E S T S  FO R  L A N G E V I N  D I S T R I B U T I O N  155 

a = 0.05 

p=3, s = 2  
1 

g = ° -  

a = 0 . 0 5  

p = 3 ,  s = l  

~_10 ~ :__~ ~ 4 

a = 0.05 

p = 2 ,  s = l  
1 

- I  

4 

Fig. 1. (cont inued) 
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