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Abstract. The regression m(z) = E{Y | X =z} is estimated by the kernel
regression estimate m(z) calculated from a sequence (X1, Y1),..., (Xn, Y2) of
independent identically distributed random vectors from R x R. The second
order asymptotic expansions for Efi(z) and varm(z) are derived. The expan-
sions hold for almost all (4) z € R*, u is the probability measure of X. No
smoothing conditions on p and m are imposed. As a result, the asymptotic
distribution-free normality for a stochastic component of i (x) is established.
Also some bandwidth-selection rule is suggested and bias adjustment is pro-
posed.
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1. Introduction

Let (X,Y), (X1, Y1),..., (Xa, Yn) be independent identically distributed
R? x R-valued random vectors, and let m(z) = E{Y | X = z} be the regres-
sion function of Y on X with E|Y| < co. Let u denote the probability measure of
X.

We estimate m(z) with the following kernel estimate

}:m( ) ZK(

*)

where K is a bounded nonnegative Borel kernel and h = h(n) € R* is the smooth-
ing parameter (bandwidth). In the above definition and in the paper, 0/0 is treated
as 0.

* This work was supported by NSERC Grant A8131.
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Estimator m was motivated by the classical Rosenblatt-Parzen density func-
tion estimate and was introduced independently by Watson (1964) and Nadaraya
(1964).

Stone (1977) found a class of non-parametric regression estimates which can
be consistent for all distributions of X even those not possessing density. This
result has been extended to the estimate by Devroye and Wagner (1980) and
Spiegelman and Sacks (1980). The pointwise distribution-free consistency of m
was first studied by Dervoye (1981). He, assuming that E|Y |P < oo, p > 1, proved
that E|m(z) — m(z)|P converges to zero as n increases to infinity, for almost all
(1) z € R%. Weak and strong consistency at almost all (1) z € R* has been exam-
ined by Krzyzak and Pawlak (1984), Greblicki et al. (1984) and Zhao and Fang
(1985). The distribution-free pointwise weak and strong rate of convergence has
been investigated by Krzyzak and Pawlak (1987). For the distribution-free results
concerning other kernel regression estimates, we refer to the paper of Greblicki
and Pawlak (1987), see also (1985).

In this paper, contrary to the above authors, we do not examine another
consistency problem, but rather we obtain asymptotic distribution-free expansions
for Em(z) and var m(z). The expansions are of the order O((nh?¢)~2). The worked
out technique, however, allows us to consider the remainder terms of any order of
smallness. Not one continuity assumption on m is made and the results are valid
for all distributions of X.

As a result, the asymptotic formulas for var 7(x) and Ev(z) are established,
and the asymptotic distribution-free normality of m(z) — Ev(z) is derived. This,
in turn, allows us to consider the bandwidth selection problem in the case of
discontinuous regression functions and underlying distributions. Moreover, certain
adjustment of bias of the estimate is proposed.

The asymptotic normality of 72(z) and the asymptotic expressions for var m(z)
and Em(z) have been examined by a number of authors (see Rosenblatt (1969),
Schuster (1972) and Collomb (1977)). They imposed very restrictive assumptions
on the distribution of (X, Y) and on the smoothing sequence (see also Prakasa
Rao (1983), Section 4.2).

For other properties (uniform consistency, robust estimates and estimation of
a broad class of functionals of the conditional distribution function) of the kernel
regression estimate with random design we refer to Mack and Silverman (1982),
Hirdle and Marron (1985) and Hérdle and Tsybakow (1988). See also Collomb
(1985) for further references.

2. Preliminaries

Throughout the paper, norms are either all Z, or all Z,. By S, ;, we denote
an open sphere with a radius h centered at = € R%. Suppose that the following
conditions are satisfied:

(2.1) h{n) — 0 as n — oo,
(2.2) nhi(n) — o0 as n — oo,
(2.3) clfjzi<ry < K(2) < c2lyja)<r)
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where ¢, ¢2 and r are positive numbers, and [ is the indicator function.
For further considerations, we shall need

LEMMmA 2.1. Let Zy,..., Z, be independent identically distributed random
variables. Then for any real ¢ > 1

E{|Sn/n|%} < c(g){(n " tvar Z,)V2 + n~9"VE|Z) — EZy|7},
where Sy, = 3751 (Z; — EZ;) and c(q) is a positive constant.

This inequality is due to Rosenthal (1970) (see also Burkholder (1973) for
detail about the constant c(g)).

LEMMA 2.2. Let (Wi, V1),..., (Wy, V3) be pairs of independent identically
distributed random variables. Let S, =5 . W;, Qn =Y i Vi and let EW; =
EV1 = 0

If EW? < 00, EV}? < 0o then
(a) E{S,Q3} =3n(n—- 1)EVZE{V{W} +nE{V}W;}.
(b) E{S2Q2} = n(n — )[EVZEW? + 2E*{ViW,}] + nE{VZWZ}.
(c) E{S:@n} =n(n—1)BEV?E{V\W}} + EVPEW}
+ 6E{VIW1}E{VfW1}] + nE{V}W{}.
ProoOF. Let us consider the identity (c). Clearly,

E{S},1Qn11} = E{S.Q0} + 3E{S.Q.} EV + ESJEV
+6E{S, QR E{ViW1} 4 6E{S,Q.} E{ViW1} + EQ}EW?
+3EQRE{WEVi} + E{WVY).

Since E{S2Q,} = nE{ViW2}, ES2 = nEW} EQ? = nEV?, E{S,Q>} =
nE{W1V?}, E{S,.Q.} = nE(ViW;) and EQ? = nEV}, it follows that
E{S}11Qn1n} = E{SIQ7} + 2n[3EVP E{VIW}}
+ EV3EW? + 6 E{Vi W, } E{VZW}]
+ E{VEW}}.
Noting that FS?Q? = EW2V? and then iterating the above recursive formula,

one can easily find the postulated identity. Since the others’ identities may be
proved in the same way, the proof of Lemma 2.2 has been completed.

LEMMA 2.3. Let g be a Borel measurable function and let [ |g(x)|u(dz) < co.
If (2.3) holds then

[K (%) 9(y)u(dy)
JK (m - y) p(dy)

—g{z) as h-o0
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for almost all (1) z € R.
The proof of Lemma 2.3 for a more general class of kernels may be found in

Greblicki et al. ((1984), Lemma 1).
We shall also need the following easily verified identity

P ; 1
_ (u — up) (u — ug)Pt

2.4 R T i) MUY priln 00

2 I R

where p > 0, v and ug # 0.
Furthermore, we shall use Corollary 10.50 in Wheeden and Zygmund (1977)
which says that

’\(S:v,h)
N(Sac,h)

(2.5) pn(z) = —p(z) a h—0,

for almost all (u) = € R%.

Here ) is the Lebesgue measure on R? and ¢(z) is the Radon-Nikodym deriva-
tive of the u-absolutely continuous part of A. It is clear that (z) is finite for almost
all (p) z € R

3. Main results

In the theorems presented in this section we give the asymptotic distribution-
free expansions for Em(z) and varmi(z). Moreover, some consequences of the
obtained expressions are established.

THEOREM 3.1. Let E[Y|'*¢ < 00, € > 0. If (2.1), (2.2) and (2.3) hold then
Em(z) = my(z) + ri(z) + O((nh?)~%)

for almost all (1) x € R, where

mh(w)=E{m(X)K (‘”;X)}/EK (x—hX>

rh{(x) :E{[mh(x) — m(X)]K> (x;LX)}/nEZK (;c;X)

THEOREM 3.2. Let all the conditions of Theorem 3.1 be satisfied. If, in
addition, E|Y |*1¢ < 00, € > 0, then

and

var mi(z) = vy(z)/nEK (E_%ﬁ) +O((nh")™?)

for almost all (1) « € R, where

on(z) = E{[(Y—mh(x))K (x;X)r} /EK (””;X) .
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The proofs of Theorems 3.1 and 3.2 are deferred to the next section.

Remark 1. Let us note that the class of kernels satisfying condition (2.3) is
practically confined to the uniform kernel, i.e. the kernel which equals 1 for ||z|| < 1
and 0 otherwise. This is due to the fact that the results of this paper rely on the
distribution-free inequality in (4.3) which has been established by Devroye ((1981),
Lemma 2.1). He has proved under condition (2.3) that E|m(z) — m(z)|P — 0 as
n — oo, p > 1 for almost all (1) z € RY. Tt seems to be difficult to extend this
result for a broader class of kernels. Nevertheless, assuming that y is absolutely
continuous and following the proof of Devroye’s lemma one can extend the class
of applicable kernels.

Specifically, if ¢; H(||z||) < K(z) < coH(||z||), where H(t) is nonincreasing
bounded function with 0 < H(0) and support [0, a), @ < oo, then the following
density-free version of (4.3) holds

EQY_IGPK((z—X)/h) [ K((==-X;)/h)

<4 [ oK@ - n/mswiy / [ K@ -vmiwa
e /S o) fW)dy / [ K= wimswa,

where sup K(z) = k* and f(z) is a density of X.

Furthermore, it is seen that if Y is a bounded random variable (the case
occurring in the conditional distribution function estimation and discrimination
problem) then the class of kernels can be as large as in Lemma 1 of Greblicki et
al. (1984), i.e. including those without compact support.

Remark 2. Owing to (2.3) and (2.5) it is easy to prove that A%/ EK ((z—X)/h)
is finite for almost all (1) z € R? and every h > 0. If, moreover, Y is bounded
then Theorem 3.2 implies that varm(z) converges to zero if nh* — co. On the
other hand the bias Emi(z) — m(z) tends to zero if both nh?® — oo and A — 0
are satisfied. More precisely, we have decomposed Emn(z) — m(z) into two terms
my(z) — m(z) and rp(z) + O((nh?)~2). The first term goes to zero if h — 0,
whereas the second one if nh? — co. Thus, the bias converges to zero if both (2.1)
and (2.2) are satisfied, whereas the variance if only (2.2) holds. For comparison,
the bias of the kernel density estimate tends to zero if A — 0 and the variance if
nh® — co. These observations suggest the following decomposition of the estimate

m(z) = (m(z) — mp(x)) + mp(z).

Now, the first term of the decomposition tends to zero (in probability for almost
all (1) =z € RY) if nh? — oo, while the second converges to m(z) if only h — 0.

Now, let us consider the expansions obtained in Theorems 3.1 and 3.2. First,
let us note that because of Lemma 2.2, my(z) — m(zx) as h — 0 for almost all
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(1) =z € R%. Next, we write

e (55) fn ().

6h(ac)=}.=:{m( (h )}/ ( )
e (57 e (57

Owing to Lemma 2.2, it follows that e, (x) — 0 as h — 0 for almost all (1) z € R%.
Further, by virtue of (2.3) and (2.5) we have

where

(3.1) EK? (““ ;X > / nE*K (m ;X> < (ea/ererPem(z)(nh®) 1,

where ¢ = /\(5071)‘

Thus, the second term in the bias expansion converges to zero at least as
fast as (nh?)~!. This term, however, can vanish under some conditions. If, for
example, K is the uniform kernel, then r,(z) = 0. These considerations yield

CoOROLLARY 3.1. Under all the conditions of Theorem 3.1

nk4(Er(z) —mp(z)) =0 as n—oo for almost all (u) © € R

Let us take the variance expansion into account. Let o%(z) denote the condi-
tional variance of Y, i.e.

o(z) = E{(Y —m(X))* | X ==z}.

The term vy, (z)/nEK((z — X)/h) may be transformed to

(3.2) o2 (2)EK? (ﬂ” ;X > / nE2K (“’ ;X ) ,

where

r-ntan e (52} foe (5

_ 2ma(c)E {m(X)K2 (”’ "};X) } /EK2 (“’ “hX) .

It follows from Lemma 2.3 and EY? < oo that

(3.3) ci(z) - o*(x) as h—0

for almost all (1) = € R%.
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Moreover, observing that

EK? ( X ) / nE?K ( e ) > (c/her?)p () (nh?) !

and using (2.5) and (3.1) we have

COROLLARY 3.2. Suppose that all the conditions of Theorem 3.2 hold. Then

lim sup nh® var m(z) < (ca/crer)p(x)o?(x)

and
lim inf nh® var m(z) > (c2/cier?)o(z)o?(x)

n—o0

for almost all (1) = € RY.

The expression in (3.2) may be further decomposed noting that

b (5 [apK (58] = eantionta)nn®)

- () (55) [ (5)
Ko(z) =Is, . (z), a=(ASo,)) Y4

Let us denote

where

(3.4) lim p{z) = p

for almost all (1) = € RY.
Thus, (2.5), (3.2) and (3.3) follow.

COROLLARY 3.3. Under all the conditions of Theorem 3.2 and (3.4)
nhvarm(z) — o(x)o*(z)p as n - oo
for almost all (1) = € R%.

The function pp(x) plays the role of a similarity measure between the uniform
kernel Ko and the kernels satisfying (2.3). If K = Ko then clearly ps(z) = 1.
If, moreover, a < r then due to (3.1) pr(z) < c2/c;. It is not simple, however,
to determine limy,_,g pp(z) for general u. For u being absolutely continuous or
atomic, or a mixture of both of them, that limit may be found easily, which can
be seen from the discussion below.

The next corollaries give us the important result of the previous considerations,
that is, the asymptotic distribution-free normality of m(z) — Ev(z) and m(z) —
mp ().
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COROLLARY 3.4. Let all the conditions of Theorem 3.2 be satisfied. Let (3.4)
hold. If p(x), o%(z), p # 0 then

(nh?)!/?(i(z) — Er(z)) — N(0, p(z)a®(z)p)

in distribution as n — oo for almost all (1) = € R%.

The proof of Corollary 3.4 is postponed to the next section.
Combining the above result with Corollary 3.1, we have

COROLLARY 3.5. Under all the assumptions of Corollary 3.4
(nhh)/2(in(z) — ma(x)) — N(0, p(z)o*(z)p)
in distribution as n — oo for almoest all (1) = € R%.
Let us make a series of assumptions regarding the measure p. At first, let u

have a density f, i.e. let u be absolutely continuous with respect to A. Theorem
9.13 in Wheeden and Zygmund (1977) says that

im -4 [ K ( = y) fNa) = 1(0) [ K@),

h—0

for almost all (\) z € R%.
This, together with the fact that f(x) > 0 for almost all (1) = € R¢ gives us

) — [ K2wa) / (f K<y>A<dy>)2

¢an(c) = 1/f(z) as h—0

for almost all (1) x € R%.
From this and (3.4) we have

and

COROLLARY 3.6. Let pu have a density f. Suppose that all the conditions of
Theorem 3.2 hold. Then

nhivarm(z) — oa(z) as n— 00

for almost all (1) = € R%, where

2
33 ole) = (@)1 [ KHwMd) / ( / K(y)A(dy)) |

Let, in turn, g = pic + pa, where p. is absolutely continuous with respect to
A and p, denotes the atomic part of u. It is not difficult to verify, assuming that
K(0) exists, that

[ 5 (5Y) td) = maltzpK@ s b0
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Employing this observation one easily concludes that pp(z) — 1 as h — 0 for
almost all (u) = € R%. Moreover, the remainder term in the variance expansion is
O(n~2%). This and (3.3) yield

COROLLARY 3.7. Let p have both absolutely continuous and atomic part. Let
K(0) exist. If the conditions of Theorem 3.2 are satisfied then

nh?varm(z) — 0
and

nvarm(z) — o(z)/p({z}) a5 n— oo
for almost all (u) z € R%.
In the light of these results and Corollary 3.5 we have
COROLLARY 3.8. Let the conditions of Corollaries 3.5 and 3.6 hold. Then
(nh®)!*((z) — my(z)) — N(0, 05(z))

in distribution as n — oo for almost all (u) x € R%, where 02(z) is defined in
(3.5).

COROLLARY 3.9. Let the conditions of Corollaries 3.5 and 3.7 hold. Then

n'/2(1i(z) — ma(x)) — N0, o*(z)/a({z}))
in distribution as n — oo for almost all (1) z € RY.

Up to now we have examined the asymptotic normality of the stochastic com-
ponent 7(z) — mp(z). To show that m(z) — m(z) has the same limit distribution
one needs to consider the deterministic part myp(z) — m(z). This requires some
smoothness conditions on m(z).

Let, e.g. m(z) be Lipschitz of order @, 0 < a < 1, in the neighborhood of z.
Then, |mp(z) — m(z)| < ch® (Krzyzak and Pawlak (1987), Lemma 2).

Therefore we have

COROLLARY 3.10. Let all the conditions of Corollary 3.5 hold. If m is Lips-
chitz of order o, 0 < o < 1, in the neighborhood of = and if nh4+2* — 0, then

(nh)2(r(z) — m(z)) — N(0, p(z)o’(z)p)
in distribution as n — oo.

The above considerations allow us to treat the case of optimal h, i.e. when
nh@+2® — ¢, ¢ > 0. To do this, let us make specific assumptions concerning m(z)
and distribution of X. Let, e.g. m(z) be continuous at z € R and let it have left
and right first derivatives in a neighborhood of z. Assume also that a density of X



320 MIROSLAW PAWLAK

and its derivatives are continuous at z. Then letting h(n) = v(z)n™'/3, v(z) > 0
and after a simple algebra we have

(3.6) n'/3(i(z) - m(z)) — N(v(z)v(z), o5(x)/v(z)),
in distribution as n — oo, where

0

¥(z) = — [m(l)(m + 0)/

yK (y)dy +m™ (2 - 0) /0 yK (y)dy] / / K (y)dy
- OO
and oZ(z) is given by expression (3.5).

The above result can be employed for the problem of selection of h. To do
this one has to choose v(z) (the factor n~1/3 is optimal since it assures an optimal
asymptotic rate) which minimizes the Lq local error, ¢ > 1.

Owing to (3.6) such optimal v(z) is determined by minimizing

[ @nte) + 2(oata) o2 @) o)

where ¢ denotes the standard normal density function.

Clearly, that v(z) depends on 0%(z), f(z), m!)(z+0) and m)(z —0). Those
values can be easily estimated from the available data. Such “plug-in” scheme
for ¢ = 2 has been examined by Tsybakov (1987). He requires, however, much
smoother conditions for m(z) and f(z) (see also Mack and Miiller (1987)). In Hall
(1984) a similar approach has been studied with respect to a global error. Hall
and Wand (1988a, 1988b) investigate such rule in the context of nonparametric
density estimation. For an alternative approach of choice of the bandwidth based
on a cross-validation method we refer to Hirdle and Marron (1985).

The above discussion can be easily extended for other types of singularities
in m(x) and f(z), e.g. discontinuity of m(z) and f(z), discontinuity of first
derivatives, etc. van Eeden (1985) examines that problem in the context of density
estimation.

The established higher-order expansions can be employed to design more ef-
ficient estimates. That is, we are able to make adjustment of the estimate to
improve its quality.

According to Theorem 3.1 Er(z) = my(z) + ra(z) + O((nh?)2), where
mn(z) — m(z) and ru(x) — 0. The order of ra(z) is (nh?)~1.

Set

(@) = th(@)in(x),

where ty(z) = mp(z)/(my(z) + rr(z)).
Owing to Theorem 3.1 one can easily get

Em(z) = mp(z) + O((nh)72).

That is, m(z) is biased O({(nh?)™?) compared to O((nh*)~1) for the original es-
timate. Moreover, since tp(z) — 1 as h — 0 then the asymptotic behaviour of
varm(zx) and var 7(z) are equivalent.
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Obviously, the value ¢,(x) is unknown and it can be estimated as follows

t(x) = m(z)/(i(z) + 7(x)),

where

and
" n 2
Az) = Z K*((z - Xi)/h) /(Z K((z - Xi)/h)) :

Here m/(z) stands for the kernel estimate with K(z) replaced by K?(z).

One can conjecture that such defined adjustment m(z) (with ¢5(z) replaced
by #(z)) improves the original estimate quality. Some finite sample experiments
would be desirable here, it is, however, beyond the scope of this paper.

The asymptotic expansions for var 7 (z) and Ern(z) have been established by
Collomb (1977). By requiring the existence of f, assuming the continuity of o%(x)
and f(z) and imposing EY? < 00, nh®/n¥ — oo, w > 0, [ K(y)dy = 1, he reports
that

var () = (02(z)/ () / K2(y)dy(nh?) " + o (nh%)™Y).

This first order formula fails if, e.g. o%(z) = 0 (which is a case in the absence of
noise). Then, simple algebra resulting from Theorem 3.2 yields

var i(z) = hn'lllgradm(w)llz/IlyllzK(y)dy/f(w) +0((nh?)72),

where appropriate smoothness conditions for m and f have been assumed.

Schuster (1972) showed the asymptotic normality of 7(z), under conditions
much more restrictive than in Corollary 3.8 (see also Rosenblatt (1969)). The
asymptotic normality of the nearest neighbor type regressions estimates have been
proved by Mack (1981) and Stute (1984). In the latter reference, the asymptotic
normality (at almost all (u) z € R) of the nearest neighbor version of the kernel
estimate is derived. The required assumptions are: a continuity of the distribution
function of X, nh® — 0o, nh® — 0 as n — oo and finiteness of EY2.

4. Proofs

PRrooF OF THEOREM 3.1. Let us denote

an'——ZYiKi/nEKl, anZKi/nEKl, where Ki:K(x—hXi).
=1

i=1

Clearly, 7(z) = a,/b,. Using (2.4) with p = 3 and taking u = b,, ug = Eb, we
have

(4.1) m(z) = an—an(by—Ebp)+an (bn—Ebp)* —an (bn—Eby, )3 +an, (b, —Eby)* /b,,.
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The next step in our proof is to evaluate the expected values of all terms in (4.1).
We first bound the last summand. By Holder’'s and Jensen’s inequalities, the
expected value of the term does not exceed

(4.2) El/P {Z |Y;[PK; ZKJ} EY4{|b, — Eb,|*},
j=1

=1

wherep>landp™ ' +¢ 1 =1
Taking
|K;| < e,

EIK,‘/EK1|(I < (CQ/EKl)q—l, q> 1,
and Lemma, 2.1 into account we get

E|b, — Eb,|* < c(49){(ca/nEK1)% + (2c2/nEK,)* ! + (2/n)*171}.

By virtue of (2.3) and (2.5) the right side of the above inequality is not greater
than

c(4g){{(ca/crer®)prn (@) (nh?) 7120+ [(2ca/crer®)prn () (nh?) 1M +(2/n) 1M,

where ¢ is the constant defined in (3.1).
Thus,
EM4|b, — Eb,|* = O((nh®)™?)  a.e. (u).

Devroye ((1981), Lemma 2.1) proved that

n n
43) E {Z YiPK: /Y Kjp <7 02/01)/ p(dy)/ 1Sz rn),
i=1 j=1
where g(z) = E{|Y|? | X = z}.
This, together with the fact that fs Ju(dy)/u(Sz,n) — g(x) as h — 0 a.e.

(u), see Wheeden and Zygmund ((197'7) p- 189) follow that the expected value of
the last term in (4.1) is O((nh?¢)~2) a.e. (u).

Let us take the other terms in (4.1) into consideration. Clearly, Ea,, = m(z)
and by Lemma 2.3

E{a,(b, — Eb,)} = E{Y1K}}/nE*’K, — E{Y1K,}/nEK;
= E{Y1K?}/nE’K — my(z)/n.

Next, employing (2.3), (2.5) and Lemma 2.3 we get

E{an(b, — Eb,)?} = E{(an — Eay,)(bn — Eby)?} + mp(x) var b,
n=2[E{Y:K?}/E3K, - 2E{Y;K?}/E?K,
— mp(z)EK?/E?K; + 2mp(z)]
+ my(z) EK?/nE*K; — mp(z)/n
= mp(z)EK?/nE?K, — my(z)/n+ O((nh?)™2)  ae. (u).
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Furthermore,
(4.4) E{an(b, — Eb,)*} = my(z)E{(b, — Eb,)*} + E{(a, — Ea,)(b, — Eb,)*}.
The first term in the above expression is equal to

n"2E{((K, - EK{)/EK,)3} = O((nh%)™%)  ae. (n).

Employing Lemma 2.2(a) with Wi = (Y;K; — EY,K;)/nEK; and V; = (K; —
EK;)/nEK,, one can bound the second term in (4.4) by

_ E{|Y1|K?
3n"?EK? [{—IE;}—(%}+|mh(m)|]/E2K1

3 [EIV1|K{ E\Y1|K3 ElY1|K,
3 1 1

3 3
+ [ E*K, + E3K, + E?K,

K? EK?
+ 3|mh($)|m;

T i@ = NE———

E3K,

From (2.3) and (2.5), it follows that the above expression is O((nh?)~2) a.e. (u).
The proof of Theorem 3.1 has been completed.

ProoOF OF THEOREM 3.2. Making use of the notation of the proof of Theo-
rem 3.1, squaring (4.1) and taking the expected value, we get

(4.5) Em®(z) = Ea? — 2E{a%(b, — Eb,)} + 3E{a%(b, — Eb,)?}
— 4E{a? (b, — Eb,)%} + 3E{a’ (b, — Eb,)*}
— 2E{a? (b — Eb,)°} + E{a2 (b, — Ebn)8} + Et2 + 2E{ant,}
— 2E{an(b, — Eb,)tn} + 2E{an(b, — Eb,)?t,}
— 2E{an (b, — Eb,)*t,},

where
tn = an(b, — Ebn)4/bn.

Proceeding as in the proof of Theorem 3.1, we have

Ed? = var{Y1K,}/nE*K, + m(z)
and
E{a2(b, — Eb,)} = 2my(x)n Y E{Y1K?}/E K, — my(z)]
+0((rh%)™2)  ae. (k).

With the help of Lemma 2.2(b) the third term in (4.5) is equal to
3mi(z)EK:/nE?K, — 3mi(z)/n+ O((rh?)~2) ae. (n).

Similarly, due to Lemma 2.2(c) and a little algebra one can verify that the fourth
term in (4.5) is O((nh?)™3) a.e. (u). In turn, using Holder’s inequality, Lemma
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2.1 and the previous arguments we can easily find that the terms fifth, sixth and
seventh in (4.5) are O((nh%)~3) a.e. (u).
Because of Lemma 2.1 and arguing as in the proof of Theorem 3.1, we get

Et2 = O((nh®)™) ae. (n).
From this and (4.2) we have
E{anty} < (vara,)2EY%2 4+ |mp(2)|Elta] = O((nh%)™2)  ae. (u).

The other terms in (4.4) may be evaluated identically and they are of the order
O((nh?)72) a.e. (u).

Since
E*1n(z) = mj, (x)+2mn (2) E{(mp(z) ~m(X)) KT} /nEKT+O0((nh?) %) ace. (n)
the proof of Theorem 3.2 has been completed.
PROOF OF COROLLARY 3.4. It follows from (4.1) that
m(z) — Em(z) = a, — Ea, — mp(x)(by, — Eby) + &n,

where &,, can be easily given in an explicit form. Applying Chebyshev’s inequality
and the results from the proofs of Theorem 3.1 and Theorem 3.2 we have

(nh%)Y/2¢, — 0  in probability as n —oco ae. (u).

Let us note that

an — FBan, — mpy(x) (b, — Eb,) =n~! Z Mjn =Tn,  say,
j=1

et () o (55

Owing to Theorem 3.2 and Corollary 3.3 we get

where

nhivarT, — p(z)o?(z)p as —oo ae (W)

Furthermore, for p > 2 and with the help of Lemma 2.3, (2.3) and (2.5) we get

S Eln'njulP = n "D Elgy o7

< (26)P VD [E{Vi[P K1}/ EK + [ma(@)P)/ (nEK, P~
= O((nh)P"1)  ae. (n).

This enables us to verify the Liapunov’s condition. That is,

27‘1: E|n_1n-’n|l’ _
](\lfarT )zzr/2J = O((nh®)'7P/?)  ae. (p),

where p > 2. The proof of Corollary 3.4 has been completed.
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