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A b s t r a c t .  This paper deals with the joint and marginal distributions of 
certain random variables concerning the fluctuations of partial sums N~ = 
sl +~2 + " "  +Er, r = 1, 2 , . . . ,  n; No = 0 of independent Pascal random variables 
~1, ~2 , . . . ,  ~ ,  thus generalizing and extending the previous work due to Saran 
(1977, Z. Angew. Math. Mech., 57, 610-613) and Saran and Sen (1979, Math- 
ematische Operationsforschung und Statistik, Series Statistics, 10, 469-478). 

The random variables considered are A (c), ¢(c), ¢(-~), Z,~ and max l<r<~(N~- r )  

where c = 0, 1, 2 , . . .  and ,,~ (̂~), ¢(±~) and Z~ denote, respectively, the number 
of subscripts r = 1 , 2 , . . . , n  for which N~ -- r + c, N~-I  = N~ = r ± c and 
N~-I =N~.  

Key words and phrases: Pascal random variables, partial sums, lattice path, 
rotation procedure, random walk, composed path, ballot problems. 

1. Introduction 

This  pape r  is a cont inuat ion  of two papers  (Saran (1977), Saran  and  Sen 
(1979)) and  deals wi th  the  der ivat ion of joint  d is t r ibut ions  of cer tain r a n d o m  
variables  concerning the  f luctuat ions of par t ia l  sums of independent  and  identically 
d i s t r ibu ted  (i.i.d.) r a n d o m  variables. 

As in Saran  (1977) and  Saran  and Sen (1979), here also we consider the  se- 
quence s 1 , ~ 2 , . . .  ,~n of i.i.d, r a n d o m  variables  where er denotes  the  number  of 
failures between the  (r  - 1)-th and  r - t h  successes (before the  first success when 
r = 1) in a Bernoulli  sequence wi th  p (0 < p < 1) the  probabi l i ty  of success and  
q -- 1 - p the probabi l i ty  of failure in a single tr ial  so t ha t  

( I . i )  P{~r = j }  = PqJ, j = 0 , 1 , 2 , . . . .  

Let us denote  by 

A(C): the  n u m b e r  of subscr ip ts  r = 1, 2 , . . . ,  n for which Nr  = r + c, 

¢(c): the  num ber  of subscr ip ts  r = 1, 2 , . . . ,  n for which N r - 1  = Nr  = r + c, 

A.(c) n : the n u m b e r  of subscr ip ts  r = 1, 2 , . . . ,  n for which Nr  _< r + c, 
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Z,:  the number  of subscripts r = 1, 2 , . . . ,  n for which N~_I = N~, 
where Nr = el + e 2 + ' " + e r ,  r = 1 , 2 , . . . , n  and No = 0. In this paper we 
propose to investigate, for a non-negative integer c, the probability distributions 

~A (c) Z / ~T of the vectors {¢~), Z~}, {¢~-c)Z~} and 1 n , ~ , m a x l < r < n ~  - r)}, and the 
marginal distributions derived therefrom under the condition that  Nn = k is fixed, 
thus generalizing and extending the earlier work in Saran (1977) and Saran and Sen 
(1979). These distributions were derived by employing the Gnedenko's technique 
(Onedenko and Korolyuk (1951)) of path methods as used by Cshki and Vincze 
(1961), Sen (1968, 1969), Saran (1977) and Saran and Sen (1979) and the method 
of composed paths introduced by Srivastava (1973) and Vellore (1972). Finally, we 
give some applications of these results in deriving the generalized ballot problems 
(Takgcs (1967, 1970)). 

2. Lattice path, random walk and rotation procedure 

Let Nr = E1 "Jr g2 -~- " ' "  q- gr, r = 1, 2 , . . . ,  n, N o = 0 and Nn = k. Then 

(2.1) P{Nn = j }  = ( n  + j - 1 )  n -  1 pnqj, j = 0 , 1 , 2 , . . . .  

Let us represent the sequence el, e2 , . . . ,  en of non-negative integers by a minimal 
lattice path in the following manner: (i) the path starts from the origin; (ii) for 
every r, e~ represents one horizontal unit followed by e~ vertical units. The section 
of the path  contributed by e~ starts where the section of the path contributed by 
Or-1 ended (see Fig. 1). Such a path from (0, 0) to (n, Nu) is called a minimal 
lattice path (see Mohanty (1966)). 

Nr, .Q(8~'/) 

i ~ r 
n=8 

(I ,0) 

Fig. 1. Lat t ice  p a t h  for the  sequence61  = 2 ,  e2 = 0 ,  63 = 1, e4 = 2 ,  65 = 1 ,66 = 0 ,  

67 =0~  68 = 1. 

One can observe from (1.1) and (2.1) that  the sequence e l ,  £ 2 , -  • • , £ n  of Pascal 
random variables possesses the property of all possible lattice paths from (0, 0) to 
(n, k) to be equally probable each with a probability 

(n+k 7 1) -1 = P{Nn = k}. pn qk n -- 
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Let 81,82,... be independent random variables associated with the outcomes 
of a Bernoulli sequence as follows: 

~i = { - 1  if the i-th trial gives success, 
+1 if the i-th trial gives failure, i = 1 ,2 , . . . ,  

with P { ~  = -1}  = p ,  P{~i = +1} = q = 1 - p .  Let So = 0, S~ = ~ 1 + 0 2 + ' " + ~ ,  
i = 1, 2, . . . .  If the points (i, Si) are represented in a plane and each of them is 
connected with the next one, we get a "simple random walk" path generated by 
the sequence {~}. 

Further, in the following the random walk path defined above is said to have R 
runs if the total number of changes from positive direction to negative direction and 
vice versa is R - 1. We shall use in the sequel the notion of a "composed path", 
introduced by Srivastava (1973) and Vellore (1972), different from the ordinary 
path as defined above. A composed path is made up of runs (6ij+l = ~ + 2  . . . . .  
~ij+l, J = 0, 1 , . . . ,  R -  1, i0 = 0) where two consecutive runs are not necessarily 
of different kind (i.e., ~# ~ Oij+l need not hold). To specify a composed path, its 
runs are to be previously specified (cf. Srivastava (1973), Vellore (1972)). 

It is important to note that among the n non-negative variables ¢1, ~2, . . . ,  c~, 
if exactly m (_< n) assumes the value zero at each, then the corresponding lattice 
path (defined in Fig. 1) will have either 2n - 2m or 2n - 2m - 1 changes from 
a horizontal to a vertical direction and vice versa according to whether s~ equals 
zero or not. 

The "rotation procedure" used in the sequel is defined as follows: On the 
rotating of the lattice path from (0, 0) to (n, k) (Fig. 1) about the origin through 
45 ° in a clockwise direction and referring to the line Nr = r as the x-axis, we 
observe it is equivalent to a simple random walk from (0, 0) to (n + k, k - n) 
starting with a negative step, i.e., with S1 = - 1  (see Figs. 1 and 2). 

0 ~ / / ' ~ / ~ / / ~ / ~  

Fig. 2. 

We shall also use in the sequel some of the path operations defined by Saran 
and Sen ((1979), Section 5). 

3. Notations 

The following symbols will be used. 
Era,n: a random walk path (SO, S1, . . .  ,Sin) from (0,0) to (m,n), i.e., with 

Smart .  
V (t) point: a point (i, Si) of a n  Era, n path for which Si = t. This is called a 

return to the line y = t. 
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W (t) = t-wave: the segment of a path included between two consecutive V (~) 
points. 

W+ (t) (W(__t)): a t-wave with Si > t (Si < t) at the intervening positions called 
a positive (negative) t-wave. 

T (t) point: a point (i, Si) of an Em,~ path for which Si = t and Si-1- Si+l = 
t 2 - 1. This is called a crossing or intersection of the line y -- t. 

S~ ) (S(t)): the segment of a path included between two consecutive T (t) 
points with Si _> t (Si _< t) at the intervening positions. 

S~): an S~ ) for some t. 
E~,n: an Em,~ path having R runs. 
Ea+  ER-  R m,~ ( m,~): an Era, ~ path starting with a positive (negative) step. 

ER+,I (ER-,I ~. E R+ (ERm~n) path having l T (t) points. m,n, t  ~--m~n,t]" an m,n 

EmR+,l,p (l~R-,l,p~. ~?R+,l (~R-,Z ~ path having p V (t) points. ,n,t ~ m , n , t  )* an ~m,n, t  k~m,n,t)  
Fm 2~+'''''j" a composed path from (0, 0) to (m, n) starting with a positive step, ~n 

having r positive runs and j + r negative runs where the last j runs are negative 
and the remainder of the runs alternate, and the (j + 1)-th run from the end being 
negative. 

F2mr,~'""J: a composed path from (0, 0) to (m, n) starting with a negative 
step, having r positive runs and j + r negative runs where the first j runs are 
negative and the remainder of the runs alternate, and the (j + 1)-th run from the 
beginning being negative. 

F(m2,r-1)-'""J: a composed path from (0, 0) to (m, n) starting with a negative 
step, having r - 1 positive runs and j ÷ r negative runs, where the first j runs are 
negative and the remainder of the runs alternate, and the (j + 1)-th run from the 
beginning being negative. 

~,2r+,l,.,j. a n  F, 2r-t-'''''j path having l T (~) points. ~rm,n,t • m,n 
N(A): the number of all possible random walk paths of type A, e.g., 

m ÷ n  m - n  
2~+ ( ~ - 1 ) (  1) 

N(Sm,~) = 2 . 
r - 1  r - 1  

N[a,~,. . . ,N~]: the number of lattice paths from (0,0) to (n, Nn) having 
characteristics a, ~ , . . . ,  e.g. N[¢ (c) = j, Zn = m, Nn = k] = the number of lattice 
paths from (0, 0) to (n, k) with ¢(~) = j and Z~ = m. 

4. Some auxiliary results 

Srivastava ((1973), (3.1), (3.2)), for short hereafter denoted by Srivastava 
((3.1), (3.2)), proved that for k _> 0, 

(4.1) ~(~2r+,0,.,j~ (n  +r k -  i )  ( n -  k -  ~) (n + k -  i )  ( n -  k -  i )  
" " I"~ 2 n ' 2 k ' 0  ] =  - 1  r + j  - r - 2  r + j  " 

We can easily show that for k _> 0, 

(4.2) ~r~2r+,0,.,j ~ ( : ~  : ) _  ( : +  2 k)  ( n - k - l ) .  
~Y~'X'2n~-l,2kT1, O] ~- : )  ( : - k -  +j  - - r + j  
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To prove (4.2), we consider the reversed path (i.e. apply the ~/-operation (Saran 
p2r+,o,.,j path) and observe that and Sen (1979), Section 5) on a n .  2,+1,2k+1,0 

N[F2r+,O,.,j ~ 2r-,.,.,j N { F 2 r - , . , . , j  
k, 2n+l,2k+l,O! = N ( F 2 n + l , 2 k + l )  - ~ 2n+l ,2k+l ,2k+l}  

F2r-,.,.,j l~2r--,',',j where 2nT1,2k+l,2k+l denotes a n ,  2,+1,2k+1 path crossing the line y = 2k + 1 
at least once. Let P be the point of the F, 2~-'*'''j path where its first 2nT1,2k+l,2k+l 
(j + 1) negative runs end. To determine the number of such paths we apply a 
transformation at the last point of intersection, say Q, of the path with y = 2k + 1. 
Change the order of the O's of the segment from P to Q (i.e., apply ~/-operation) 
and then reflect the remaining portion of the path beyond Q about y = 2k + 1 
(i.e., apply fLoperation (Saran and Sen (1979), Section 5)). The result is an 
F2(2r_l)-,.,.,j+l (:+~) (n- k- 1) ,~+1,2k+1 path and the number of such paths is _ r + j . The 

number of F. 2 r - ' ' ' j  (nr + ~ ) ( n r - k - ~ ) .  This leads to the 2n+l,2k+l paths is obviously _ + J _ 

required result (4.2). 
Combining (4.1) and (4.2), we have the following 

LEMMA 4.1. For n >_ O, 

(4.3) 
m + n  m - n  

2r+,0,.j 1) _ 11) N(F:,n, 0 ) = (  2 r_ l  ( 2 j r  

m + n  m - n  
_ (  ~ - 1 ) (  ~ - - 1 ) .  

r - 2  r + j  

Using (4.3) we now prove the following 

LEMMA 4.2. For t > n, 

(4.4) 

(4.5) 

N [ l:~2r-,O,p~ 
kL~m,n,t ] 

-{-n m - n  
2 t - 1 ) ( ~ + t - p - 2 )  

r - 1  \ r - p - 1  

_ ( m  n t - 1  - - - - ~ + t - p - 2  

r \ r - p - 2  ' 

r2+---nl ( r - 1  

m m - n  ( 

p_>l  

p = 0 ,  
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(4.6) 

(4.7) 

N (  fi?(2r+l)-,O,p~ 

( 2 t - l ) (  + t - p - 2  

r - 1  r - p  
" " 

= 2---r \ r - p - 1  p_>l  

m + n  m - n  

r \ r - 1  ' p=O,  

and for t = n > O, 

(4.8) ]V(E2r-'°'P~ = 
- "  \ - -m t r%ra  i 

2 p - 1  2 
r - p  r - 1  

m + n  , m - n  

r - p - 1  r 

0, 

1),  p_>l  

p = O .  

PROOF. To prove (4.4) for p _> 1, let O010203P1QlO4P2Q2""R (Fig. 3) 
b-~2r - ,0,p be an ~m,,~,t path (t > n) with O1 as the point where its first negative run 

ends and 02 and 03 be the first T (t-l) and the first V (t) points, respectively, thus 
dividing the path into four segments, viz., OO1, O102, 0 2 0 3  and 03R. Now we 
apply the following transformation to the segment 01R, shifting its starting point 
O1 to the origin, and then attach the segment OO1 at the end of the transformed 
segment 01R. The last segment so attached is counted as a separate run (as done 
in a composed path). 

i A 
/ / x x 

/ * ,  s 
0'~ ^ 0,'_ ^ ~. .,, -, ,, R(m,21-n) 

. 11 -  . . . . . . . . . .  , ' - - - - - , - - - ' - - , - - . - - . - - - - - - - - . - .  . . . . . . . . . . . .  

t - 1 ~ -  . . . . . . . . . . . . . . . . . . . . .  

01 

Fig. 3. 

By reversing the order of O's of the segment O102 (i.e., applying -y-operation), 
we get the segment O201 (see Fig. 4) which does not cross the x-axis. Remove 
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O203 and reflect about y = t the segment 03R (i.e. apply fl-operation) as shown 
by the dot ted lines in Fig. 3. Now the segment 03R thus obtained contains ( p -  1) 
W(+ t). Let h (0 < h < p - 1) out of (p - 1) W; t) be of length two each, i.e., each 
having two runs as well. Draw a line y = t + 1 and remove the portions of the path 
between y = t and y = t + 1. Then, joining the remaining segments end-to-end 

p2(r--h--1)+,0, . ,1 
in order, at the end of the segment O201, we get a n ,  m-2p,2t-n-2,0 path having 

(p - h - 1) S~ ) with terminal points at Q1, q 2 , . . . ,  Op-h-1 (see Fig. 4). 

p, R2 Pp-h-,~\ oo~ 
i 

0 ~  '~:  ~'z ~p-n-I \R (m-Zp~2t-n -Z 

Fig. 4, 

We further transform the path  so obtained (Fig. 4) as follows. Keep the 
segment 0201P1 unaltered. Then after removing the portions PIQ1, P2Q2,..., 
Pp-h-lQp-h-1, attach in order, the remaining segments QIP2, Q2P3,..., 
Qp-h-2Pp-h-1, and Qp-h-lA to  the end P1. Then attach to it in order, the 
segments Pp-h-lQp--h-1,..., P2Q2, P1Q1 and AR" (see Fig. 5). Part  of the trans- 
formed pa th  between the origin and its last turning point is considered to be an 
ordinary path  (where a "turning point" is a point where the path changes its di- 
rection from positive to negative or vice versa). In the remaining part, the run end 
points are kept as they are, moreover each straight segment thus attached forms 

122(r--P)+'O"'P--h path (see Fig. 5). A one-to-one a separate run. The result is a n .  m--2p,2t--n--2,0 
correspondence can be easily established (cf. Srivastava ((1973), p. 215)). Hence, 

since any h out of (p - 1) W(+ t) can be of length two each, 

p - 1  
..ArtP2r-'°'P ~ = ~ (p  - 1~ hE(122(r_p)+,O.,p_h~ 

' - -  h ) . .  , -m-2p ,2 t - . -2 ,0  ,, 
h=0 

p > l  

leading to (4.4) using (4.3). Likewise (4.6) and (4.8) can be established. To derive 
b--~R-, * R -  (4.5) and (4.7), let "-'m,n,t be an Em, n path crossing the line y = t at least once. 

Then from results (2.3) and (2.6) of Vellore (1972), we have 

m - n  m ~ n  ) 

and 
m -  n m-t-n 

~ m , n , t  J = _ 2 , 
r 
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\ ), x-" 

~ ~%,7 ~?~,~" 

/ I~'/(rn 2p,2t  n 2 

02 

Fig. 5. 

respectively. Thus, for p = 0 

2 r - -  ~(~2~-,o,o~ = N(E~,~) - N ( E  2r-'* 
~ " k ~ m , n , t  / ~ m , n , t - - 1 / ~  

leading to (4.5) using (4.10). Similarly (4.7) follows immediately from (4.9). This 
completes the proof of Lemma 4.2. 

In like manner, one can easily prove the following 

LEMMA 4.3. 

(4.11) 

(4.12) 

and 

(4.13) 

F o r n > O , p ~ _ O  

m + n  m - n  

" "  k~~m'n'O ! ---- r -- p -- 1 r -- 1 

m + n  m - n  ( 
r - p - 2  

m + n  m - n  

" "  L ' - ~ m ' n ' O  ] ~ -  r - -  p r - -  1 

m - - n  

r - p - 1  

N/~2r-,0,p~ P ( n r P -  1) ( n - ~ ) "  
kJ"~2n'0'O J ~ r p 

. 

(5.1) 

Some joint distributions 

THEOREM 5.1. For c = 0, 1, 2 , . . .  and 0 <_ j <_ m ~ n - j ,  

( n  + k-n_ l 1 )  P{¢(c) = j ' Z n  = m J N~ = k} 

1) 
n - m - j  n r e + j - 1  
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and 

(5.2) 

n + c  -(o - - \n  - m + J/  

n + k - 1 )  p{¢(c)  = j ,  Z~ = m I N~ = k} 
n - 1  

= ( n _ k m - _ _ l j _ l ) ( m n j )  

n 
- m - j  - 1 )  

O < _ k < n + c  

k >_ n + c ,  

provided the left-hand sides are defined. 

PROOF. To prove (5.1), we have for 0 < k < n + c 

(5.3) N[¢~)  = j ,  Z ,  = m, N ,  = k] 

= N[¢~)  = j, Zn = m, ~n > 0, Nn = k] 

+ N [ ¢ ~  ) = j ,  Z ,  = m, c ,  = 0, N ,  = k]. 

The first factor on the right-hand side of (5.3) involves the enumerat ion of lattice 
paths  from (0, 0) to (n, k), 0 _< k < n + e, having exactly j horizontal crossings of 
the  line Nr  = r + c and 2n - 2m - 1 changes from horizontal to vertical direction 
and vice versa (see Fig. 6). Applying the "rotation procedure" (see Section 2) to 

b-~.2(n--m)--,2j 
the pa th  in Fig. 6, the result is an ~n+k,k-~,c path  (see Fig. 7). In a similar 
manner  it can be  shown that  the  second factor on the right-hand side of (5.3) 

hI ( lq:(2n-2m+ l )- '2J~ equals .. k~n-i-k,k-n,c /. Hence for 0 < k < n + c 

N[¢ (n  ~) = j ,  Z n  = m ,  N n  = k] ~,r , .m2(~-,- , , ) - ,2j~ , , , . . ,~ (2 , - , -2 . - ,+1) - ,2 j .  
= " ~ " ~ n + k , k - n , c  ] ff- t V ~ n + k , k - n , c  ) '  

leading to (5.1) using Srivastava ((4.12), (4.13)) which axe given for even n + k 
and k - n bu t  can easily be proved to be true for any n + k and k - n. 

0 (.~0) ~r 

Fig. 6. Fig. 7. 

k - n  ) 
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To prove (5.2), we have for k > n + c 

N[¢  (c) = j, Z~ = m, Y ,  = k] = N[¢  (c) = j,  Z~ = m, en > 0, N ,  = k] 

+ N[q~ c) = j ,  Z n = fr~, 6n  = O, JVn ---- k] 

= N { E 2 ( n - m ) - , 2 j + l  ~ N { l ~ ? ( 2 n - 2 r n + l ) - , 2 j + l  
t n + k , k - n , c  ] -~ ~ n + k , k - n , c  }~ 

leading to (5.2), for k > n + c, using Srivastava (4.2) and Srivastava ((4.4) for 
j = 0 ) .  And  f o r k = n + c  

N [ ¢ ~  ) = j ,  Z~ = m,N~ = n + c] = Y [ ¢ ~  ) = j, Zn = m, en > O,N~ = n + c] 
+ N [ ¢  (c) = j, Zn = m, En = O, N~ = n + c] 
h r [ 1 5 ? 2 ( n - m ) - , 2 j ~  , ~r[ r ~ ( 2 n - 2 m + l ) - , 2 j - b l ~  

= .~, ~,.U2n+c,c,c ] -t- 1¥ ~l&2nq_c,c, c }, 

leading to (5.2), for k = n + c, using Srivastava ((4.7), (4.9)). This  completes  the  
proof  of Theo rem 5.1. 

Deductions. (i) For c = 0, (5.1) and  (5.2) verify result (6) in Saran (1977). 
(ii) Summing  (5.1) and (5.2) each over m and using the  summat ion  formula 

in Feller ((1968), Chap te r  II(12.9)), for short  hereafter  denoted  by Feller (12.9), 
we get for c = 0, 1, 2 , . . .  

(5.4) (n  + k-n_ l 1) P{¢(c) = j ' N~ = k} 

n - k + 2 c + 4 j + l ( n + k + l ~  
= n + k + l  \ k - c - 2 j ] '  O < _ k < n + c  

and 

(5.5) (n  + k - 1 )  P{c(c) = j ' Nn = I 

k - n + 4 j + 3 ( n + k +  l'~ 
= n + k + l  \ n - 2 j - l ] '  k > n + c ,  

which respectively verify results (6) and  (7) in Saran and Sen (1979) for c = 0. 

THEOREM 5.2. For c = 1 , 2 , . . .  

(5.6) 

and 

n + k - 1)  p{¢ ( - c )  = j ,  Zn = m I N,~ = k} 
n - 1  

= ( n  k - I  2 ) ( m  n 1)  - m + j  - + j  - 

n - r e + j - 1  m + j  
O ~ k < n - c  
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(5.7) ( n  + k - 1 )  P{¢(-~) = j 'Z~ = m l N'~ = 

= ( n - c  ) ( k + c - l ~  
n - r e + j - 1  \ n - m - j /  

n - m + j  n - m - j - 1  ' 

provided the left-hand sides are defined. 

k > _ n - c  

PROOF. For 0 _< k < n - c, we have 

(5.8) N[¢  (-c) = j, Zn = m, Nn = k] 

= N[¢  (-c) = j ,  Zn = m, zn > 0, Yn = k] 

+ Y[¢  (-~) = j ,  Z ,  = m, en = 0, Nn = k]. 

The first (second) factor on the right-hand side of (5.8) involves the enumerat ion 
of lattice paths  from (0, 0) to (n, k), 0 <_ k < n - c, having exactly j horizontal 
crossings of the line Nr  = r - c, and 2n - 2 m -  1 ( 2 n -  2m) changes from horizontal 
to vertical direction and vice versa (see Figs. 8 and 9). Applying the "rotation 
procedure",  the right-hand side of (5.8) equals 

N (  p 2 ( n - m ) - , 2 j - 1  "1 N ( E ( 2 n - 2 m + l ) - ' 2 j - l " ~  
\ ~ n + k , - ( n - k ) , - c )  -t- ~, n + k , - ( n - k ) , - c  1~ 

which applying the fl-operation reduces to 

N(Tg2(n - rn )+ ,2 j - l ' ~  l V ( E ( 2 n - 2 m + l ) - , 2 j - l ' ~  
~ ,~nTk ,n -k , c  ) "l- .,, \ n T k , n - k , c  1~ 

leading to  (5.6) using Srivastava ((4.2), (4.3)). 

Nr 

0 

- c  

~, ^ ( n ) k )  ( n ~  

. 

Fig. 8. Fig. 9. 

k) 

To derive (5.7), there  arise the following three contingencies corresponding to 
different values of k, viz. (i) k = n - c, (ii) n - c < k _< n, (iii) k > n. Using similar 
arguments  as in the proof  for (5.6), we have for k = n - c, 

N[¢  (-~) = j ,  Zn = m, Nn = n - c] 
]V( l~.2(n-m)-F,2j-l"~ ~_ hr[ l~(2n-2m+l)+,2J~ 
~ " ~ , ~ ' 2 n - - c , c , c  ] " ~" \ ~ - ~ 2 n - c , c , c  ] 
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and, for n - c < k < n, 

g [ ¢  (-c) = j, Zn = m, Nn = k] 
M(l:[y2(n--m)+,2j'~ M-(~i l (2n--2m+l)T,2 j '~  

~-- ~" \ " - ' n + k , n - k , c  J ~ "" k " ' ~ n + k , n - k , c  )~ 

leading to (5.7) for k = n - c and n - c < k < n, respectively, using Srivastava 
((4.6), (4.8), (4.11), (4.13)). 

For k > n, we have 

(5.9) N[¢ (-c) = j, Zn = m, N~ = k] 
__ h T ( f : ~ 2 ( n - m ) - , 2 J ~  ~ d ' ( l : ~ ( 2 n - 2 m + l ) - , 2 J ~  
- -  "" k~-~n+k,k--n,--c] ~ "~" L " ' n + k , k - - n , - c  )" 

To evaluate the first factor on the right-hand side of (5.9), let OQ1P1Q2P2Q3"" 
~2(n-m)-,2j path where Q1,Q2, . ,Q2j are the P2j-IQ2jR (Fig. 10) denote an ~a+k,k-n,-c "" 

points of intersection of the path with the line y = - c  and P1, P2,- . - ,  P2j-1 
as the last turning points of the path before intersecting the line y = - c  at 
Q2, . - . ,Q2j-  Let the coordinates of Q1 be (q, -c) .  Now we apply the following 
transformation. Concerning the section of the path between O to Ql(q,-c), let 
us first alter the signs and then the direction, i.e., we replace 01,02,... ,Oq by 
- 0 q , - 0 q - 1 , . . . , - 0 1 .  Then, to the end of the transformed segment OQ1 attach 
in order the segments Q1P1,Q2P2,..., Q2j-IP2j-1, Q2iR with the signs of the 
0's changed for all such segments lying below the line y = -c .  Then attach 
to this path, in order, the remaining segments P2j-IQ2j,P2j-2Q2j-I,..., P1Q2, 
again, such that the direction of all those segments lying below the line y -- - c  is 
changed. As in the proof of Lemma 4.2, part of the transformed path (Fig. 11) 
between the origin and its last turning point is considered to be an ordinary path. 
In the remaining part the run end points are kept as they are, moreover, each 

122(n- -m-- j  + l )-F ,O, . ,2 j -  2 
section attached forms a separate run. The result is an , ~+k,~-~+2c,0 
path (see Fig. 11). By reversing the procedure a one-to-one correspondence can 
be easily verified. 

R(n+k~ k-n) 

a~ R~ 
. / x . j ~  ¥= _c 

- ¢ |  r^ - ~-"~%'/'O 2 "XJ'Q 2 i 
' ' ' ~ :  J P1 PZj - I  " 

Fig. 10. 

l ~ ( 2 n - 2 m +  l ) - , 2 j  
In a similar manner a one-to-one correspondence between "-"nWk,k-n,-c and 

Fn 2(n-m-j+l)+'°' ' '2j-1 paths can be established. Thus the right-hand side of (5.9) 
+k,k- -n+2c ,O 

equals 
N ( K , 2 ( n - m - j T 1 ) + , O , . , 2 j - 2 " )  hT f l : i , 2 (n - -m- - jW1)+,O, ' , 2 j - l~  

k "  n T k , k - n + 2 c , O  I -{- "~" k ~ n T k , k - n + 2 c , O  ,'~ 
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q% .~ ~/" (n+k~k-n+2c) 

0 

Fig. 11. 

which, using (4.3) leads to (5.7) for k > n. This completes the proof  of Theorem 
5.2. 

Deduction. 
get for c = 1, 2 , . . .  

(5.10) (n + k - 1 )  P{¢(-c) = j ' Nn = 

n - k  + 4 j - 3  ( n + k  + l'~ 
n + k + l  \ n + 2 j - l J '  

and 

(5.11) 

Summing (5.6) and (5.7) each over m and using Feller (12.9), we 

(n +n_k 1 1) P{¢(-c) : J l Nn : k} 

k - n +  2 c + 4 j -  l ( n + k  + l'~ 
n + k + l  \ k + c + 2 j ] '  

O < k < n - c  

k > n - c .  

THEOREM 5.3. 

(5.12) 

ForO<_k <n+c,  

(n + k - 1 )  P{A(c) = j' A~(c) = n'Zn = m ' Nn = 

(~:c ~ ~)~ c ~ 
+ c - 1  \ n - m - l ]  

k- -C- -  ( o ~ ~ ) ( ~ c  ~ml)  ~1 

(n k - -m l_ l ) (n2m)  

n + c - 1  k - c  

and for k = n + c, 

(5.13) (2n + c - 1) 
\ n - 1 P{h(C) = j '  An(c) = n, Zn = m 

j = 0  

N. =n+c} 



786 JAGDISH SARAN 

[ ( n + c - j - l ~ ( n - l ~  11) \ r e + c - 1  ] \  m ] 

\ m + c  ] \ m -  ' 

O, 

where c = l,  2, . . . and O < m < n - j .  

j > _ l  

j = 0  

PROOF. For 0 _< k < n + c, we have 

(5.14) N[A(n ~) -- j ,  A *(~) = n, Zn -- m, N~ - k] 

=- N[A(n c) = j ,  A ~ (~) = n, Zn  = m ,  ~n > O, g ,  -- k] 

+ N[A (~) = j ,  A *(c) ----- n, Zn -- m, E, -- 0, Nn = k]. 

The first factor on the r ight-hand side of (5.14) involves the enumerat ion of lattice 
paths from (0, 0) to (n, k), 0 < k < n + c, having exactly j vertical contacts with 
the line Nr -- r + c, (2n - 2m - 1) changes from horizontal to vertical direction 
and vice versa, and never rising above the line Nr -- r + c (see Fig. 12). Applying 

b-~2(n--m) --,0,j 
the "rotat ion procedure" to the pa th  in Fig. 12, the result is an ~ + k , k - n , ~  pa th  
(Fig. 13). Similarly, the second factor on the r ight-hand side of (5.14) can be 

N ( E (  2 n -  2m + l ) - 'o 'J  ~ shown to be equal to ~ n+k,k-n,c 1. Thus for 0 < k < n + c 

N[A (~) -- j ,  A *(~) ---- n, Z~ = m, N~ -- k] 

N ( E  _) , 'J) ÷ "" k~'~nTk,k-n,c ]' 

leading to (5.12) using (4.4) to (4.7). 

Nr n~k) 

F o('i,o) 
~// \~//Q 

Fig. 12. Fig. 13. 

A*(C) Now N,~ = n + c and ~ n  -- n imply tha t  en > 0. Thus by the "rotat ion 
procedure" 

N[A (c) = j,  A,~ (c) = n, Zn  = m ,  Nn  = n + c] 

N[A(~) = -  A*(~) = J, ~ n  = n, Zn  = m,  en > O, Nn = n + c] 
hr {15-?2(n-m ) -,O,j 
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leading to (5.13) using (4.8). 

Deductions. (i) Summing (5.12) and (5.13) each over j from 0 to n - m and 
using Feller (12.6), we get for c = 1, 2 , . . .  

(5.15) ( n  1){ 
n - 1 P lmra~n(Nr -- r) < 

k - 1  n 
( n - m - 1 ) ( n - m )  

( n + c  "~ ( k - c -  l~ 
= - \ n - m - l J \  n - m  ] '  

( n + c -  l'~ ( n - 1  "~ 
\ n -  m -  1 / \ n -  m -  1] 

( n + c -  l'~ ( n -  l'~, 
- \ , ~  - m - 2] \n - m] 

c, Z n = m l g n = k }  

O ~ k < n + c  

k = n + c ,  

which is in agreement with (12) in Saran (1977). 
(ii) Summing (5.12) and (5.13) each over m and using Feller (12.9), we get, 

respectively, for c -- 1, 2 , . . .  and 0 _< k < n + c, 

(5.16) 

and 

(5.17) 

n + k - 1) p{h(C) = J, A,(C ) -_ n INn -- k} 
n - 1  

{ ~_:_k +_j_+?y (n + k - j~ 
= n + k - j  \ n + c  ] '  J >-1 

( n + k -  l~ _ f n + k -  l'~ 
\ n - 1  ] ~, n + c  ,]' j 0 

2n + c - 1) p{A(nC ) _. n*(c) 
n - 1  _ =J ,"n  =n  

{ = 2n:(--~-j\  n+c ]' 
O, 

Nn = n 4 - c  } 

j>_l 

j = o .  

(iii) Setting j = 0 in (5.12) and (5.13), we get for c = 1, 2 , . . .  

(5.18) ( n + k - 1 ) P {  l<~<n 

= ( n k m l  1 ) ( n n m )  

c) 
\ n - m - l ]  n - m  ' 

(iv) Summing (5.15) over m and using Feller (12.9) or summing (5.16) and 
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(5.17) each over j from 0 to n and using Feller (12.6), we get for c = 1, 2 , . . .  

(5.19) P{Nr <_ r + c for r = 1 , 2 , . . . , n  I N,~ = k} = 1 \ n  + c +  

(n+k- l ) 'n_ l  

O < k < n + c .  

Summing (5.18) over m and using Feller (12.9) or setting j = 0 in (5.16) (v) 
and (5.17), we get for c = 1, 2 , . . .  

(5.20) P{Nr < r + c for r = 1,2,. . . , n  INn = k} = 1 

n + k -  1) 
n + c  

O < k < n + c .  

T H E O R E M  5 . 4 .  

(5.21) 

and 

(5.22) 

For O < m < n - j and O < k < n, 

(n  + k - 1 )  P{A(°) = j'A*(°) = n'Zn = m  ' Nn = I 

= ( n - j - l ~ (  k - 1  ) 
\ n - m - j /  n - m - 1  

_ (  n - j - i  ) ( k - l )  j > 0  
n - m - j - 1  n - m  ' - 

2n - 1~ 
n - 1 ] P { i ~ )  = j' A*(°) = n, Z n = m INn = n} 

_ j ( n - j - l ~ (  n-1 ) 
n ~ \ n - m - j /  n - m - 1  ' j>_O. 

PROOF. Similarly as above, we have by the "rotation procedure", for 
O<_k<n,  

N[A (°) = j ,  A *(°) = n, Zn = m, Nn = k] 
_ _ . g ( E ( 2 n _ 2 m + l ) _ , o , j  ~ 

: , , 

h]'{ l:~2(n--m)+,O,J'~ y (  I : ~ ( 2 n - 2 m + l ) + , O , j "  ~ 
--. .~,  k~L~n+k,n_k, 0 ] -~- ~L, n T k , n _ k ,  0 1, 

by ~-operation, leading to (5.21) using (4.11) and (4.12). 
Further,  it is obvious tha t  

N[A (°) = j ,  A *(°) = n, Z~ = m, N~ = n] 

= N[A(n °) = j ,  A~ (°) = n, Zn = m, ~n > 0, Nn = n] 
hT { ~ 2 ( n - m ) - , O , j  ,~ 

~- ~, W-~2n,0,0 ] ,  
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leading to (5.22), using (4.13). 

Deductions. (i) Summing (5.21) and (5.22) each over j from 0 to n - m and 
using Feller ((12.6), (12.16)), we get 

(5.23) ( n + k - 1 )  P~ I.l<r<n - 

= l n - k - l m - 1 ) ( n n m )  

_ ( k - 1 ) ( n  ) 0 < k < n .  
n - m  n - m - 1  ' 

Comparing (5.15) and (5.23) we observe that  (5.15) holds good for c -- 0 too. 
(ii) Summing (5.21) and (5.22) each over m and using Feller (12.9), we get, 

f o r 0 < k  < n ,  

(5.24) (n + k - 1 )  P(A~) = j' A~(°) = n , Nn = -1  

_n-k+j(n+k-J)n_+k_j , j>0 ._  

(iii) Summing (5.23) over m and using Feller (12.9), we get 

k(k- 1) 
(5.25) P{Nr <_ r for r = 1 , 2 , . . . , n  INn = k} = 1 n(n + 1) 

for 0 < k < n .  

(iv) Setting j = 0 in (5.21) and (5.22), we get for 0 < m _< n, 

( n + k - 1 )  1 [ l < r < n  

n - 1  

_ (  n - I  ) ( k - l )  0 < k < n .  
n - m - 1  n - m  ' 

(5.26) 

6. Application of the results in deriving ballot problems 

Summing (5.26) over m and using Feller (12.9) or setting j = 0 in (5.24), we 
get 

k 
(6.1) P { N r < r f o r r = l , . . . , n l N n = k } = l - -  , for k = 0 , 1 , . . . , n ,  

n 

verifying Tak~cs' lemma ((1970), (1), p. 360) only for i.i.d, random variables, which 
is a generalization of the classical ballot theorem formulated below. 
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Suppose tha t  in a ballot candidate A scores a votes and candidate B scores b 

votes and tha t  all possible (a + b~ voting records are equally probable. Denote by 
\ a / 

~r and t3r the number of votes registered for A and B, respectively, among the first 
r votes recorded. Let # be a non-negative integer. Define the random variables 
~r, r = 1, 2 , . . . ,  a + b, as follows: vr -- 0 if the r - th  vote is the cast for A and 
~r = (#+1)  if the r - th  vote is the cast for B. Then vl, v 2 , . . . ,  ~a+b are i.i.d, random 
variables, taking non-negative integers for which vl + v2 ÷ . . .  ÷ V~+b = b(# + 1). 
Set Nr = Vl + v2 + ' - .  + ~r for r = 1, 2 , . . . ,  a + b and No = 0. Since Nr = (# + 1)~3r 
and r = a r  ÷/3r  for r = 1, 2 , . . . ,  a ÷ b, the inequality (~r > #fir holds if and only 
if Nr < r. Thus put t ing n -- a + b and k = b(# ÷ 1) in (6.1), we get 

(6.2) P{~r  >#/3r  f o r r = l , 2 , . . ,  a + b ] N a + b = b ( # + l ) } -  a - # b  
' a + b  ' 

for a > #b, thus verifying the classical ballot theorem (Tak£cs (1967), (1), p. 2). 
Similarly other results may also be applied in deriving the generalized ballot 

problems, The random variables ,,n A(c), ¢(c), ¢(-c), -~nA*(C) and Zn are equivalent to 
certain characteristics of the ballot problem as follows: 

A(C) . the number of subscripts r --- 1, 2, a ÷ b for which ~r = #fir - c, aq-b . . . .  ' 

¢(~+b ): the number of subscripts r -- 1, 2 , . . . ,  a ÷ b for which ~r = #t3r 7= c 
but a t - 1  = #~3r-1 T c - 1 and ~3r-1 = j3r, 

A,(C) the number of subscripts r 1, 2, , a + b for which a r  > #~3r C, aq-b : -~ " " " --  --  
Za+b: the number of subscripts r = 1, 2 , . . . ,  a + b for which ~r-1 = fir. 
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