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Abst rac t .  The limit theorem for the minimum interpoint distance between 
any pair of i.i.d, random points in R d with common density f E L 2 was studied 
by a method which makes use of the convergence of point processes. Some 
one-dimensional examples with f ~ L ~ (including the cases Beta and Gamma 
distributions) were also considered. 
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1. Introduction 

Limit theorems for various statistics arising from spacing problems have been 
investigated by many authors (e.g. see L~vy (1939), Pyke (1965), Silverman and 
Brown (1978), Molchanov and Reznikova (1982), Aly et el. (1984), Onoyama et 
al. (1984), Rao Jammalamadaka and Janson (1986), Deheuvels et al. (1988)): a 
simple and typical example is the result of L~vy (1939) concerning the minimum 
and the maximum of respective lengths of the n + 1 segments into which the 
unit interval (0, 1) is divided by i.i.d, random variables Xk, 1 < k < n, with 
the uniform distribution. Molchanov and Reznikova (1982) discussed the same 
problem as above for a wider class of nonuniform densities. Similar problems in 
multidimensional spaces seem to be hard to deal with, but if the minimum length 
is regarded not from the view point of partitions but simply as the minimum of 
tile interpoint distances between all pairs drawn fro::: {Xk, 1 < k < n}, some 
parts of the results of Molchanov and Reznikova (1982) have bee:: extended to 
a multidimensional case: for example, it is known (Silverman and Brown (1978), 
Onoyama et al. (1984), Rao Jammalamadaka and Janson (1986)) that the limit 
distribution of suitably normalized Mi,,, where M,~ is the minimum of IX~ - X j  I d, 
1 < i < j < n, is exponential if the X~'s are i.i.d. Rd-valued random variables 
with common density f E L2(Rd).  
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In this paper we discuss again the limit theorem for Mn but with emphasis 
on a method which makes use of the convergence of point processes ( f  C L 2 is 
assumed). Point processes were also used in Silverman and Brown (1978) but our 
way of using point processes is different from theirs. We also give some examples 
of results in one-dimensional cases where f ~ L 2. When d _> 2 we assume f c L 2 
as in the earlier results; however, our point process method clarifies and improves 
some of the earlier results in the sense that the problem was formulated as the 
convergence of processes and the limiting process was obtained (Theorem 2.1). 
The limiting process is a Markovian decreasing process. We also consider one- 
dimensional examples, in which f ~ L 2 was emphasized and which include the 
cases of Beta and Gamma distributions. 

2. Results in the case where f E L2(R d) 

Given a sequence of Rd-valued i.i.d, random variables X 1 ,  X 2 ,  . . .  with common 
probability density function f ,  we put 

n min [ X i - X j [  d, 
Y n ( t )  = l<_i<j<_[nt] 

(t) = { xk, t > 2/n, 
X1, 0 < t < 2/n, 

t >_ 2/n,  

0 < t < 2/n,  

where k = k(t) is the unique integer with 2 < k < [nt] satisfying 

n 2 min I X j - X k [  d=Yn( t ) .  
l< j<k  

Zn(t) means roughly the place where the minimum distance is realized. In this 
section it is assumed that f E L2(Rd). Before stating our main theorem, we 
introduce a Poisson point process {p(t), t > 0} on (0, z~) x R d with compensator 
cdtdtd(f(x)2dx where cd is the volume of a unit ball in R d and write p(t) = 
(q(t),r(t)). Then {q(t), t > 0} and {r(t), t > 0} are Poisson point processes on 
(0, c~) and R d, respectively. For t > 0 we put 

Y( t )  = m i n  q(s ) ,  Z( t )  = r( t ' ) ,  
s<_t 

where t' E (0, t] is determined by q(t') = Y(t).  The processes are seen that 

"~ { 1 c 2 t2  2 - ti_l) P{Y( t l )  > ~1 . . . .  Y(tm) > era} = n e x p  --5 dll/ lh(~ max ~j , 
' i< j<m J 

/=1 - - -  

P { Z ( t )  e dx} = {f(x)2/l[f][~}dx, 

for any t > 0, 0 < tl < t2 < " -  < t m  and ~1,~2,...,~,~ > 0, where [If[12 is the 
L2-norm of f .  Moreover, for each fixed t > 0, Y(t)  and Z(t) are independent. 
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THEOREM 2.1. / f  IIf[12 < oc, then the process {(Yn(t),Zn(t)), t  > 0} con- 
verges in law to {(Y(t), Z(t)), t > 0} with repect to the Skorohod Jl-topology. In 
particular, for each fixed t > 0, ~ > 0 and an interval I in R a 

{1 }j 
(2.1) lirn P{Yn(t) > ~,Z,~(t) e I} = exp ---~cdllfll~t2~ {f(x)=/llfll2}dx. 

Before proving the theorem we present some lemmas. Let 6k be the a-field 
generated by X1, X2, . . . ,  Xk for each k > 1 and ~}n) = ~ht]. Define an {grin)} - 
adapted point process Pn = (qn, rn) taking values in (0, oc) x R d as follows: The 
domain of definition of Pn is Dp,, = {k /n  : k = 2, 3, . . .} and 

(2.2) pn(k/n) - - (qn(k/n) ,rn(k/n))  = ( n2 l_<j<Icmin IXj - xkld, x k ) ,  

Denote by Np. the counting measure corresponding to p~, i.e., 

(2.3) Np~((O,t] x (0,~] x A ) =  E l(o4]xA(p~(k/n)), 
2<k<[,.t) 

k > 2 .  

where l(0,~]xA(. ) denotes the indicator function of (0,~] x A and ~(R d) is the 
a-field of Borel subsets of R d. When [nt] < 2, the summation over 2 < k < [nt] 
(or over k < [nt]) is understood to be 0. The compensator of p,~ is given by 

(2.5) 

a s s l O .  

(2.4) ]Vpn((O,t] X (0,~] x A ) =  Z 
2_<k_<[nt] 

LEMMA 2.1. (Onoyama et al. (1984)) 

SS~;,3 _ ;;  ii <; f (x~)f(x2)f(xa)dxtdx2dx3 

LEMMA 2.2. For any t > O, ~ > 0 and A E B(Rd), 

(2.6) ]Vpn ((0, t] x (0, ~] x A) p ) ~cdtl 2~ /A f(x)2dx' 

E[l(o4]xA(pn(k/n)) l ~k-1]. 

Under the assumption f E L 2, 

= o( 3d/2), 

as n -~ oc, where " p ~ " means convergence in probability. 

PROOF. F o r t > 0 a n d ~ > 0 ,  

(2.7) 3 ~  ((0, t] x (0, ~] x A) 

= z 11 
k<_[nt] 

1A(X)f(x)dx, 
k<[nt] JUI<j<kB(X~,(Un~)I/d) 

> 0, A c B(Rd), 
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where B(x, r) = {y E R e : ly - xl < r} .  Put  

f 
I k = __J[Jl~j<k]~(Xj,(~/l'~2)l/d) 1A(x)f(x)dx, 

I;= E /B 1A(x)f(x)dx, l<j<k (xJ,(~/n2)~/d) 

IIk' = j~<m /B lA(x)f(x)dx. 
1< <k (XJ '(~/n2)l/d)~B(Xm'(~/n2)l/d) 

Then it is clear that  I~ - I~ ~ <_ Ik _< I~. Making use of Lemma 2.1 ,  w e  h a v e  that  
E [  Ek<_[,.d Ik p] converges to zero as n --* oc. Therefore 

(2.8) 
k_<[~t] 

Next we show that  

(2.9) E 
k_<[nt] 

as n ~ oo. Pu t  

I~ - E ~ Cd(~/n2)lA(Xj)f(XY) p' O, 
k<_[nt] l_<j<_k-1 

B 1 A ( y ) f ( y ) d y  = (h * ~ ) ( x ) ,  hn(x ) : (Cd~/?'t2) -1 (x,(~/n2)l/d) 

where h(x)  = 1A(x) f (x )  and Cn(x)  = (Cd~/n2)--llB(o,(un2)l/d)(X). Since 

IIh.,ll2 = II h *  0~112 -< Ilfll2 and I l h n -  hl12 ~ O, (n ~ oc),  

it follows that  

a s  n ---* o o .  

yields 

(2.10) 

E I E I~- E E Cd(~/n2)h(Xj)] 
k<_[nt] k_<[nt] t<j<k 

<- Z ~ E[l~d(~/n2){h~(XJ)-h(XJ)}l] 
k_<[nt] l<j<k 

~- E E Cd(~/n2)]lhn -- h]12] l f ]12  ~ o ,  

k<_[nt] l<j<k 

Thus (2.9) holds. Finally an application of the law of large numbers  

E E Cd(~/n2)h(Xj) p) ~ Cdt2~/A f(x)2dx' 
k<[nt] l<j<k 
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as n + oo. Thus (2.6) follows from (2.7)-(2.10). [] 

We are now able to prove Theorem 2.1 as follows. Since Lemma 2.2 holds, an 
application of Theorem 3.1 of Durrett  and Resnick (1978) (see also Theorem 5.1 
of Kasahara and Watanabe (1986)) implies that 

d 
(2.11) N w , N p ,  n --~ oc, 

where Np is the counting measure of the Poisson point process p and " d ),, means 
the convergence in law of random variables taking values in the space A4 of non- 
negative Radon measures on (0, oo) × (0, oo) × R d, which was equipped with the 
vague topology (see also Theorem 5.1 of Kasahara and Watanabe (1986)). Since 
Yn(t) = min,<_tqn(s) and Zn(t) = rn(t') where t' • (0, t] was determined by 
qn(t') = Yn(t), any finite dimensional distribution of {(Yn(t), Z,~(t)), t > 0} con- 
verges to that of {(Y(t), Z(t)),  t > 0}. Moreover, in the present case we can show 
that the convergence of finite dimensional distributions implies the convergence 
in law with respect to the Skorohod Jl-topology by using a method similar to 
that in p. 211 of Jagers (1974) (see also Lindvall (1973) and Serfozo (1982) for 
the Skorohod JFtopology on D(0, oc) and related results which are useful for the 
present proof). 

Remark 2.1. Y(t) is a temporally inhomogeneous Markov process with state 
space (0, oo). However, X(t)  -- y (p /2 )  is a temporally homogeneous Markov 
process with the generator L defined by 

1 2f  
(L¢)(x) = ~cdHfl[2 {¢(x + y) - ¢(x) }dy. 

X 

Furthermore, it is easy to see that the process M(t) = (X(t)) -1 is an extremal 
process generated by a distribution function F(x) = exp{-(1/2)Cdll f[ l~/x},  x >_ o. 
For the detail of the extremal process see Chapter IV in Resnick (1987). 

Remark 2.2. Let f be the density function of the arcsine law, i.e. 

1 
- x )  for  x • (o, 1), f(x) 

0 otherwise. 

In this case f ¢ L2(R); however, the above method can also be applied to this 
case; that is, if we define a point process pn(t) on (0, c~) by 

pn(k/n) = (n21ogn) min I X j - X k l ,  l<_j<k 

then we can prove that its compensator _f/p, ((0, t] × (0, ~]) converges in probability 
to 47r-2t2~ as n --* ec. Therefore, we have 

(2.12) P {  (n21°gn) l<j<k<nmin [ X j -  Xkl > ~} -~ exp{-47r-2~}, n ~ ~x~. 
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Another method for proving (2.12) will be presented in Section 3 (see Example 3). 

We next consider the minimum distance between any pair of points of a con- 
figuration in R d distributed according to a Poisson distribution. By definition a 
locally finite configuration in R d is a subset ~ of R d such that ~ A A is a finite set 
for any bounded subset A of R d. Let ~ be the set of locally finite configurations 
in R d and for w E f~ and A C /~d put 

N(A) = N(A, w) = the number of points in w N A. 

1 d Given A > 0 and a nonnegative function f E Ltoc(R ) we denote by P~ the Poisson 
distribution on 12 with intensity measure Af(x)dx, i.e. the probability measure on 

such that 
i) for each A E B(R d) with AA = A fA f(x)dx < co, N(A) was distributed 

according to the Poisson distribution with mean AA; 

ii) for any disjoint A1, . . . ,  An C B(R d) with fAk f (x)dx < c¢ (1 _ k ~ n), 

N ( A 1 ) , . . . ,  N(A~) are independent. 
For A c B( R d) we put 

(2.13) 

inf 
M(A) = M(A,~)  = x,ye,~nAx#v 

o o  

Ix-yl if N(A,w) >_ 2, 

if N(A,w) <_ 1. 

Notice that M ( A 1 ) , . . . ,  M(A,~) are independent (w.r.t. Px) provided that A1 , . . . ,  
A,~ (C 13(Rd)) are disjoint. The following theorem can be proved by using Theorem 
2.1 or Theorem 3.1 of Silverman and Brown (1978). 

THEOREM 2.2. / f  fA f (x)dx < oc and fA f (x)  2dx < oz, then for any x > 0 

(2.14) lim P~,{A2M(A) > X/Cd} ---- e -~(A)x, 

where #(A) = fA f(x)  2dx" 

3. One-dimensional examples with f ~ L2(R) 

We consider one-dimensional examples in which the underlying random vari- 
ables have a common probability density function f not belonging to L 2 (R). The 
first example covers the case of Gamma distributions. 
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ability density function f such tha t  

(3.1a) f (x )  = 0 

(3.15) f(x) ,.~ ax "-1 
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Example 1 
Let X1, X 2 , . . .  be i.i.d, real random variables and assume tha t  Xk has a prob- 

on 0], 
as x l 0 ,  

(3.1c) f(x)2dx < ec for any r > 0, 

where a and # are positive constants and f ~ g means tha t  f / g  tends to 1. It is 
also assumed tha t  0 < # < 1/2 and hence 

(3.2) f(x)2dx = ec for any r > 0. 

We are going to discuss a limit theorem for Mn. Let T1, T2,. . .  be i.i.d, random 
variables with P{Tk > t} = e -t, t > 0, and put  

(3 .3)  ~ = ~-1 + " "  + ~-n, ~ = inf (~/+~ - ~nl/"). 
n > 1  

It is easy to see tha t  ~ is a strictly positive random variable. 
Pu t  ~a,u ---- ( # / a ) l / " ~  • 

THEOREM 3.1. For any x > 0 

(3.4) lim p{nl/"J~ln > x} = P{~a,u > x}. 
n---+(X) 

PROOF. We first show tha t  

(3.5) lim P),{A1/t'M([O, co)) > x} = P{~a,u > x}, 
,~--*oo 

where P~ is the Poisson distribution on the space of configurations in (0, oc) with 
intensity measure Af(x)dx and M(.)  is defined by (2.13). We treat  only the special 
case f(x) = ax u-l, 0 < x < r0, for some r0 > 0. It is not difficult to prove the 
general case. Let rln = (]-t/a)l/#/~-l/tt~n, n > 1, and N~ = max{n : /In ~ r 0 } .  

Then we have 

(3.6) l i m ~ P {  A1/~ l<n</~min (f]n+l-?]n)>X} 

= ~--.~lim P{(p/a)  1/~ l<~<N~min (~ln/~_l-~ln/U)>x}=P{~a,~>x 

On the other hand it is easy to see tha t  the configuration w = {rl~, n > 1} has the 
Poisson distr ibution with intensity measure Aax t'- 11 (0,~) (x)dx. Furthermore we 
note tha t  

(3.7) lim P~{M([0, r]) = M([0, r']) = M([0, oc))} -- 1. 
~---* oc 
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Therefore 

{M([O, ro]),P~} d { min ( ~ , ~ + 1 - r l n ) , P }  
l<_n<N:~ 

where ,,=d,, means the equivalence in law and consequently (3.6) and (3.7) imply 
(3.5). 

Now we prove (3.4). Take a small ~ > 0 and let N, + and N~ be Poisson 
random variables with means n(1 + e) and n(1 - e), respectively. We assume that 
{Xn, n > 1} and {N.,+, N~ - } are independent. We put 

M + = min tX~ - Xjl ,  M~- = min tX~ - )(3-1. 
l <i<j<N,~ l <_i< j<_N2 

Then 
(i) M+ <_ Mn <_ M(~ if N$ < n < N +. 

(ii) l imn_~  P{N$ < n <_ N, +} = 1. 

(iii) {Mni,P} d {M([O, oo)),pn(l+e)}" 
(iv) l i m n - ~  p{nl/"(1 ± e)I/"M,~ > x} = P { ~ , ,  > x}. 

Therefore 

P{nl/pM + :> x} <_ P{nl/"M~ > x} + o(1) <_ P{nl/"Mg > x} + o(1), 

where o(1) converges to 0. Making n tend to oc we obtain 

P { ~ , .  > (1 + e)-l/Ux} < lim P{nl/"Mn > x} 

<__ l i m  P{nl/"M,~ > x} _< P{~a,, > ( 1 - e ) - l / " x } .  

Since c > 0 can be made arbitrarily small, we obtain (3.4). [] 

3.2 Example 2 
We consider the case where the common probability density f of i.i.d. Xk's is 

given by 

= 0  for x < 0 ,  
aox ~- 1 as x I 0, 

E L  2 on [¢ ,1-E]  for any 0 < s <  1/2, 
f ( x )  : ~ a _ ( 1  - x ) "  - 1  as  x T 1, 

a + ( x  - 1 )"  - 1  as  x I 1, 

E L  2 on [ l + ~ , c ~ )  for any c > 0 ,  

where a0, a_, a+ are positive constants and 0 < # < 1/2. To state the result we 
need some auxialiary random variables. Let 
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be i.i.d, random variables whose common distribution is the exponential one with 
mean 1 and put 

~o_~o +. . .+~o,  

C = ~? + -  + ~-:, ~; = ~1 + + ~:, 
~o = i ~ f { ( ~ ° + l )  1/" - ( ~ o ) 1 / , } ,  

~+ -~ i n f { ( ~ q _ l ) l / #  - -  (~nq-)l / / t},  ~-- = i ~ f { ( ~ n q _ l ) l / "  - -  ( ~ n ) l / / ' t } ,  

~ / :  ((#/ao)l/tt~o) A ((#/a+)l/tt~+) A ((p/a_)l/ t t~_) 

A {(#/a+)l/"(~+) 1/" + (# /a_ )Ut ' (~ ) ' / " } .  

THEOREM 3.2. 

(3.8) 

For any x > O, 

lim p{n l / "M~ > x} = P{~I > x}. 
n ---4 (:~ 

3.3 Example 3 
This is the case where # = 1/2 in Example 1. We use the notation in Exam- 

ple 1. We treat only the special case where f ( x )  = ax-U2, 0 < x < to, for some 
r0 > 0; the general case where f (x )  . . ~  ax -1/2 can be treated easily. Let x > 0 and 
0 < ~ < 1 and consider the events 

{ x} 
A~ = l<n<~min (?~n+l --  ?~n) > )~2 log-----~ ' 

x} 
A ~ , k = ~  min (r/,~+l-~/,~)> ~ A {n_ (A) < N:~ < n+ (A) }, 

' ( k < ~ < ~ ,  A 2 log A - - 

where n_(A) = 2Aarl/2(1 - ~), n+(A) = 2Aar~/2(1 + ~) and 1 < k < n_(A). Next 
we put 

--pA,k=p { . (,X)(r/n+l X } ~<m~n - ,n )  > ~ o g ~  ' 

---P~,k = P ~ m i n  (~?~+l --  r/n) > 
(k<n<n+(~,) A 2 logA " 

Then we can prove that 

exp{_2a2x(1 +¢ ) -2}  < lim lim P~,k < lim lira P(h~,k) < lim P(A~) 
k--~oc ),----*~ k---*oc X---~o¢ X--,oo 

< lira P ( A ~ ) <  lira lira P(A~,k)_< lim lira P)~,k 
.k~o¢ k--~o¢ .X---*oo k ~ o o  A ~ o o  

< exp{-2a2x(1 - e)-2}. 

Since ¢ > 0 can be made arbitrarily small we obtain 

(3.9) lim P(Ax) = exp{-2a2x}. 
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Once the result (3.9) is obtained we can proceed as in the proof of Theorem 3.1 
to obtain the following results: 

(3.10) 

(3.11) 

lim P~{A2(logA)M([O,r]) > x} = exp{-2a2x},  r > 0, 
A--*cx) 

lim P{n2(logn)Mn > x} = exp{-2a2x},  x > O. 
n ---~(:~ 

x > O ,  

The case of the arcsine law can be discussed by a method similar to that of Ex- 
ample 2. The limit distribution is exponential. 

3.4 Example 4 
Finally we treat the case where the common distribution of i.i.d. Xk'S is the 

Beta distribution with density 

F ( # +  u) x , _ l (  1 _ x)~_ 1 for x E (0, 1), 
f (x)  = r ( , ) r ( . )  

0 otherwise, 

where # and u are positive constants. The result in this case is a special case 
of Theorem 3.1 and Theorem 3.2. Since the limit distribution we axe interested 
in depends symmetrically on # and v, it is enough to consider the case where 
p > u. Let 7+ and 7-  be independent copies of (#F(#)2/F(2#))  1 / ' .  ~ where ~ is 
defined by (3.4) and denote by (I)~ and ko~ the probability distributions of ~/+ and 
min{~+, 7-},  respectively. Then the result is summarized in the following table. 

Table 1. 

Case Normal ized r a n d o m  variable Limit  d i s t r ibu t ion  

1 
- < I~ ~ u n 2 M n  Exponen t i a l  d i s t r ibu t ion  
2 

1 
- = tt ~ u n2(log n ) M n  Exponen t i a l  d i s t r ibu t ion  
2 

1 
0 < # < -~, tt < u n l / t ~ M n  ~t t  

1 
0 < tt ---- v < - n l / t t M n  q2tt 

2 
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