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Abst rac t .  The estimation problem of a model through the conditional maxi- 
mum likelihood estimator (MLE) is explored. The estimated model is compared 
using the two dual Kullback-Leibler losses with that through the unconditional 
MLE. The former is found to be superior to the latter under familiar mod- 
els. This result is applicable to the model selection problem. These suggest 
a novel extensive use of the conditional likelihood, since the traditional use of 
the conditional likelihood was restricted only on inference for the structural 
parameter. 

Key words and phrases: AIC, conditional inference, exponential family, 
Kullback-Leibler loss, model selection. 

1. Introduction 

Conditional inference has been focused for the structural parameter 8 under 
the existence of the remaining parameter #, which is usually referred to as a nui- 
sance. In practical situations, however, the parameter # is not always nuisance but  
more important than 8 in familiar examples such as a normal model. In familiar 
models, the so called structural parameter is usually the dispersion one, and the so 
called nuisance parameter is the mean (or location) one. Therefore, unless condi- 
tional inference for 8 is applicable to inference for # or (8, #), conditional inference 
is less attractive in practice. The aim of this paper is to claim superiority of the 
estimated model through the conditional maximum likelihood estimator (MLE) 
over that  through the unconditional MLE under selected models. 

Let x l , . . . ,  xn be a sample of size n from a population having the density (or 
probability) function p(x;8 ,#) .  Write x : ( x l , . . . , x n ) '  for 8 E O and # E M. 
Suppose there exists a statistic t such that 

(1.1) p(x; 8, #) (---- H p(xi; 8, #) )  = pc(x; 8 I t)pr(t; 8, #). 

Inference of 8 is recommended to be based only on the conditional likelihood 
pc(x; 8 I t). A lot of works have been devoted to conditional inference, which 
includes Fisher (1935), Kalbfleish and Sprott (1970), Godambe (1980), Lindsay 
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736 TAKEMI YANAGIMOTO 

(1982) and Cox and Reid (1987). Their attention, however, was restricted on 
inference only for ~. 

When we obtain the conditional MLE of ~, ~c, a naive way to estimate # 
is to maximize the residual likelihood, pr(t; ~c, #). Such a treatment is actually 
employed in the survival analysis, for example Lawless ((1982), p. 360). The claim 
addressed here is that (~c, f~c) provides us with a better estimate of the model 
than (~,/5~) under some familiar models, that is, p ( x ; ~ , f ~ )  can be a better 

estimate of p(x; ~, #) than p(x; ~,/5~). This claim looks reasonable, but has not 
been addressed explicitly. This naive extension makes conditional inference much 
more useful in practice. 

Models in the study and preliminaries are given in Section 2. In Section 3 
the two dual Kullback-Leibler losses of the two MLE's, the KL and the KS losses, 
are explored, and superiority of the conditional MLE is shown. We observe that 
the estimated likelihood in terms of the conditional MLE reduces rightly that in 
terms of the unconditional MLE. Section 4 is devoted to a criterion for comparing 
estimated models. The selection problem of the order of the normal polynomial 
regression model is discussed in Section 5. In the final section we refer to the other 
two models briefly. 

2. Models in the study and preliminaries 

Our interest will be focused on the models where the conditional MLE of 0 is 
recommended. Yanagimoto and Anraku (1989) gave seven models where the con- 
ditional MLE is properly superior to the unconditional MLE for a finite sample 
size and a finite number of strata. Bar-Lev (1984) and Jorgensen (1987) discussed 
the restricted exponential families of distributions, and studied the conditional 
MLE. In what will follow, for simplicity we will not distinguish a model, its dis- 
tribution or its density function, unless any confusion is anticipated. Our primary 
interest will be placed on the normal, the inverse Gaussian and the gamma models. 
These three models are practically important, and have many favorable proper- 
ties. Blaesild and Jensen (1985) gave a characterization of them as members of 
the exponential family satisfying a favorable property. In these three models the 
MLE of # is ft = ~ for an arbitrarily fixed 0, and consequently the conditional 
and the unconditional MLE's are identical. Setting t = ~, the density function is 
factored as in (1.1). 

Other models in the study are the 2 × 2 table and the two-parameter expo- 
nential distribution models. The multiple 2 x 2 tables model is the example where 
conditional inference is most widely employed. A reason is that there often exist 
many strata compared with the total sample size. 

The explicit forms of the density functions in the study are presented in Table 
1. It gives also the forms of the MLE's or the estimating equations. Note that 
the parametrization may be a little different from a usual one. We first employ a 
parameter representing the mean. Then the parameter orthogonal to the mean pa- 
rameter is chosen, which represents magnitude of the dispersion. Our parametriza- 
tion is designed also for being associated neatly with population moments. In this 
concern recall that Gauss originally employed the notation h = 1/v~a in the 
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normal distribution as the precision parameter (Davis (1857), p. 259), while the 
parameter if2 is employed now. 

The polynomial regression model with the normal error is also explored to 
discuss the model selection problem, where the parameter # is a vector. In such a 
case we will write # as # to emphasize a vector. 

3. Kullback-Leibler loss 

When all the parameters in a model are estimated, we need to use a suitable 
loss of the estimated model p(z; ~(x),/~(x)) to the true model p(z; O, Iz). Here z 
denotes a latent (or unobserved) sample vector to express a model. We will sup- 
press the sample x in the estimators, unless any confusion is anticipated. The loss 
introduced by Kullback and Leibler (1951) is most convenient for our comparison 
study. There are the two dual types of the loss; one is 

(3.1) f log #) 

and the other is 

(3.2) f p(z;O,#) , KS(~(z), f~(x); 0, #) = log ^ p(z; 8, #)dz. p(z; 
The former was discussed in Kullback ((1959), Chapter 3), and the latter is more 
widely employed in the recent literature. To distinguish them, we call the former 
the Kullback-Leibler loss (KL loss), and the latter the Kullback-Leibler separator 

(KS loss). By definition it holds that KL(~, f~; O, #) = KS(O, #; 0,/~), if both the 
losses exist. They are invariant with strictly monotone transformations of 0, # and 
x. This, together with the invariance property of likelihood inference, permits us 
to extend the results obtained here to other transformed models. Define the risk 
induced from the KL loss as RKL(~, f~; O, #) = E(KL(#(x),/~(x); O, #) I p(x; O, #)). 
We will write the risk as C. RKL for 0 = 0c and so forth. 

Example 1. Consider the losses of the estimator (0, fL) = (a2, bs 2) with s 2 = 
~-'~(zi - 2)2/(n - 1) in the normal model for a and b > 0. Then the minimum 

of RKL(O,/~; 0, #) is attained at a = 1 and b = 1, and that of RKS(~,/5; 0,/z) is 
attained at a = 1 and b = ( n + l ) ( n -  1) /n (n -2)  (> 1). Recall that 0~ is obtained 
by setting b = (n - 1)/n < 1. It appears that the selection of a = 1 and b = 1 is 
appealing in this example. 

When p(x; O, #) is a member of the exponential family, the KL loss is associated 
with the likelihood ratio statistic. In fact it is known (Kullback (1959), p. 95) that 

(3.3) KL(~(:~), f~(x); O, p) -- log 

for every 0, # and ~. The equality (3.3) means that  the likelihood ratio statistic 
has two different characteristics. While a larger likelihood ratio statistic looks 
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appealing, it also indicates a larger KL loss of the estimated model. The following 
proposition shows that  a result corresponding to the equality (3.3) holds for the 
conditional MLE in a weaker manner. 

PROPOSITION 1. Suppose that p(x; 9, it) is either the normal distribution or 
the inverse Gaussian. Then it holds that 

( P(X;Oc(x)'fz(x)) ,p(x;O, it)) 
(3.4) RKL(Oc, fz; O, it) = S log p(x; O, #) 

for every 0 and #. 

The proof follows straightforwardly. Proposition 1, together with the equality 
(3.3), yields an elegant proof of Proposition 2. 

PROPOSITION 2. (Yanagimoto (1987)) Under the same assumption in 
Proposition 1 it holds that RKL(~c, ft; 9, #) < RKL(O~, ft; 9, #) for every 9 and 
it. 

For ease of our understandings we give explicit forms of the quantities for the 
normal model. 

Example 2. (normal model) 
expressed explicitly as follows: 

2 x KL(~c, ft; 9, it) = n log ~2 - n + 

x CLR = nlog  ~ - ( n -  1) + 2 

2 x gL(Ou, f~; O, #) = 2 x ULR 

nO 
= n log (n - 1)s 2 - n + 

The above quantities for the normal model are 

n { s 2 + ( ~ - # )  2} 

0 
( n -  1 ) s 2 + n ( ~ - # )  2 

( n -  1 ) s 2 + n ( ~ - # ) 2  

where CLR and ULR denote the log-likelihood ratio statistics based on the 
conditional and the unconditional MLE's, respectively. Then it follows that  
2C.RKL = n~((n - 1)/2) + 1, and 2U.RKL = n~((n - 1)/2) + n logn / (n  - 1), 
where y(u) = log u - ¢(u)  with ¢(-) being the digamma function. The difference 
of the latter risk to the former is n logn / (n  - 1) - 1 (> 0). 

The equality (3.4) gives us a striking fact supporting possible superiority of 
the conditional MLE over the unconditional MLE under selected models. In fact 
we observe that  the excess of the KL loss of ( ~ ,  ft) to that  of (0c, ft) is equal to 
the difference between the averages of the log-likelihood ratio. Recall that  the 
likelihood of the estimated model through the unconditional MLE is greater than 
that  through the conditional MLE for any x. Therefore, this means that  the 
excess of the loss is caused by maximizing the unconditional likelihood without 
disregarding pr(x; O, #). 
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The results concerning the KS loss corresponding to Proposition 2 are given 
as follow, which are shown by easy calculations. 

PROPOSITION 3. Suppose that p(x; O, it) is either the normal or the inverse 
Gaussian density function. Then it holds that 

RKS(Oc, ft; O, #) < RKS(Ou, ft; O, tt), 

for every 0 and #. 

Example 2 (continued). The KS losses are expressed as 

s n ( O  + - 
2 × KS(#c(x) ,~(x);O,#)  = nlog -0-- - n +  s2 , 

2× KS(O~(x),ft(x);O,#) = nlog ( n - 1 ) s 2  n +  n2(0 + ( ~ -  #)2) 
nO (n - 1)s 2 

The risks induced from the two losses are 

2 × RKS(Oc, ft; O, #) = -n~ ( (n  - 1)/2) + 1 + 2(n + 1_____~), 
n - 3  

2 x RKS(Ou,f~;O,#) -nrl((n 1 ) / 2 ) + n l o g  n -  1 
n 

4n 
(n - 3)' 

for n > 4. Note that the difference of the twice risk induced from the unconditional 
MLE to that induced from the conditional MLE is n l o g ( n - 1 ) / n - 1  + 2 ( n - 1 ) / ( n -  
3). This difference is greater than that between the twice risks induced from the 
two KL losses. 

Since the explicit forms of 0~, and 0c are unavailable for the gamma model, 
analytical approach looks severely tough. Simulation study in Yanagimoto (1988) 
suggests that the results in Propositions 2 and 3 hold for various values of 0. (The 
KL and the KS losses in this paper were called the K-L type and the K-L losses, 
respectively.) Our additional extensive simulation study supports this conjecture. 
Simulation results of the average of the KL losses through the conditional and 
the unconditional MLE's and log{p(x; 0c,/2)/p(x; 0, it)} are presented in Table 2 
for various values of 0. The computer program was prepared using the special 
functions and random number generators in IMSL Library (IMSL (1980)) and 
formula in Yanagimoto (1988). The figures in Table 3 suggest that the equality 
(3.4) holds at least approximately. 



E S T I M A T I N G  A M O D E L  T H R O U G H  T H E  C O N D I T I O N A L  MLE 741 

Table 2. Empir ical  es t imates  of the  th ree  quant i t ies  selected values of the  sample size and  the  
dispersion pa rame te r  in the  g a m m a  d is t r ibu t ion  wi th  10,000 i terat ions.  

n ~ C.  R K L  E ( C L R )  U. R K L  

6 0.05 1.145 1.144 1.191 

0.1 1.154 1.152 1.198 

0.2 1.156 1.160 1.204 

0.5 1.148 1.156 1.198 

1 1,138 1,147 1,186 

2 1.143 1.153 1.189 

4 1.177 1.175 1.210 

20 0.05 1.032 1.034 1.047 

0.1 1.034 1.034 1.046 

0.2 1.129 1.140 1.184 

0.5 1.123 1.134 1.176 

1 1.154 1.162 1.201 

2 1.150 1.152 1.187 

4 1.061 1.063 1.071 

Table 3. The  Kullback-Leibler  risks of the  s imul taneous  es t imat ion  in the  mult iple normal  
popula t ions  under  the  assumpt ion  t h a t  the  means  of n - k out  of n popula t ions  are known. 

n k 

10 

20 

2 x R K L  2 x R K S  

C M L E  UMLE C M L E  UMLE 

1 2.152 2.206 2.991 3.509 

2 3.318 3.533 4.698 6.467 

3 4.496 5.063 6.704 10.937 

5 7.131 9.063 12.869 30.937 

1 2.071 2.097 2.399 2.609 

2 3.132 3.239 3.618 4.261 

3 4.200 4.450 4.867 6.217 

5 6.363 7.117 7.483 11.345 

10 12.066 15.929 15.434 39.070 

4. Estimation of the likelihood of a model 

In practical situations an assumed model is not always the unique candidate 
model. It is more realistic that  we have various candidate models potentially 
fitted well to data  in the study. Then we need to discuss the goodness of fit of 
an assumed model or to compare it with other ones. To prepare comparisons 
of candidate models, we discuss an estimator of the likelihood of a fitted model. 
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Assume that  the true model is p(x; c, m) for some c E O and m E M. Consider 
the measure of the goodness of a fitted model, 

(4.1) E { / logp(z ;~(x) , f~(x) )p(z ;c ,m)dz  Ip (x ;c ,m)} ,  

which will be written as H(~},/2; c, m). The measure is the average of the log- 
likelihood of the estimated model. Therefore, it is regarded as that  of repro- 
ducibility of the true model by the estimated model. 

It follows that  H(c, m; c, m) - H(~,/2; c, m) = RKS(~,/2; c, m) > 0, if the left- 
hand side exists. Using Proposition 3, we obtain 

(4.2) H(/}~,/2; c, m) > H(/}~,/2; c, m) 

for every c and m, if p(x; ~, #) is normal or inverse Gaussian. The inequality is 
expected to hold for the gamma model. 

Next we discuss the two estimates of H(/},/2; c, m) using the conditional and 
the unconditional MLE's. The following propositions are useful for constructing 
them. The proof follows from the equality (3.3) and Proposition 1. 

PROPOSITION 4. (i) Suppose p(x; ~, #) is a member in the exponential family. 
Then it holds that g({}~, ~; c, m) = E{logp(x;  ~}~, ~) t P(X; c, m ) } - R K L ( ~ ,  ~; c, m) 
- RKS(~,/2; c, m) for every c and m. 

(ii) Suppose that p(x; ~, #) is normal or inverse Gaussian. Then the above 
equality for ~ in place of ~ also holds/or every c and m. 

Recall that  Proposition 1 holds approximately for the gamma model. There- 
fore, we can reasonably expect that  Proposition 4(ii) approximately holds for the 
gamma density function. 

Since the unknown parameters still remain in the two risks, it is necessary to es- 
t imate them. Note that  the large sample approximation yields RKL(~,/2; c, m) - 
RKS(~, f~; c, m) _ 1 for ~ being either the conditional MLE or the unconditional. 
Set Tc -- logp(x;  ~c,/2) - 2 and T~ = logp(x; {}~,/2) - 2, the latter of which is - 1 / 2  
times as large as the AIC in Akaike (1973). Then Tc and T~ are approximately 
unbiased estimates of H(~c,/2; c, m) and H(/}u,/2; c, m), respectively. 

By definition it holds that  Tc < Tu for any x. It may look that  Tu is 
superior to T~. Recall, however, that  the reverse inequality (4.2) also holds. 
This superficial confusion comes from inaccuracy of the above large sample ap- 
proximations. In fact when p(x; O, #) is normal, inverse Gaussian or gamma, 
we know that  RKS(~,/2; c, m) > RKS(~,/2; c, m) > 1 and RKL(~u,/2; c, m) > 
RKL(~c,/2; c, m) > 1 for every c and m. These inequalities show that  T~ is a less 
biased estimator of H(~c,/2; c, m) than T~ is that  of H(/}~, #; c, m). 

The above results support  superiority of the use of the conditional MLE for 
estimating H(~},/2; c, m) over that  of the unconditional MLE. It is surprising that  
any estimator other than the unconditional MLE has been out of interest, though 
much work has been devoted to the AIC and related criteria. 
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We assumed that a true model is involved in an assumed model in the previous 
section. Next we suppose that  a true model having the density function g(x)  is 
incorrect, that  is, g(x) is not included in the family p(:e; 0, #) for 0 E {9 and # E M. 
Let % and m s be the values attaining the maximum of E(logp(x; 0, #) I g(x)). 
Then p(x; ca, mg) is regarded as the nearest density function to g(x). An extension 
of Proposition 4 is possible as follows. 

PROPOSITION 5. Suppose that p(x; 0, #) is either normal or inverse Gaus- 
sian. Then it holds that 

E{logp(x; 0, fO - KL(O,/2; %, mg) - KS(O, fz; %, mg) I g(x)} 

= E { f logp(z;O(x),fz(x))p(z;c ,m )dz l g(x)} 

for either 0 = 0~ or 0~, if  all the expectations exist. 

5. Model selection 

In this section we will discuss the model selection problem. The inequalities 
in the previous section suggest superiority of the conditional MLE also in this 
problem. However, it is necessary to pursue whether this conjecture is actually 
true or not. Since the model selection problem is much complicated, we will restrict 
our attention on a family of normal models. 

Consider K models such that x ~ N(# ,  0I), # E Mk, Mk = {(#1 , . . . ,  #~)' J 
#k+l . . . . .  #n = 0} for k = 1 , . . . ,  K. We write the true model as # = m and 
0 -- c, and assume that Imkl is decreasing in some sense. Let k0 be the maximum 
k such that mk ~ O. The models, Mk for k < k0, are then incorrect. Our 
problem is to select the optimum model Mk, and then to estimate parameters in 
the model. Note that  the estimation problem of the normal polynomial regression 
model is analytically equivalent with the sequential simultaneous estimation of 
means of many normal models. The model Mk corresponds with the (k - 1)-order 
polynomial regression model. The problem of determining an optimum fitting 
order of the normal polynomial regression model is a familiar, important one in 
practice. 

Consider a model Mk for a fixed k, and the partition of vectors of x and # 
into the first k-dimensional vectors and the remaining (n - k)-dimensional ones, 

for example x '  = (x~, 4 ) .  Then we obtain that  0c = [ [ x 2 [ [ 2 / ( r ~  - k ) , / ~ u  = I[x~l[2/n, 
/21 = xl and/22 = 0(~-k). It follows that 

n 0 +  [Ix1 -/Zll[ 2 + [[#2]l 2 
KL( O, [z; O, IZ) = - n  log ~ + 0 - n, 

nO+ IlXl -#~l l  2 + I1~112 
KS(O,/2; 0, #) = n log ~ + 0 - n. 

Suppose [[m2[[ 2 = 0, that  is, the assumed model is true. Proposition 4 still 
holds by replacing /2 and m with /2 and m,  respectively. The risks are then 
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written as 2 C . R K L  = nr / ( (n  - k)/2) + k, 2 U . R K L  -- nTl((n -- k)/2) + log n / ( n  - k),  

2 C . R K S  = -n~?((n  - k)/2) + k + 2(n + k ) / ( n  - k - 2) and 2 U . R K S  = -n~?( (n  - 

k)/2) + n log(n - k ) / n  + 2 n ( k  + 1)/(n - k - 2). Note that  ~(u) is approximated by 
2 / u  for a large u. Table 3 presents numerical values of the above four quantities. 
Sugiura (1978) gave an explicit form of 2 U . R K L  + 2 U . R K S ,  and pointed out that  
it could take a value differing greatly from 2(k + 1), which is employed in defining 
the AIC. We observe that  U. R K S  is much larger than C.  R K S ,  when k is large. 
This is a strong reason why the use of the conditional MLE is recommended. 

Next we consider the selection problem of the order k. The goodness of fit 
of the model M k  is evaluated by Tk ---- logp(x; 0, ~) - (k + 1). We select the k 
maximizing Tk over all the integers less than or equal to K. Then we estimate 
the parameter by specifying the model Mk.  The use of the unconditional MLE 
of ~ in Tk yields the minimum AIC procedure. Our assertion is to use ~c in 
place of ~ .  The analytical comparison study of the two procedures looks severely 
complicated, and we conduct the simulation study. As usual in the regression 
model, we maximize Tk sequentially, that  is, the minimum k satisfying Tk > Tk+l 

is chosen. In addition, we set K = n / 2 .  Note that  the use of the unconditional 
MLE makes the procedure prodigal, which can be proved analytically. Table 4 
presents the results. As expected, the results on risk comparisons are parallel 
with those in the case of a fixed k. It should be noted that  k often takes a fairly 
large number in the regression model. Consequently, the difference of a risk of the 
procedure through the conditional MLE to that  through the unconditional MLE 
can be large. 

Table 4. Es t ima ted  average Kullback-Leibler  losses in the  s imul taneous  es t imat ion  of mult iple 
normal  populat ions  wi th  the  variance 1 wi th  10,000 i terations.  

Means configuration? 
2 x KL 2 x KS 

CMLE UMLE CMLE UMLE 

20 * 0 1.800 1.820 2.239 2.423 

2 * 10, 18 * 0 4.000 4.219 4.804 6.119 

2 * 10, 48 * 0 3.808 3.873 4.065 4.437 

10, 5, 1.5, 1.0, 6.616 6.869 7.317 9.283 
0.5(0.1)0.1, 11 • 0 

?20 * 0 means  20 O's, and  0.5(0.1)0.1 means  numbers  from 0.5 to 0.1 at  a s tep size 0.1. 
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6. Other models 

In this section we discuss the two-parameter exponential and the logit models. 

6.1 Two-parameter exponential model 
As in Table 1 the density function of the two-parameter exponential distribu- 

tion is of a simple form, and both the conditional and the unconditional MLE's of 
8 can be expressed in an explicit form. Since the support of the distribution de- 
pends on the unknown parameter p, it is not a member of the regular exponential 
family. 

Similarly to the normal and the inverse Gaussian distributions, it holds that 
0, = (n - 1)0,/n. It is easily shown that the equality (3.3) and Proposition 1 
hold, which yield KL(~, ,  f i ;  8, p )  < KL(~,, f i ;  8, p)  for every 8 and p. The KS loss, 
however, does not exist for both the MLE's. This is because the common support 
of the estimated models through the two MLE's is properly included in that of the 
true model. It seems philosophically reasonable that the estimated model shrinks 
the support. Therefore, it is undesirable that the KS loss takes infinity, when the 
support is shrunk. Consequently, the estimation of the measure (4.1) is impossible. 
The statistic Tk, however, can be calculated, and looks applicable to the model 
selection. 

6.2 Logit model 
Consider a simple 2 x 2 table model. Let x and y be outcomes from the two 

binomial distributions, Bi(n, ea+'/(l + ea+')) and Bi(m, ea/(l  + ea)). As in the 
introduction the MLE of p = nea+'/(l + ea+') + mea/(l + ea) is x + y for an 
arbitrarily fixed 8. The conditional likelihood given t = x + y depends only on 8. 
Though this model is a two sample model, the factorization property (1.1) holds. 
The extension of our treatments is straightforward. Note that the equality (3.3) 
holds, since the joint distribution of x and y is in the exponential family. 

Table 5. Averages of the three quantities to selected values of the odds ratio 0 in the logit 
model. Both the sample sizes are 10, and the parameter a is 0. 
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As Yanagimoto and Anraku  (1989) noted,  there  is no sufficient evidence show- 
ing superiori ty of the condit ional MLE over the uncondit ional  MLE in the logit 
model.  We compare  the  RKL(~,/2;  8, #) of the  two MLE's.  The  results are given 
in Table 5, which shows tha t  nei ther  the equali ty in Proposi t ion 1 nor the in- 
equali ty in Proposi t ion 2 holds for this model. When  8 is small, it holds tha t  

RKL(gc,/2; 9, #) < RKL(~u, /2;  9, #). Table 5 and simulation results, not included 
here, show tha t  such a region of 9 is 191 < 2 as a rule of thumb.  Since our interest 
is unlikely to be paid to a large absolute value of 9, the result supports  the actual  
preference of the conditional MLE. Note also tha t  the increase of the  number  of 
s t ra ta  makes the region wider. 
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