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Abst rac t .  Differential geometrical structures (Riemannian metrics, pairs of 
dual affine connections, divergences and yokes) related to multi-step forecasting 
error variance ratios are introduced to a manifold of stochastic linear systems. 
They are generalized to nonstationary cases. The problem of approximating 
a given time series by a specific model is discussed. As examples, we use the 
established scheme to discuss the AR (1) approximations and the exponential 
smoothing of ARMA series for multi-step forecasting purpose. In the process, 
some interesting results about spectral density functions are derived and ap- 
plied. 
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i. Introduction 

Differential geometrical methods in statistics have been clearly established 
(Barndorff-Nielson et al. (1986), Amari et al. (1987), Kass (1989)). In Barndorff- 
Nielsen et al. (1986), it was pointed out that applications of differential geometry 
to time series models raised special problems, and they particularly posed the fol- 
lowing questions: are differential geometric notions useful in connection with pre- 
diction of future observations and with behavior under incorrect models? Amari 
(1984, 1986, 1987a~ 1987b) discussed differential geometrical structures on a man- 
ifold of linear systems. He introduced a Riemannian metric, a system of a£/ine 
connections--a-connections, and corresponding a-divergences. 

For a stationary zero-mean Gaussian process 
(x) 

(1.1) Xt  = ~ ~uet-~, 
u = 0  

where no = 1, all the ~u'S are real, ~-]~-0 n~ < oc and {et} is a series of Gaussian 
white noise with variance ay, it is well known that its spectral density function is 

2 
(1.2) S(w) = -~-h(w) 

~ Tr 

621 
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for w E [--~T, It], where 

(1.3) 
oo 2 

E h(w) = n,~e -*'~'~ . 
'u--0 

The infinite-dimensional manifold L considered by Amari consists of all the {Xt}'s 
in (1.1) with its spectral density S(w) continuous and satisfying 

(1.4) 0 < S(w) < oo. 

Since we are only interested in the stochastic properties of {Xt}, which are com- 
pletely described by its spectral density, our manifold L is identified as the set of 
all the continuous S(w)'s which satisfy (1.2)-(1.4). (Here several things are a little 
different from Amari's. In order to relate our geometry to forecasting problems, 
we quit Amari's restriction that et's variance is equal to 1 and instead assume that 
no -- 1. Also we have an extra factor, 1/21r, for spectra/density. All these differ- 
ences do not affect the geometric structures discussed here.) Amari appropriately 
introduced 1// 

guy = 2-~ Ou log S(w) O~ log S(w) dw 
7r 

as the Riemannian metric at S(w), where @t denotes the partial derivative a/Oct 
and {ct} are the coordinates. Thus the spectral density plays a role similar to that 
of the likelihood function in the i.i.d, case. Among his a-connections, the most 
important two are the +l-connection and the -l-connection. The corresponding 
divergences are the + l-divergence 

DI(S], S2) = ~ ~ - 1 - log dw 

and the -1-divergence 

D_ 1 ($1, $2) -- ~ ~ - 1 - log dw. 

Since DI(S1, $2) = D-1($2, $1), we only discuss D-1 in the following. 
One of the primary goals in time series modelling is forecasting. How are 

our geometric structures related to forecasting problems? Let a2q be the one-step 
forecasting error variance when Sq is used for forecasting of a series generated by 

2 2 Sp. The ratio r12 -- a12/an, called the one-step forecasting error variance ratio 
of $2 versus $1, equals 1 when $2 = $1, and is bigger than 1 when $2 ~ $1. And 
log r12 is some sort of "distance" measure of $2 from $1, which indicates how well 
$2 approximates $1 for the purpose of one-step prediction. As shown by Lemma 
1.1 in Xu (1988), we have 

(1.5) inf D-I(S1, $2) = logr12, 
~ / ~  
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2 is the noise variance of S v. Since D-I(S1, $2) depends on al 2 and a22 only where •p 
through 2 2 alia2, infa~/,7]D-l(S1, $2) is the same as inf~g D-I(S1,  $2), and hence 
it can be understood as the -1-divergence from $1 of the set of all the systems in L 
which are the same as $2 except for possible different noise variances. In this way, 
Amari's +1- and -1-geometric structures are related to the one-step forecasting 
problem. In Xu (1988) and Tiao and Xu (1990), we have elucidated that not only 
the one-step forecasting error variance ratio but also the multi-step forecasting 
error variance ratios play a role in describing the discrepancy between time series 
systems. Thus a natural question is whether we can find differential geometrical 
connections and divergences on L which relate to the multi-step forecasting error 
variance ratios. The present paper aims at giving an answer to this question. 

Unfortunately, we can not directly deal with the multi-step forecasting error 
variance ratios, because they solely are not necessarily capable of determining 
divergences. A trivial example is that the two-step forecasting error variance 
ratios between any two zero-mean MA (1) time series systems (see Box and Jenkins 
(1976) for the succinct notations AR, MA and ARIMA etc.) are always equal to 
1, hence the corresponding divergence, if it could be determined, would be equal 
to 0, no matter  whether these two systems are the same or not. One possible way 
to cope with this problem is to first find differential geometrical connections and 
divergences related to 

(1.6) 
A (1)2 . - ,  (/)2 
a12 + (i - a)a12 

A (1)2 
O'11 - t - (1  - ,,~)o'~/1 )2'  

_(02 where 0 < A _ 1, l is a positive integer, and Opq is the / -s tep  forecasting error 
variance when the Sq system is used for prediction of a series generated by SB. 
The limiting positions of geodesics and projections as A ~ 0 are what we need 
for/-step forecasting problems. (Here we have an open question: Do the limiting 
positions of geodesics and projections exist? In Sections 5 and 6 we will see that 
the answer is positive for some interesting examples.) The Riemannian metric, 
divergence, a pair of dual affine connections and a pair of dual affine coordinate 
systems (Spivak (1979), Amari (1987a), Lauritzen (1987)) corresponding to (1.6) 
are called the (l, A)-metric, the (/, A)-divergence, the (/, A)- and (/, A) *-connections 
and the (l, A)- and (/, A)*-coordinates, respectively. 

In Section 2, some preparative results are discussed. We introduce the 
Riemannian metric related to (1.6) in Section 3, and give the corresponding affine 
coordinates, potential functions and connections, justify the divergence and show 
the duality in Section 4. Some interesting results about spectral density functions 
are derived. They play an important role in establishing our differential geometric 
framework and also have their independent interest. Section 5 is devoted to the 
problem of approximating a given time series by a specific model, and the method 
developed is used to discuss the AR (1) approximations. The generalization of 
the geometrical structures to nonstationary cases is discussed in Section 6, with 
the exponential smoothing for multi-step forecasting as an example. Section 7 
gives some concluding remarks. The yokes and the related differential geometrical 
structures are mentioned. 
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Throughout this paper, i is reserved for the imaginary unit, i.e. v/-L-1, l the 
number of steps in forecasting and A the weight of linear combinations of the 
forecasting error variances. We will use {OJ,j = 0, 1 , . . .  } to  denote the (/, A)- 
coordinates, j, k, m , . . .  for their indices, { ~ ,  a = 0, 1, . . .  } and a, fl, % . . .  the 
(l, A)*-coordinates and their indices, and {ct, t = 0, 1, . . .  } and t, u, v, . . .  the gen- 
eral coordinates and their indices. The Einstein summation convention is assumed: 
the summation is taken for those indices which are repeated twice in a term, once as 
a superscript and once as a subscript. Thus  ajO j automatically means ~-~j~o ajOJ. 

2. Some preparative results 

Suppose 

2 l i f t  

(2.1) SI(w) = Y~f(w) 

and 
0-2 

(2.2) s2(~) = ~ g ( ~ )  
L / l  

are two systems in L, where 

c~ 2 

(2.3) f(w) = E ~ t  e -it~ 
' t=O 

and 
~ 2 

(2.4) ~(~) = Z ~ e-"~ " 
t=O 

,~(/)2 
In this section, we are going to give a spectral expression of "a2 , the /-step 
forecasting error variance when $2 is used for forecasting of a series generated 
by $1, get some useful properties of spectral density functions and intuitively 
derive an appropriate quantity which will play the same role in our geometric 
structure related to (1.6) as D-1 in the structure related to one-step forecasting 
error variance ratio. 

The expression in the following lemma can be proved similarly as the one for 
l = 1 given in Grenander and Rosenblatt ((1957), p. 261, (2)). 

LEMMA 2.1. The 1-step forecasting error variance by using $2 for prediction 
of a series generated by $1, where $1 and $2 are given in (2.1)-(2.4), is 

(2.5) 
(z)2 al  2 f .  1-1 - I E s = °  6e- is~12f(w)  d~. 

a12 - ~ ]0 g(~)  

If we call h(w) in (1.3) the structural factor of S(w), Lemma 2.2 says that the 
integral of the logarithm of structural factor of any S in L is O. 
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LEMMA 2.2. For any S in L, 

// ( 2 . 6 )  l o g  h(w) &o = 0, 

where h(w) is as in (1.2) and (1.3). 

PROOF. Since we have 

{ l f o ~  } { 1 ~  ~r } 2 exp - log h(w) dw 2 2rr exp - log S(w) dw = a~ (2.7) ~ = ~r 7r 

from Kolmogorov (1941) (see also Grenander and Rosenblatt ((1957), p. 69, etc.)), 
(2.5) follows. 

By Lemma 2.1, (1.6) equals 

I ] 7 A + ( I - A )  E ~ , e  -i*'° f(w) d w / [ A  z-1 
,=0 ~ / t  +(1-~) _ ~ ,  

or 

, (I)2 ., (02 
(2.8) log ~a12 + (1 - a)a12 

A,~(I)2 
~r 1-1  e - i S w  2 

A + (1 - A) ~z-1  ~2 Z-~s----0 ~s - log 
A + (1 - A) ~-~l-1 /'2" Z-.~ s:0 ~s 

Let us imitate D_ 1 to consider a quantity of the form 

_ _  7 r  Sl 
(2.9) 7r l f  0 ( K I s 2 2 - 1 - 1 ° g ( K 2 ~ ) )  dw' 

where K1 and Ka do not depend on a 2 and a 2. Since 

fo " log f (~)  dw -- O, 
g(w) 

2 2 by Lemma 2.2, the minimum of (2.9) over a 1/a 2 is 

{ ~  frcr~" f(02) } 1 X l - -  
(2.10) log Jo g(¢o ) dw - logK2. 

Comparing (2.10) with (2.8), we see that in order to make the minimum of (2.9) 
equal the logarithm of (1.6), we should choose (We have some other choices of K1 
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and K~. which also satisfy this requirement. But there are some other restrictions, 
and we will see later that  our candidate Dt,~ in (2.11) is a right one.) 

and 

g 1 - -  

K 2 - -  

I--1 ~se_isw] 2 A + (1 - A)I Y'~s=o 

A + (1 - A) V't-1/-2 Z-~s----0 "~s 

A + (1 - A) V'z-1 ¢2 Z-.~s=0 ~s 

A + (1 - A) pl--1 /'2" 
A-~s=O bs 

That  is, we should employ 

~0 { I I-1 -isw 2 (2.11) D,,~(S,,S2)= 1 ~ A+_(l_-__A)_[E's-o¢se - ]]Sl(w) 
- -  )~ I--1 2 1 + (1 - A) E~=o (~ J &(w) 

- l o g S l ( w )  l o g A + ( 1 - A )  P t - l v 2  A..~ s=0  %s 
S2(w) A + ( 1  A) p--/~-I ~-~ | dw' 

Z--as=O b8 " 

which is called the D-function of $1 and $2 for the moment.  When 1 = 1 or 
A = 1, DI,x(S1, $2) reduces to D-I(S1, $2). Therefore, Dt,~ is a generalization of 
D-1. Its minimization result, which is formally expressed in the next lemma, is a 
generalization of Lemma 1.1 in Xu (1988). 

LEMMA 2.3. Let Dt,~(S1,S2) be the D-function of $1 andS2. Then 

(2.12) inf Dt,),(S1, $2) = 
'4 

A (1)2 
-12 + ( 1 -  )2 

inf Dt,~(S1,S2)=log (1)2 
~ / ~  a a  n + (1 A)a~'l )2 

Lemma 2.4 will play an important  role in our establishing the differential 
geometrical structures. 

LEMMA 2.4. For any S in L, expressed as in (1.2) and (1.3), we have 

l-1 1 foVll -1  20t E - E nse-iS°J log h(w) dw, (2.13) 0, n2~ = 7~ 
8--0 8 : 0  

where Ot = O/Oct and {ct} is any coordinate system of S. 

P R O O F .  F r o m  ( 2 . 1 2 ) ,  v12~(1)2 _> v11"(1)2 and ~12"(02 >_ a~ t)2, it is trivial that  

Dta(&, &) > 0 

for any $1 and $2. But Dz,:~(S1, $2) = 0 when $1 = $2. So we must  have 

(2.14) OtDt,~(S, S2)[&=s = 0 
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for any S. Now 

(2.15) O~Dl'~(S'S2)= l fo~{[ 
+ (1 - A),, ,._,~=uS-"l- 1 ,,8- f ,~-i8~ 12] OrS(w) 

c3tS(w) (1 - A)a~ Els-__1~;~ 
- } 

627 

hence (2.14) is equivalent to 

- -"  - ~ Ot log S ( w )  d w  = Ot ~s" 
71" s=0 s=0 s=0 

The left hand side of the above equality is equal to 

1 f ~  l - -1  t ~ s e  z sw  2 

-J0 Z - 0tlogh( )  
71" s=0 

because of 

(2.16) l f 0 ~ l z - 1  i2 z-_~ E - -  ~ s e  - i s w  do )  : ~ s  

71" s=0 s=0 

and Lemma 2.2. Thus (2.13) is shown. 

3. Our (l,A)-metric 

One of the important properties of D-1 is that its second derivatives with 
respect to certain coordinate yield a Riemannian metric tensor. We will elucidate 
in this section that our D-function also possesses this property, and hence our 
(l,)~)-metric can be derived. Let us review Amari's -1-coordinate system and 
verify a lemma first. 

Amari's -1-coordinates c1-1), t -- O, 1 , . . .  are 

f C~ -1)  = S ( ~ ) e t  (CO) d~o, 
lr 

where 

(3.1) e0(w) = 1, et(a~) = v ~ c o s c o t ,  t _ 1. 

The -I-coordinates relate to the autoeovarianees of X t :  

C(O - 1 ) :  E(X2), c~ -1) = x/2E(X~Xt+~), t > 1. 

Therefore, for any S in L we have 

(3.2) OjOkS = O, 



628 DAMING XU 

where Oj = O/OOJ and {0J - c~ -1)} are the -1-coordinates of S. This equality, 
(2.7) and Lemma 2.4 will be used in proving the following lemma. 

LEMMA 3.1. Suppose that S, Ot and {ct} are as in Lemma 2.4. Then 

;, (3.3) 2 ~ ~e  -is~ log h(~) 04 log h(~) 
8 = 0  

J l-I  Ou 20tlogh(w)} n e -isw 20 l-1 
-Or E ~ ~ log h(w) - E n ~ e - ~  dw 

s----0 s = 0  

is nonnegative definite, and 

~r ot l--1 204 
(3.4) f0 ~ n e - i ~  A.~ s log h(w) dw 

s = 0  

7rou l--1 2 
= l ~ ~e  -~"~ 0tlogh(~)a.. 

s = 0  

PROOF. Consider 

G/(SI, $ 2 ) = 1  ITr{]  )-]Is-1 ~se-isw] 2 S l ( W ) -  1 -  log Sl(W) } 

A-~s~0  ~ s  

By the same way as dealing with Dz,;~(S1, $2), we can show that GI(S1, $2) = 0 
when $1 = $2, 

inf G~(S,, $ 2 ) =  ~,}I)fGt(S1,S2)= l og r~ ,  

where ~(l) q)2, (1)2 -12 = a12 /a12 is the/-s tep forecasting error variance ratio of $2 versus 
S1, and hence GI(S1, $2) is a contrast function (Eguchi (1983)). So 

0 ?c,G~(S,S, ) s,=s (3.5) Oct 

is symmetric and nonnegative definite, where {c~} are the coordinates of S t. The 
equality (3.4) is an easy consequence of the symmetry of (3.5). Because of (3.4), 
(2.16) and (2.13), it is not difficult to see that (3.5) is positively proportional to 

2 (3.6) Ot log a~ 0,, log a~ 

1 [ ~ ' f  1--1 2 
I~ e -isw 0 + - J 0  ~. E s tlogh(w) Oulogh(w) 

71" s = 0  

1 l - -1  t % e  ~sw 2 
-- -~Ot E - Ou log h(w) 

s = 0  

1--1 2 t - -1  

~Ou Ot log h(w) n s. 
s-----0 
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2 and ct at for t > 1 in (3.6), we see that (3.3) should be nonnegative Using co = a~ = _ 
definite for this coordinate system, which implies that it is nonnegative definite 
for any coordinate system because that it is a tensor. 

The following theorem, which will be proved based on Lemma 3.1, makes it 
possible for us to introduce our (l, A)-metric. 

THEOREM 3.1. Suppose that S, Ot and {ct} are as in Lemma 2.4, {OJ} are 
the -1-coordinates ors  and Dt,~ is the D-function. Then 

(3.7) l fo~Ot{ A + ( 1 -  A)l Y]~l°~e-iS'~]2 }O,~S(w ) 

is positive definite, and 

- -  fo" ( A+(1-A)l~-~zS-laSe-iS~12 } (3.8) OjOkDz,x(S, S2) = 1 0j . . . . . . . . .  ~ ~  OkS(w) dw 
r [A + (1 - A)Es=0~8]S(w) 

for any $2 in L. 

PROOF. By (2.6), (2.13), (2.16) and (3.4), (3.7) is the same as 

(3.9) r [A+(1  A) z-1 A + ( 1  X-"a e -i~'~ 

OtlogS(w) O~,logS(w) 1 - AOt l-1 204 - ~ E '%e-i8~ log h(w) 
8 ~ 0  

~0~ 1-1 20t } 1 - E ~e-iS~ logh(w) dw 
-2 8=0 

[ [ +0~log A + ( 1 - A )  E a  ~ 0~log A + ( 1 - A ) E a 2  . 
8 = 0  s ~ 0  

Using Lemmas 2.2 and 2.4, we see that (3.9) is positively proportional to 

2Q1 + 1 - AQ2 ' 
71" 
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where Q2 is as in (3.3), which is nonnegative definite, and 

= - J o  f 2 O~log 2 Q1 ~ Otlogh(w) O~,logh(w)dw+ ~ + ( 1 - ~ )  n 0~loga~ a~ 
7r 8~o 

[ +(1 a)O, log~ ~ +o~ o, z - o~ ~ log~ ~ 
s=O s=O 

l--1 l--1 l--1 

+ (1 - A)2Ot . eO~ n A + ( 1 - A ) Z n  
s----0 s----0 t L ~-~0 

-- -Tr )~ fo Otlogh(a~) O,~logh(w)&o + a + (1-  a) ~ ~ 
8~-0 

l--1 l--1 
Otlog((72 [ A + ( 1 - A ) ~ t ~ : ] }  Oulog(a 2 [ A + ( 1 - A ) ~ m 2 ] } ,  

which is trivially positive definite. Therefore, (3.7) is positive definite. 
From (2.11) and (3.2), 

(3.10) ojokz)~,~(s,s~) =-ojokl- f,_ log ~+ (1- ~) s(~) ao. 
J O  s = 0  

The right hand side of (3.10) is the same as that of (3.8) by (3.2) and the fact that 
Dz,x is a contrast function. 

Now let us formally define our metric tensor. 

DEFINITION 3.1. The (l,~)-metric tensor {gtu(1,/k),t,u -- 0, 1 , . . .  } at S 
as in (1.2), is given by (The equality (3.11) can be rewritten as gt~, -- -(O/Oct). 
(O/Oc~)Dl,;~(S,S')ls,=s , where (c~} are the coordinates of S'. Therefore, this is 
the same as the D-metric tensor defined in Eguchi (1983). But we need to point 
out here that we can not ensure that the p-metric tensor for any contrast function 
p is positive definite. The counterexamples are trivial. So we still need Theorem 
3.1 in order to equip g as a Riemannian metric.) 

~0 { l--I -i~w 2 " ), + (1 - ,x)l E . = 0 " , e  I ' l  . . . .  (3.11) gtu(l, A) = _ 1  Ot . . . .  1 . . . .  ~ o,,~Lw) dw. 

4. The (/, A)-coordinates, the (l,,~)-connections and their duals 

In this section we will introduce the (/, ~)- and (/, ~)*-coordinates and the 
(l, A)- and (/, A)*-eonnections, show their duality and verify the divergence. 
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DEFINITION 4.1. For any S E L, its -1-coord ina tes  will also be called its 
(l, A)-coordinates, denoted as {8J, j = 0, 1 , . . .  }. Tha t  is, 

~0 7r (4.1) 0 j = 2 S(w)ej(w) dw, 

where ej(w) is as in (3.1). The (/ ,A)*-coordinates of S, denoted as {r/~,a = 
0, 1 , . . .  }, are defined by 

(4.2) 
~07r l-- i I , tse_isw l 2 1 ~ + (1 - > , ) 1 E . = o  e~(~) a~. 

~/~ - 242 [A + (1 - A) E's-~ ~ ] S ( w )  

It is trivial tha t  Y~.~=o Ojoj < oo and Y~.~°°__ 0 rl~r/~ < oo from the Parseval 's 
identi ty and the definition of the manifold L. We also need to show that  S is 
uniquely determined by {r/s}. Suppose tha t  $1 and $2, as given in (2.1)-(2.4), 
have the same { ~ } .  Then  

v"~l-1 ,. - isw~2 A + ( 1 -  A)I 2_,~=o~, e I 
0.2[A + (1 A) '--1 - g ~ = o e : ] f ( ~ )  

hence 

• z '~l-1 . - i s w  2 A + (1 - A)I Z.,.=o %e [ 

or  

(4.3) 

by (2.5). Similarly, 

0.2 [)~ -I- (1 ,~) l--1 -- E . = o ¢ ~ ] g ( ~ )  

1 = 1 fo  ~ A + (1 - A~I V " ; -1 Ge-~*~12 
_ ) I A - ~ s = 0  dw 
7r A + (1 - A) p t - 1  ~2 A..~s=0 ~s 

0.2 [ [ A + ( 1  1--1 (se_is ~ _ " - A)I E~=o P ] f ( ~ )  d <  
-- ~0.~ Jo [A + (1 - A) l - - 1  2 £ . = o  ( . ]g(~)  

A (1)2 , ,  (02 
0.12 + (1 - a]0.12 

A (1)2 0.22 + (i -- A)0.~/2 )2 

. ( 1 ) 2  . ,  (02 
(4.4) A0.21 + (1 -- A)0.21 

A(1)2 0"11 -}-(1 - A)0.[ 02 

From (4.3) and (4.4), we must  have 

(4.5) 

o r  

(4.6) 

= 1  

= 1 .  

A(1)2 . (1)2 0.12 + (1 - ~)0.~02 = ~0.11 + (1 - ~)0.~,)2 

A (1)2 , ,  (02 0"21 -F (1 /~)0.~ll)2 . (1)2 
- = a a 2 2  +(1- -A)G22 , 

because if (4.5) and (4.6) are both  false, the left hand sides in (4.5) and (4.6) will 
be both  greater  than  their  corresponding right hand sides, and either (4.3) or (4.4) 
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can not be true. Now 81 = $2 can be derived from either (4.5) or (4.6). Thus 
{~/a} satisfies the conditions for a coordinate system. 

The (l, )`)-potential functions are defined in the next definition. They are 
related to the "(l, )`)-entropy" H. 

DEFINITION 4.2. For any S E L, as given in (1.2), the (l, ),)-potential func- 
tions ~t,~ and Cz,~ are given by 

(4.7) 
and 

(4.8) 

3 
~t,~(S) = - H ( S )  -~ log27r 

1 
Ct,~(S) = H(S) + -~ + log27r, 

where 

I - 1  

(4.9) H ( s ) = l  fo ' l °g{[A+(1-A)8~_oa2]S(w)}  

Theorem 4.1 shows that {OJ} and { ~ }  are mutually dual, and ~bl,~ and ¢1,~ 
are truly the potential functions. 

THEOREM 4.1. Let ¢l,x(S), ¢l,~(S), {0J}, {~/~} and gjk(t,)`) be the (/,)`)- 
potential functions at S E L, the (l,)`)- and (l, )`)*-coordinates of S and the (l,)`)- 
metric at S in the (l,)`)-coordinates, respectively. Then 

(4.10) 
(4.11) 
(4.12) 

(4.1a) 

(4.14) 

and 
(4.15) 

~ ,~ (S)  + ¢~,~(S) - 0 %  = o, 

~j = o ~ , ~  ( s),  

0 ~ = 0"¢~a ( s ) ,  

0jok¢~,~(s) = gjk(l, )`) = 0nk 
005 ' 

00 z 

(oj ,o ~) = ~?, 

where Oj = 01005, 0 ~ = OlOn. ,  {a"~(l, ~)} is the inverse of {gjk(l, A)}, ( , )  is the 
inner product induced by the Riemannian metric gt~(l, A) and 5] is the Kronecker 
delta. 

PROOF. From (4.1), (4.2) and the fact that Ot~t = ~ o  Otrh is convergent, 

oo 

fo f0 + o % -  ~2 [ ) `+(1-~)E 'L-I~]s(~ ' )  ~=o 
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Since 

oo 

(4.16) E et(w)et(w') = rr6(w - :o'), 
t=O 

where 5(w) is the generalized function 6, we have 

(4.17) 1 /0 '~ [A + ( 1 -  ~)I E~.-~,~.e-~""~I=]S(~) 
8t rlt = --re i£-+-il-- -~ -~,_~oo ~ -S-~w ) dw = -1.  

But 

(4.18) Cz,~(S) + ¢l,~(S) = -1  

from (4.7) and (4.8). Thus (4.10) comes out of (4.17) and (4.18). 
Since {8 j } are the -l-coordinates of S, we have 

(4.19) %s(~) = ej(~)/2~. 

By (4.7), (4.9) and (4.19), 

z--~,=o ~ 1 / ej(w) (4.20) Oj¢l ;~(S) = (1 - A)0j V'l-1 a2 
' A +  (1 A)~-,t-1 2 2r  2 s - - ~ d w "  

- -  2-~ s = 0  ms 

But by (2.13), (2.16), (2.7) and (4.19), 

l - -1  

(4.21) Oj E ~ 
s = 0  

1 L ~ I  1-1 2{0 j Y} 
= -- E nse-iS~ log S(w) - Oj log a dw 

71" s = 0  

E - a°. 
8 = 0  8----0 

Substituting (4.21) into (4.20) and noticing (4.2), we get (4.11). From (4.10) and 
(4.11), 

0 = 0 ~ ¢ ~ , ~ ( S )  + 0 ~ ¢ t , ~ ( s )  - o ~ ( e ~ n ~ )  

00 ~ 00 ~ 
= on--Tn~ + 0 ~ ¢ t , ~ ( s )  - ~)~ _ o n  n~, 

which results in (4.12). The first equality in (4.13) is verified by (4.7), (4.9), (3.8), 
(3.10) and (3.11), and implies the second one by combining with (4.11). From 
(4.12), 

08~ 
O~O~¢~'~'(S) = One" 

Since {08Z/0na} is the inverse of {Oyk/OOJ}, (4.14) is derived. We can easily 
verify (4.15) by (4.14) and the fact that {g~*Z(l, A)} is the inverse of {gjk(l, A)}. 
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Now we can justify that our D-function is the (1, A)-divergence because of the 
next theorem. 

THEOREM 4.2. Let Ol,;~(S, S'), {0 j} and {~1~} be the D-function of S and 
S', the (1, A)-coordinates of S and the (1, A)*-coordinates of S', respectively. Then 

(4.22) Dt,~(S, S') = ¢l,x(S) + c~t,~(S') - Ot~Pt. 

PROOF. Let 

S'(w) = aff--A~' h'(w) and h'(w) = n'~e -~"~ 
ZT" 

with ~ 1 and a¢ ~ 2 = ~-~u=0 n~ < c~. By the similar argument as (4.17), we have 

(4.23) f0 r E _-0 12] Ot~? ~= 1 [ A + ( 1 - A ) I  1-1 

E :0 

But from (4.7)-(4.9), 

¢ ~ , x ( S ) + ¢ l , x ( S ' ) = - - 1  fo log A + ( 1 - A )  n S(w) dw 
71" s = 0  

+ -  log A+(1-A) ~'s 2 S'(w) d w - 1 ,  
71" s = 0  

which, combined with (2.11) and (4.23), implies (4.22). 

In order to get global properties, except for the Riemannian metric gjk(1, A), 
we also need to define mutual relations between any two tangent spaces at two 
neighboring points. This can be accomplished by defining an a/fine correspondence 
between two tangent spaces, which is called an affine connection (Amari (1985)) in 
differential geometry. An affine connection is specified by defining Vo~0~, the rate 
at which Ou "intrinsically" changes in the direction Ot or the covariant derivative of 
0~ in the direction 0v. Equivalently, it can be described by its components (Amari 
(1987a)) Ft~v = (Vo~0~, 0,). The following definition gives the components of our 
(1, A)- and (l, A)*-connections. 

DEFINITION 4.3. The components of the (l, A)- and (l, A)*-connections for 
the coordinate system {ct} are given by 

(4.24) 
2} 

rt~. = --1 fo ~ o,a~s(w)o~ --  d~ 
7r I. [A+ (1 - A) ~--~,-o ~ ] S ( w  ) 
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and 

(4.25) LTr t l--1 e-isw 2 I A+(1-A)IEs=o n. l O.S(w)d " , 1 oto  -_- 

The above definition is justified by the next theorem, where the facts that {0J} 
and {~?a} are correspondingly the affine coordinates with respect to the (l, A)- and 
(l, A)*-connections and L is fiat (i.e. the Riemann-Christoffel curvature vanishes 
identically) with any of these connections are also shown. 

THEOREM 4.3. Ft~. and Ft*~, are torsion free and mutually dual connec- 
tions. The manifold L is (I,A)- and (l, A)*-flat. The (1,)~)-coordinates {gJ} and 
the (l,)~)*-coordinates {77a } are the a~ne coordinates with respect to the (l, A)- and 
(1, A ) *-connections, correspondingly. 

PROOF. Since 

03Dz,~(S, S') s'=s 
F,~v = OctOc~OG 

and . O3DI,)~(S, S') s'=s' 
rt~v = O4Oc'~Ocv 

where {ct} and {c~} are the coordinates of S and S', respectively, the first claim 
is concluded in Eguchi (1983) and Amari ((1985), p. 98). The second and third 
claims can be verified by F j k  m -~ 0 and F* -- 0. 

Now we have completed the establishing of the differential geometric structures 
related to (1.6). 

5. Approximation by a model 

Given a model M and a system S C L, we want to get S E M which is the 
nearest to S in some divergence measure among all the systems in M. 

DEFINITION 5.1. If S satisfies D~,~(S, S) = mins, eM DI,~(S, S') or Dt,~(S, S) 
-- mins, eM Dt,~(S', S), then S is correspondingly called the (l, ~)- or the (1, A)*- 
approximation of S by M. 

By (2.12) and Definition 5.1, it is clear that DI,~(S, S), where S _= S(l, A) is 
the (l, A)-approximation of S by M, is the minimum of the logarithm of (1.6) over 
M (here we take S as $1 and any system in M as $2). Therefore, if S(I, ~) tends 
to some S(l) in M as A --* 0, S(l) will have the minimum/-step forecasting error 
variance ratio, i.e. S(1) is a best approximation of S by M for the purpose of/-step 
prediction. 

We are going to use Mq to denote the submanifold consisting of all MA (q) 
systems in L. This submanifold is characterized by 

(5.1) 0 j ~- c~ -1)  ~- 0 
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for any j > q. Let A (z':~) be the submanifold characterized by 

(5.2) 7- = 0  

for any a > p + 1 - 1, where {7/~} are the (l, A) *-coordinates. Then all AR (p) 

systems are included in A (z'~). A submanifold is said to be completely flat if the 
directions of its tangent spaces remain fixed all over this submanifold (i.e. if the 
Euler-Schouten curvature vanishes identically). In the next theorem it is shown 

that both A q'~) and Mq are completely flat with respect to the (l, A)- and (l, A)*- 
connections. 

THEOREM 5.1. The submanifolds Mq and A (l'A) are both completely (l, A)- 
and (1,)~ )* f lat  in L. 

PROOF. This is trivial because of the results in Theorem 4.3 and the fact 
that both (5.1) and (5.2) are linear restrictions. 

The explicit forms of the (l, A)-approximation when our model is A q'~) and 
the (l, ~)*-approximation when our model is MA (q) are given in Theorem 5.2. 

THEOREM 5.2. The (l,)~)-approximation Sp of S by A qA) is unique. Its 
(l, ~ )-coordinates {0J} and ( l, )~ )* -coordinates { ~ }  satisfy 

( 5 . 3 )  = x 

for j = O , l , . . . , p+  l -  l and O~ = O for a > p+  l - 1 ,  where {05 } are the (l,)~)- 
coordinates of S. The approximation error evaluated by the (1,)~ )-divergence of Sp 
from S is 

(5.4) Dt,~(S, S p ) =  g ( S p ) -  H(S). 

The (l, ~ )*-approximation Sq orS by MA (q) is unique. Its (I, A )-coordinates {0*J} 
and (l, A ) *-coordinates {0~} satisfy 

(5.5)  = o 

for j > q and 

(5.6) = 

for a = 0, 1, 2 , . . . ,  q, where {~?a} are the (l, )~)*-coordinates of S. The approxima- 
tion error evaluated by the (l, A)-divergence of S from Sq is 

(5.7) Dz,)~(Sq) = H ( S ) -  H('~q). 
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PROOF. Since 

DI,~(S, S p ) =  min D,,~(S,S') 
S , c A (pt , )' ) 

Dt,),(S, S') = ~Pt,,~(S) + Ct,;~(S') - 

and 

p + l - 1  

0 r h 
t = O  

by (4.22) and (5.2), where {U~} are the (l, A)*-coordinates of S', (5.3) is derived 
from 

o~ DI,~ ( S, S') = 0 
• s ' = ~ p  

and (4.12). The uniqueness comes from the previous theorem and Theorem 3.9 in 
Amari (1985), and (5.4) is derived by (4.22), (4.7), (4.8) and etT)t = ~t~t = -1. 
The equations (5.5)-(5.7) can be shown similarly. 

For a sequence of A (ZA) models or MA models, the following theorem shows 
that the approximation errors are decomposed additively corresponding to each 
dimension of the model. This result can be proved in the same way as for Theorem 
10 in Amari (1987b). 

THEOREM 5.3. Let {Sp,p -- 0, 1 , . . .  } and {S~,q -- 0, 1 , . . .  } be the sequences 

of the (l,)~)-approximations of S by A(p l'x) and the (l, A)*-approximations of S by 
Mq, respectively. Then, Sn is also the (l, A)-approximation of Sk by A~ 'x) and S~, 
is also the (l,)~)*-approximation of S~ by Mn, when k > n. The approximation 
errors satisfy the additive relation 

Dz,x(S, S n ) =  Dz,x(S, Sk) + Dt,x(Sk, Sn) and 

Dz,~(gn, S) = Dl,~(S;, S) + DI,~(S~,, S;). 

In the rest of this section we are going to discuss the (l, A)-approximation by 
AR (1) of any S C L for l = 1,2. 

Suppose that the autocovariance of S at lag t is yr. Our approximate AR (1) 
model is 

(5.8) (1 - 5 B ) X t  = a t ,  

where B is the backward shift operator, BXt = X t - 1 .  Its (1, A)*-coordinates are 

, 1 + 52 , v~6 
710 = 0-2 ' 771 = 0.2 

2 is the noise variance of at, and its (1, A)-entropy and U~ = 0 for a > 1, where 0.a 
is H = log(0.2/2~r). Therefore, in order to get the (1,)Q-approximation of S by 
(5.8), we need to minimize 

(1 + 52)v0 25vl 2 (5.9) l o g a n +  
0.2 0.2 
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according to (4.22) and (4.8). It is trivial tha t  the minimizers of (5.9) turn  out to 
be 

(5.10) 5 Vl  

~o  

and 

(5.11) a ~ -  , 

and the approximation error measured by the (1,)~)-divergence from S of (5.8) 
when (5.10) and (5.11) are taken is 

log v°2 - v12 
0"2V 0 ' 

2 is the noise variance of S. In other words, the smallest one-step forecast- where a~ 
ing error variance ratio of AR (1) system vs. S is (v~) - v 2 ) / ( a 2 V o ) .  No wonder 
tha t  A does not play any role here. 

The (2, A)*-coordinates and the (2, A)-entropy of (5.8) are 

, 1 + 52[A + (1 - A)5 2] 
7 7 0 = -  c ~ ] [ 1 + ( 1 - A ) 5  2] 

v~A5 
~ = a][1 + (1 - A)52] ' 

, v~(1 - A)5 2 
~72 = a][1 + (1 - A)5 2] 

and ~ = 0 for c~ > 2, and H = log{a2[1 + (1 - A)52]/27r}, respectively. Since the 

(2,)0-coordinates of S are still its -1-coordinates:  9 ° = vo,  9J = v ~ v j  for j _> 1, 
the parameters  of the (2, A)-approximation of S by (5.8) should minimize 

(5.12) log{~r2[1 + (1-)~)~2]} _ ~?,oV ° _ v / ~ V l _  v f~?~v2 

= log{aa2[1 + ( 1 -  A)52]} 

1 
+ a~[1 + (1 - A)5 2] {vo + vo[A + (1 - )~)5215 2 

--  2AVl(~ --  2(1 - A ) v 2 5 2 } .  

Hence, they  satisfy 

(5.13) a2[1 + (1 - A)52] = vo + v0[A + (1 - A)52152 _ 2,~Vl(~ - 2 ( 1  - ~ ) v 2 ~  2, 

where the right hand side is positive when A is small enough, and 5 should be the 
minimizer of 

(5.14) vo[)~ + (1 - A)5215 2 - 2)~v15 - 2(1 - A)v2~ 2 

= vo(1 - A)5 4 + [~vo - 2(1 - .~)v215 2 - 2~v15.  
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It is not difficult to show tha t  as A ~ 0 this minimizer tends to 0 when v2 _< 0, to 
~/'-~-/vo when v2 > 0 and Vl > 0, and to -V"-~/Vo when v2 > 0 and vl  < 0, and a 2 
in (5.13) tends to V o -  2v2~2 + v06 4. Here we see that  the limiting position of (2, A)- 
approximation as A ~ 0 exists, and this limiting sys tem S' ,  which is Xt = at when 
v2 _< 0, (1 - x/-v-~B)Xt = at when v2 > 0, Vl > 0, and (1 + ~ B ) X t  = at 
when v2 > 0, Vl < 0, has the smallest two-step forecasting error variance ratio vs. 
S: 

exp{limoD2,)~(S,S')}= { 

where ~2 is as given in (1.3). 

v0 if v2 _< 0; 
 y(1 + d)  

v 2 - v 2 2  if v 2 > 0 ,  
+ d)  

6. Nonstationary cases 

Until now we suppose tha t  our systems are stationary. Occasionally we need 
to consider nonsta t ionary  cases. Suppose,  for example, our two systems are 

(6.1) (1 - plB)Yt = X l t  

and 

(6.2) (1 - p2B)Yt = X2t 

respectively, where - 1  < Pl _< 1, - 1  < P2 _< 1, Xlt and X2t are s ta t ionary 
invertible zero-mean Gaussian t ime series having Sl(w) and S2(w) in L, given in 
(2.1)-(2.4), as their spectral  densities, correspondingly, and Yt, Xlt and X2t in 
(6.1) and (6.2) are all 0 when t ___ 0. Then, we are dealing with the systems which 
might have a nonsta t ionary unit root  +1. Now Ut = ( 1 - B ) Y t  is s ta t ionary (in fact 
it is asymptot ical ly  stationary, but  its asymptot ic  behavior is the same as tha t  of 
the corresponding s ta t ionary t ime series, so we just  take it as stationary, especially 
we use the spectral  density function of the  corresponding s ta t ionary t ime series 
as the spectral  densi ty function of this asymptot ical ly  s ta t ionary t ime series), no 
mat te r  Yt is generated by (6.1) or (6.2) and no mat te r  what  the pl value or the 
P2 value is. It satisfies 

1 - B  
Ut 1 - plB Xlt 

l (6.3) 

o r  

1 - B  
(6.4) Ut - 1 - p2B X2t' 

and its spectral  density function is, correspondingly, 

[ 1  - e-i~l  2 I1 - -  e-iWl 2 
]i - - - p ~ S l ( w )  or ]i22 p ~ 2 - S 2 ( w ) .  

^ 

Let Yt+l]t denote t h e / - s t e p  ahead predictor when we use the system (6.2) while 
{Yt} is in fact generated by (6.1) and Y1,Y2,...,Yt have been observed, and 



640 DAMING XU 

^ 

Vt+tlt t h e / - s t e p  ahead predictor when we use (6.4) while {Ut} satisfies (6.3) and 
U1, U 2 , . . . ,  Ut, or equally Y1, Y2 , . . . ,  Yt have been observed. Then 

t+l 

(6.5) - = Z - 

u = t + l  

Similar to Grenander  and Rosenblat t  ((1957), p. 261, (2)), we have 

(6.6) U~lt - U~ 

f_ e,<U-~-~-~e-,~[E:=oC~p~ ~ - ~  ~ - 1 - ~  ~ _  z-,~=o ~P2 J dz(w), 

where "×" means " 'asymptot ica l ly '  represented by" (it exactly means that  when 
u - t is a fixed integer, the left hand side of (6.6) tends to the right hand side in 
mean square as t ~ oc), 

g ( ~ ) l l  - e - ' ~ l  ~ 
fc(e-~°')12 = l l -  p2e- i~12  ' 

and z(w) is the spectral  process with orthogonal increments corresponding to {Ut }. 
It is not difficult to get 

/ -ilw X-'~l--1 e- i sw ~-~s f s - u  
z-,,~=o ~uP2 dz(w) 

~ + l l ~  - Y~+l  × _ ~ ~ z ~ : 0  c ( e - i ~ )  

from (6.5) and (6.6). Thus  

(6.7) 
12 t---*o¢ 

~O~r l--1 x-'~s j- _s-uJ2~ 1 _ e_iwl2 g[o2 ~ _ a l  2 ] ~ 8 = o e - " ~ L u = o ~ u ~ 2  I I - ~ 2  I J~ J 

which plays the same role as (2.5), and the geometrical problems can be similarly 
discussed. 

The other cases of nonstat ionari ty  can be t rea ted in a similar way. 
As an application, let us consider the following example. Suppose that  {Yt} 

is generated by 

(6.8) ( 1 - p B )  1 -  ~ t B  ~ Yt -- 1 -  z~uB ~' at, t >  1 
u=l u = l  

denoted as the (Q, ~, v ~) system, and we use (1 - B)Yt -- (1 - pB)et,  t _> 1 called 
the (1, p) system, to approximate  it, where - 1  < 0 -< 1, - 1  < p <_ 1, all the roots 
of 

P q 

1-- ~-~ puzU = O and 1 -  ~ OuzU = O 
u=l u----i 



FORECASTING RELATED GEOMETRICAL STRUCTURES 641 

are out of the unit disk, {a, ,  u _> 1} and {e~, u > 1} are two white Gaussian 
noise series, and Y~, a~ and e~ are all 0 when u < 0. The (1, p) system provides 
exponential smoothing predictors with p as the damping constant. We want to 
find the best p, i.e. the best damping constant, in the sense that  it attains the 
smallest / -s tep forecasting error variance ratio versus the true system (6.8). 

This problem has been discussed in Tiao and Xu (1990), and also in Cox 
(1961) for the case when I = 1 and (6.8) is AR (1). In Xu (1988) and Tiao and 
Xu (1990), the special case when (6.8) is ARMA (1,1) was treated in detail and 
used to elucidate that  not only the one-step forecasting error variance ratio but 
also the multi-step forecasting error variance ratios play a role in describing the 
discrepancy between time series systems and that  the optimal solutions for multi- 
step forecastings are different from that  for one-step purpose, which is obtained 
from the method of maximum likelihood. It was also pointed out there that  the 
popular ARIMA (0,1,1) model is fairly "robust" with respect to ARMA (1,1) 
series, i.e. for any step prediction purposes the ARIMA (0,13) model, which gives 
the exponential smoothing predictors, provides very efficient forecast for ARMA 
(1,1) series over a wide range of parameter space. This explains, from one aspect, 
why the Box-Jenkins approach (Box and Jenkins (1976)) is so successfid. 

Let 

(6.9) 
oo t 2 

f(w) - E e-it~ t 1 - e- " 1211 - ~ e - " ~ l  2 
E ~ v  = 11 0e-~1211 v-,v ^ e_it~o[2, 

- -  - -  ]---~t=l ~ t  t = 0  v = O  

where (t = (t(O,p,O). Then the /-step forecasting error variance by using the 
(1, p) system when {Yt} is generated by the (O, ~, 0) system is 

2 fo~" 11 (6.10) _(02 aa 
u12 71" 

according to (6.7). Now we have 

1// 
0,/Z(Z  d ---  t-s=0 \ v = 0  " 71" 

+(1  p) 1-1 
- E~:le-i~°"12f(w) dw 

I1 - pe-i~o(2 

1 - 1  s 2 

E e - ' S ~ ° E ~ v  Otlogf(w)dw 
s - - 0  v = 0  

corresponding to (2.13), where Ot = O/Oct and {ct} are any coordinates system of 
$1 (w) - (a2a/27r)f(w). The divergence measures which we need to consider are 

__ - -  P )  Z . ~ s = I  e ] S t ( w )  _ 1 
D":~(g'~'O;P)=Tr 1 +  ~ -  1)(1 -A) O -- p~- S2(w-----) 

l--1 s 2} 
--log SI(w) l ogA~  (-1----A)~--s=O(}-]"v=O~v) dw 

S2(w) 1 + (l - 1)(1 - A)(1 - p)2 

and 

- l o g S 2 ( w )  log l + ( l - 1 ) ( 1 - A ) ( 1 - p ) 2  } 
S 1 ( ~ )  . . . . . . . . .  , - - I - ; - - ~ - - -  2 d~o, 

A + (1 - A)Es=o(Ev=o 
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(6.11) 

and 
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where S2(w) -- (a2/27r)]l - pe-i~12. The best p for/-step forecasting purpose is 

described in the following theorem. 

Let p(O and p*(0 C ( -1 ,  1] be defined by 

r~(&~,~;p(1) )=  min rz(o,%~);p) 
pC(--1,1] 

r [ ( o , : , ~ ) ; p * ( O ) =  rain r [ ( o , ~ o , O ; p ) ,  
pE(--1,1] 

where rl(o, ~, ~; p) and r~(o, ~, O; p) are the l-step forecasting error variance ratio 
of the (1, p) system from the (Q, ~, ~) system and the l-step forecasting error vari- 
ance ratio of the (& ~, ~) system from the (1, p) system, respectively, f(w) as in 
(6.9). Then 

(i) when ~ E ( -1 ,1 )  

(6.12) p*(O = 1, 

and when O = 1, p*(O is the solution of 

L cos~l 1-~e ~v=°~'l~ d~ E S : 0  --isW s 

p + (l - 1)(1 - p2) f(co) 
(6.13) 1 + (l - 1)(1 _ p2) = f ~  I E ' /~  e-"~ E~=oalS 2 d~ ; 

Jo f(~) 

(ii) p(O is the minimizer of 

(6.14) a(p) = f "  
I1 

do 

on ( - 1 , 1 ] .  

PROOF. (i) Here 

+ ( 1  p) ~-1 
- E,=le-iS~[2f(~) dw 

I 1 - pe-i~12 

Lrr  ~-~1--1 ~--isw x "~s c 1211 ~e-i~o12 
1 I z-.,s=o c ?- .v=o qv I L - e I 

When 0 E ( -1 ,  1), we have 

Ir I--1 s ( L 1~8=oe-~8"~v=oS,1211-pe-~L2 =-~ if pC (-1,1);  
f(w) d w ~ < c ~  if p - - 1 .  

Hence (6.12) is shown. We can apply Theorem 5.2 to the case when e = 1. Now 

f(~.) = 11 - EL~ ~:-"~'I ~ 
I1 - EP=I ~o:-"~1 =' 
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and we have (after lett ing A --+ 0) 

(6.15) 
L~ ll + (1 1-1  e _ i 8 ~ 1 2  - p) Es=~ 

a~[1 + (l - 1)(1 - p)2]ll - p e - " ' [  2 
dw 

i0  rr I 1--1 s 2 = Es=°  ~-~8~ E ~ = ° ~ I  d~ 
o-2 rx'z-1 :v '8  ¢v)2] f(oj) a LA-.~s=0 t Z-.Jr=0 

and 

(6.16) io ~ i1+( 1 p) ,-1 i ~ 
-- E s = l  e-isw COS0) 

a~[1 + (1 - 1)(1 - p)2]ll - p e - ~ ' l  = 

dm 

_-io 
l--1 s 

E s = O  ~--isw Ev=O ~v[ 2 COSCO 

l--1 s 0"2 [ES=0 (Ev=0 ~v )2] f (~) 
d~ 

from (5.6). But 

1 z-i  12 
+ ( l - p ) E e  -i8<° 

8=1 
l--1 

= 1 + ( l -  1)(1 - p)2 + 2(1 -- p) E l 1  + (1 -- p ) ( l -  1 -- S)] COSW, 
8=1 

jfo r~ cos ruo rrp n 
1 - 2p cos w + p 2  d w  - 1 - p2 

when n is nonnegative integer and 

l -1  

E [ I +  (1 - p)(l  - 1 - s)]p 8 = ( l -  1)p, 
8=1 

hence 

(6.17) 
L ~ l l + ( 1 - p )  , - l  e _ i 8 ~ 1 2  E s = l  

11 - p e - ~ ' ° l  = & - - -  

rt {1 + ( l -  1)(1 - p2)}. 
1 - p2 

Similarly, 

Lrt v--,l-1 -iswl2 
(6.18) [1 + (1 - p) 2-,s=1 e cosw 

i1 _ pe_i~l  2 dw - 

7r 
1 - p2 {P + (l - 1)(1 - p2)}. 

Therefore (6.13) is derived from (6.15)-(6.18). 
(ii) Since 

rl(& ~o, tg; p) = G(p)  • ~--~l--1 {,~'-~s 
7r z_ - ,8=o~=o  ~v) 2' 

where G(p)  is as in (6.14), the conclusion is trivial. 
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7. Concluding remarks 

There are some ways to create richer families of differential geometrical struc- 
tures. Let, for example, 

F(e) 1 + 1 - a F .  tuv -- 2 5Ftuv + ~ tuv, 

where Ftuv and F ~  v are as in (4.24) and (4.25). Each connection in this family 

still corresponds to the Riemannian metric gt~(l, A) in (3.11), and - tuv p(~) and -tuvP(-~) 
are dual. 

If, instead of the divergences, we use the notion of yokes, introduced by 
Barndorff-Nielson (Blmsild (1987)), which are essentially the contrast functions 
with positive definite metric tensors, we can choose 

A + (1 - A~K V "z-1 Ge-i*~12 
] I Z - - ~ s = O  

K 1  = A + (1 /~) 1--1 
- E~=0 ~ 

a n d / ( 2  = 1 in (2.9) ,  and the D-function, which is a yoke, is 

Dt,A (S1, $2) 
{[ l--1 --isw2 ~ 

1 f ~  .X+(1-3)lE~=o~se I ] & ( w )  
= - Jo - , ,-77~-TZT-1-~ 1 - log dw. 

~r A + (1 - A) E~=0 ~ ] S2(w) 2t / ) 

The corresponding metric, dual coordinates, potential  functions and dual connec- 
tions are 

gt~(1, A) 

1 0t A + ( 1 -  ~)l z..,,=o,,, O,, 
= - 7  S(w) A + (1 - A) ~"~1--1 /g2 do.2, 

Z--~ s = 0 s 

f 0~ = 2 S(a;)ej(~o) d~, 
A + (1 A) I-1 - E~=o ~ 

fort I--1 t%e--iswl2 1 ~ +  ( 1 -  a ) lEs=0  
v ~ -  2~r2 S(w) ~(~o)d~, 

/o H(S) = _1 log S(~) a~, 
lr 

I'tu v 
'~ s ( ~ )  ,~ + (1 - ..',)I z. ,8=o ,%e 

1 OtOu - A~ X-'t-* Ov dw 
= -7 A + (1 , z_.,,=o m2 S(w) 

and 
$ 

Ftuv 

/o { ,.,_1 } 1 0tO~ A + (1 - A) lL*=°~*e  
= - 7  S(w) Ov A + (1 - - ~ - - ' ~ l - - 1  da,o, 

- -  ] Y-.~ s = 0  tg2 
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respectively. And Theorems 4.1-4.3 are still valid. 
In the i.i.d, case, we have some universality of the a-geometry if we require the 

invariance under the transformations of the random variable and the parameter 
(Amari (1985)). But  for time series case, the invariance under the transformation 
of the random variable seems no longer reasonable. Then, which kind of require- 
ments should we pose and what kind of geometrical structures can be naturally 
introduced? This is one of the problems which we need to further investigate. 

The establishing of differential geometrical structures related to forecasting 
error variance ratios certainly has meaningful impact on time series analysis. In 
Sections 5 and 6, we have discussed the divergences of AR (1) system from any S 
in L and the divergences of an (1, p) system from an (& ~, t~) system. There are 
some other popular models. For example, AR (p) model, the double exponential 
smoothing model, the seasonal multiplicative ARIMA (0,0, 1) × (0, 1, 1)12 model 
and ARIMA (0, 1, 1) × (0, 1, 1)12 model. We can get the divergences of these 
models from their "neighboring" models by the general formula (2.5). It would be 
interesting and useful to know the shapes of these popular models in the manifold 
of systems, to know if a smaller set of ARIMA models can for practical purposes 
be used as approximations to other model. If a smaller set of more robust ARIMA 
models could be developed, it would help in making choices and might help explain 
why these models seem to work in practice. 

In Xu (1988) and Tiao and Xu (1990), we have shown that the approxima- 
tions will be different for different step forecastings. This is also displayed by the 
examples in Sections 5 and 6. One problem which we are interested in is then how 
the approximation varies as the number of forecasting steps changes. That is, we 
need to study the function relationship of the (l, A)-approximations on I. 

When the noises are not normal, Amari (1986, 1987b) pointed out that we 
should also use higher-order moments to describe the differential geometric proper- 
ties. Another open problem is how to introduce metrics, connections, divergences, 
etc. in this case. 
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