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Abstract. In this paper we consider the sampling properties of the bootstrap
process, that is, the empirical process obtained from a random sample of size
n (with replacement) of a fixed sample of size n of a continuous distribution.
The cumulants of the bootstrap process are given up to the order n=! and their
unbiased estimation is discussed. Furthermore, it is shown that the bootstrap
process has an asymptotic minimax property for some class of distributions up
to the order n=1/2,
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1. Introduction

The bootstrap method may be reviewed from different viewpoints. In this
paper, we intend to consider the sampling properties of the bootstrap process, that
is, the empirical process derived from the bootstrap sampling, i.e. that obtained
from a random sample of size n (with replacement) of a fixed sample of size n of a

certain distribution. Let X3,..., X, be a sample of size n from a population with
the distribution function F(t) and let X7, ..., X} be a bootstrap sample of size n,
that is, a random sample of size n from X1, ..., X,,. Let the empirical distribution

functions obtained from (X3, ..., X,) and (X7,..., X) be denoted by F,(t) and
F;(t), respectively. It is well known that \/n(F,(t) — F(t)) approaches a Gaussian
process as n — 00, and, given F,(t), /n(F?(t) — F,(t)) conditionally approaches
a Gaussian process with the same variance and covariance of /n(F,(t) — F(t))
with F(t) replaced by F,(t). Hence /n(F}(t) — F,(t)) can be considered to
be the consistent estimator of \/n(F,(t) — F(t)). Note that \/n(F,(t) — F(t))
can not be usually observed since F(t) is unknown, whereas the distribution of
Vn(Fr(t) — F,(t)) can be completely computed from the sample. We further
investigate how /n(Fy(t) — Fn(t)) will differ from /n(F,(t) — F(t)) in higher
order terms and we discuss possible improvements on F (¢).

In many problems of statistical inference, the procedures will depend on the
distribution of a statistic T,, under an unknown distribution F'(¢), which in many
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cases can be discussed in terms of v/n(Fy(t)—F(t)), at least asymptotically. Hence
Vn(Ex(t)— F,(t)) can be used instead of \/n(F,(t) — F(t)} in the derivative of the
asymptotic distribution of the statistic. It will be shown that the method is in a
sense asymptotically efficient in a nonparametric (or semiparametric) framework.
A first order approximation was considered in the work of Efron (1979, 1982) and
Beran (1982) considered a second order approximation from a different viewpoint.
The purpose of this paper is to compute the cumulants up to the order n~! and to
show that the bootstrap process is in a sense, asymptotically, the best estimator of
the empirical process up to the order n~1/2, whereas in terms of the order n~! there
are many complications and although a slight improvement is possible over the
usual bootstrap process, no uniformly optimal results seem to be obtainable. The
bootstrap method is used to estimate the distribution of some statistic T,, under a
general unknown population distribution and it is shown that it is asymptotically
best up to the second order in the sense that the estimator of the asymptotic
variance as well as that of the asymptotic distribution of T}, can not be uniformly
improved if the class of possible population distributions is sufficiently wide.

2. Unbiased estimation of cumulants of the empirical process

In the framework of Section 1, we put W, (t) = /n(F,(t)— F(t)) and W} (¢t) =
Vn(F;(t) — F,(t)). Consequently we have the following.

LEMMA 2.1. The cumulants of W, (t) are given, up to the fourth order, as
follows:

E[Wn(t)] =0,
Cov(W,(t1), Wa(t2)) = F(t1)(1 — F(t2)) for t; <ta,
K3(Wh(t1), Wal(te), Wa(ts))

= (1/v/n)F(t1)(1 - 2F (t2))(1 — F(ts)) for t; <ty <ts,

Ka(Wh(t1), Wa(t2), Wa(ts), Wa(ta))
— (1/n)F(t)(1 = F(ta))(1 — 4F(t2) — 2F(t5) + 6F (t2) F(ts))
for t; <ty <ty <ty

The proof is given in Section 4, but Lemma 2.1 may be also derived from
Lemma 3.1 of Withers (1983). From Lemma 2.1 we have the following.

LEMMA 2.2. Given F,(t), the conditional cumulants of W (t) are given, up
to the fourth order, as follows:

EW, (1) | Fu(t)] =0,
Cov(Wi(t), Wyi(t2) | Fu(ty), Fa(te)) = Fult)(1 = Fa(tz))
for t1 <t
R3(W;(tl)> W;(t2)’ W;(tS) ‘ Fn(tl)7 Fn(t2)’ Fn(tS))
= (1/vVn)Fn(t1)(1 = 2F5(t2)) (1 — Fa(ts)) for t1 <ty <t
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ka(W(t), Wi(ta), Wy(ts), Wi(ta) | Fu(t1), Fu(ta), Fa(ts), Fa(ts))
= (l/n)Fn(tl)(l - Fn(t4))(1 - 4Fn(t2) - 2Fn(t3) + GFn(tz)Fn(t3))
for t1 <ty <tz <ty

The proof is straightforward from Lemma 2.1. On the other hand, we also
have the following.

LEMMA 2.3.

ElFa(t1)(1 = Fa(t2))] = {1 = (1/n)}F(t1)(1 - F(t2))  for t1 <t
E[Fa(t1)(1 — 2Fn(t2))(1 — Fa(ta))]
={1-(1/m)H1 - (2/n)}F(t1)(1 - 2F(t2))(1 ~ F(¢3))
for ty <ty <itg,
E[Fn(tl)(l - Fn(t4))(1 - 4Fn(t2) - 2Fn(t3) + 6Fn(t2)Fn(t3))]
={1-(1/m)H1 - (2/n)H{1 - (3/n)}F(t1)(1 - F(ta))
(1~ 4F(tz) — 2F (t3) + 6F (t2) F(t3))
= (1/n){1 = (1/n)}F(t1)(1 - F(ts)) for t1 <ty <tz <ty

The proof is given in Section 4. From Lemmas 2.2 and 2.3 it is seen that,
given F,,(t), the conditional cumulants of W (t) are not unbiased estimators of
the corresponding cumulants of W, (t).

LEMMA 24. The (unconditional) cumulants of W*(t) are given, up to the
fourth order, as follows:

EW;:(t)] =0,
Cov(Wy(t), Wy(tz)) = {1 - (1/n)}F(t:)(1 - F(t2))  for t1 <ty
w3(Wy(t1), Wy(tz), Wi(ts))
= (1/vn){1 = (1/n)H1 — (2/n)} F(t:1)(1 = 2F (t2))(1 ~ F (t3))
for t; <ty <ts,
ka(Wy(t1), Wi(tz), Wilts), Wy (ts))
= (1/n){1 = (1/n)}{1 — (2/n)}{1 - (3/n)}F(t1)(1 — F(ts))
(1 —4F(t2) — 2F(t3) + 6F(t2) F(t3))
= (1/n){1 = (1/n)}F(t:)(1 ~ F(ts))
+ (1/n)F(t1)(1 = F(ta))(3 — 8F(t2) — 4F (t3) + 12F (t2) F (t3))
~ (2/n)F(t1)(1 ~ F(t1))(3 — 10F (tz) — 5F (t3) + 15F (t2) F(t3))
+ (3/n®)F(t:)(1 - F(ts))(1 - 4F (t2) — 2F (t3) + 6F (t2)F(t3)) + o(1/n%)
for t; <ty <t3 <ty

The proof is given in Section 4. From Lemmas 2.1, 2.2 and 2.3 we also have
the following.
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THEOREM 2.1. The unbiased estimators of the covariance Cov(Wy(t1),
Wo(te)) and the third order cumulant k3(W,(t1), Wy(t2), W,(ts)) are given by
{n/(n = 1)} Cov(W:(t1), Wp(te) | Fa(ta), Falt2))
= {1/(n - D}Ea(t1)(1 = Fa(t2)) for 11 <ty
{n?/(n = 1)(n = 2)kss(Wy(t1), Wi (ta), Wy (ta) | Fu(t1), Fa(t2), Fu(ts))
— [V (n = 1)(n - 2)}Fa(t1)(1 — 2Fu(t2))(1 - Falts)) for 1 <t St

respectively.

PRrRoOOF. From Lemmas 2.1, 2.2 and 2.3 we have for t; <ty

E[Cov(W;(t1), Wa(t2) | Fu(t1), Fu(t2))] = E[Fn(t1)(1 - Fr(t2))]

= {1 = (1/n)}F(t:)(1 - F(t2))
= {(n — 1)/n} Cov(W,(t1), Wp(ts)),

hence
{n/(n—1)} Cov(Wy (t1), Wy(t2) | Fu(tr), Fu(t2)) = {n/(n—1)}Fa(t1)(1 - Fa(t2))

is an unbiased estimator of Cov(W,(t1), Wy(¢2)). In a similar way we obtain for
t1 St <t
Elk3(Wy(t1), Wy (t2), Wi(ts) | Fu(t1), Fu(te), Fu(ts))]
= E[(1/vn)Fu(t1)(1 = 2F(t2))(1 — Fa(ts))]
= (1/vn){(n — 1)(n ~ 2)/n*}F(t:1)(1 — 2F(t2))(1 - F(t3))
= {(n— 1)(n — 2)/n?} ks (Wa(ta), Wa(tz), Walts)),

hence

{n?/(n = 1)(n — 2)}ra(Wy (tr), Wy (t2), Wi(ts) | Fu(tr), Fu(te), Fults))
= {nvn/(n = 1)(n = 2)}Fa(t1)(1 — 2Fn(t2))(1 - Fu(ts))

is an unbiased estimator of x3(W,(t1), Wy(t2), W, (t3)). Thus we complete the
proof.

Remark 2.1. Let X1,..., X],_; be a bootstrap sample of size n — 1, that is, a
random sample of size n — 1 from X, ..., Xn. We put W*_,(t) = v/n(F*_,(t) —
F,(t)) with the empirical distribution F;_,(t) of X{,..., X],_,. Then it follows
from Lemmas 2.1, 2.2, 2.3 and Theorem 2.1 that

Cov(Wy_1(t1), Wa_y(t2) | Fultr), Fu(t2)) = {n/(n — D}Fa(t:)(1 = Fa(t2))

is also an unbiased estimator of Cov(W,(t;), W, (t2)), but Cov(W}(t,), Wj(t2) |
F.(t1), Fo(t2)) is not unbiased for it. Hence it is desirable to use the bootstrap
sample of size n—1 in place of size n. And also the biases of higher order cumulants
become smaller.
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3. Minimax property of the bootstrap estimator

In this section we consider the estimation problem based on the i.i.d. sample
Xi,..., X,, on some real parameter # which can be defined as a functional § =
U(F) of a continuous distribution F. Then the natural estimator is 8, = W(F,),
where F;, is the empirical distribution function. We shall show that the bootstrap
estimator of the distribution of ,, has a minimax property for some parametric
family of distributions. We assume the following condition.

(A.1) The functional ¥ is Fréchet differentiable up to the third order, that
is, there are functions 0¥/9F, 82V /OFSF and 83¥ /0FOFAF such that

(31) U(G) - U(F) = ] ~ (89/0F)d(G - F)

— 00

+(1/2) / / (82U JIFOF)A(G — F)d(G — F)

1/6/ / / (83U /OFOFOF)

-dF(G - F)d(G - F)d(G — F)
+o(l|G - FII%),

where ||G — F|| = sup, |G(z) — F(z)|.
Putting W, (z) = v/n(F,(z) — F(z)), we have from (3.1)
62 Vil -0)= [ si@awa@)
ra2v) [ [ guteaa(@)imaiy

+ (1/6n)/ /_ / ¢z, y, 2)dW, (z)dW,(y)dW,.(2)
+ Op(l/n),
where ¢1(z) = (8¥/9F)(x), ¢o(z, y) = (0*V/OFIF)(z, y) and ¢a(zx, y, z) =
(0W3/OFOFOF)(z, y, z). We also assume that the following holds.
(A.2) /qSl VdF(z /qbzxtdF(t /¢>25de()
/¢3my, YAF' (u /qS;;actzdF /¢3sy, JAF(s) =

and the functions ¢o(x, y) and ¢3(z, y, 2) are symmetric in (z, y) and (z, y, 2),
respectively. R
Furthermore, using 7, = /n(6, — 6), we assume the following condition.

(A.3) E(T}) < .

LEMMA 3.1. Assume that the conditions (A.1), (A.2) and (A.3) hold. Then
the asymptotic cumulants of T,, are given as follows.
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E(T,) = ( 1/2\/—{/ ¢2(, z)dF (z / / b2(, y)dF(z)dF(y }

+o(1/n)
(1/+/n)by + o(1/n)

(

o2 e ([

+(1/n) { { [~ ei@nta, 2ar
/.

_3/°°
(-

say),

o1 (z dF}

" b1(@)a(z, )AF()dF(y)

b1 (2)dF (z )/ / oz, y)dF (z)dF(y }
I/Zn{/ 2(x, ©)dF(z) //¢2xy)dF( x)dF(y )}

1/n>{ [ e@ete v naraar)
= O; / Z / Z 61(2)d3(2, ¥, #)AF(@)dF (y)dF(2)

IR

. dF(x)dF(y)dF(z)dF(u)} +o(1/n)

= v+ (1/n)v1 +o(1/n)  (say),
k3(T,) = E[{Tn — E(Tn)}?)

[ ([ o) i
w2([" 4 (x)dF(w))
+3(/ ¢3(z)dF(x )/ bo(x, T)dF (x)
-3( [~ dwar@) [~ [ e mar@ara)
+3( [ ot dF(x)) [ [ etewirwarw
) ([ e (m)dF(z))2 e x)dF(x)}

+o(1/n),
= (1/y/n)Bs+o(1/n) (say),
k(T = E{T. — E(T )Y = 3{V(T,)}2 = O(1/n).
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The proof is omitted since Lemma 3.1 is similar to Theorem 3.1 of Withers
(1983).

Remark 3.1. With the condition (A.3) and from the fact that there exists a
finite positive constant ¢ such that

P{sup Vn|F,.(z) — F(z)| > r} <ce™®"  (Dvoretzky et al. (1956)),
T

holds for all » > 0 and all positive integers n, it follows that the above expansion
of the remainder term is valid.

For an estimator 67; based on the bootstrap sample X7, ..., X of size n, we
put T} = /n(6;, — 6).

LEMMA 3.2. Assume that the conditions (A.1), (A.2) and (A.3) hold. Then
the conditional asymptotic cumulants of T}, given the empirical distribution func-
tion Fy,, have the following form.

E[T} | Fa] = (1/v/n)by + (1/n)é1 + 0p(1/n),
V(TS | Fn) = vo + (1/vn)& + (1/n)ur + 0p(1/m),
k(T3 | Fn) = (1/v/n)Bs + (1/n)és + 0p(1/n),
ka(Tn | Fn) = ka(Tn) + 0p(1/n),

where §1 = Op(1), &2 = Op(1), & = Op(1), and by, v, v1 and B3 are constants
given in Lemma 3.1.

The proof is given in Section 4.

Remark 3.2. In order to evaluate the bootstrap estimator é;, it is seen from
Lemmas 3.1 and 3.2 that the variance of & = /n(V (Tt | Fr) =V (T,.)) +0p(1/\/n)
plays an important part.

LEMMA 3.3. Under the conditions (A.1), (A.2) and (A.3), the variance of &
is given by

o0 oo 2
V(é) = /_ &2 (x){¢1(z) — 2m}*dF(z) — { /_ 3 (z)dF(z) — 2m2} ,
where m = [%_ ¢y (x)dF(z).

The proof is given in Section 4. Now we consider a parametric family F =
{Fy:6 € O} of distribution functions, where © is an open set of R! involving the
origin. Take Fy, as the previous distribution function F. We assume that, for
each 6 € ©, the distribution function Fy is absolutely continuous with respect to
a o-finite measure u, and denote dFy(x)/dp(z) by fe(x). For each 8 € ©, we put

ve = / Z $3(x) fo()dp — { / Z ¢1(w)fo(rc)du}2-
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Since 6, = ¥(Fy,) is an asymptotically unbiased estimator of §, we have by Taylor’s
expansion of vg around 6 = 6,

vy = Vg, + [0vg/B6)g=g,(6n — 60) + 0p(1/v/),

hence the variance of v; is given by

Vao (v5,) = ([8v6/9610=6,)"Vao (6) + o(1/m).

Assume that the Fisher information amount 1(¢) exists, i.e.
0<1(6)= [ {Blog fala) /06 fo(a)au < o,

then we have by Cramér-Rao’s inequality that
(3.3) nVa, (v ) > ([Bve/Bl9=4,)"/1(8) + o(1),

provided that the differentiation under the integral sign is allowed. We further
restrict our attention to a family of subclasses F,, = {Fy: dFy(z)/dp = fo(x) with
the form log(fs(x)/ fs,(z)) = ¢(8) + 0Y(zx) a.e. [u] with c(0) = 0} of F, where
¥(z) is a function with finite variance at fs,. Then we have the following.

THEOREM 3.1. Assume that the conditions (A.1}, (A.2) and (A.3) hold. Then
the bootstrap estimator 8, has a minimax property in the above family, i.e.

maxmin Vg, (v;, ) = nVa, (v, ) + o(1),
v by i "

provided that the differentiation under the integral sign is allowed.
The proof is given in Section 4.

Remark 3.3. From Theorem 3.1 we see that the maximum of relative effi-
ciency of the bootstrap estimator 87 is equal to 14 o(1), i.e.

max Hn}innVoo(vgn)} / nVoo(vg;)} =1+0(1).

Fy 4,

It also follows from Theorem 3.1 that in a semiparametric situation where the
class of distributions is sufficiently wide to include F,, it is impossible to get an
estimator with a smaller asymptotic variance than vy, .
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4. Proofs

In this section the proofs of lemmas and theorems are given. In order to prove
Lemma 2.1 we have the following.

LEMMA 4.1. Let Z be a real random variable. Assume that, for each ¢ =
1,2,3,4 Y,=1forZ<c¢;, Y;=0 for Z > c;, where c; <c3 < ec3 <cyq. Then

k3(Y1, Y2, ¥3) = E[(Y1 — p1)(Y2 — p2) (Y3 — p3)] = p1(1 — 2p2)(1 — p3),
ka(Y1, Y2, Y3, Ya) = E[(Y1 — p1)(Y2 — p2)(Y3 — p3)(Ya — pa)]
— Cov(Yi, Y2) Cov(Ys, Yy) — Cov(Yy, Ys) Cov(Ya, Yy)
— Cov(Y7, Yy) Cov(Ys, Y3)
= p1(1 — p4)(1 — 4p2 — 2p3 + 6p2p3),
where for eachi=1,2, 3, 4, p; = P{Z < ¢;} and Cov(-, -) denotes the covariance.

Proor. It is seen that p; < p2 < ps < ps. Since E(Y;) =p; (1 =1, 2, 3),
EM1Ys) = E(Y1) = ;, E(YaYs) = E(Y2) = p2, E(N1Y2Y3) = E(Y}) = py, it
follows that

k3(V1, Yz, Y3) = E[(Y1 — p1)(Y2 — p2)(Y3 — ps))]
EMY2Ys) — p1 E(YaY3) — p2 E(Y1Y3) — p3 E(Y1Y2) + 2p1paps
=p1(1 - 2p2)(1 — p3).

In a similar way, we have
E[(Y1 — p1)(Y2 — p2)(Y3 — p3)(Ya — p4)]

= {p1(1 = 2p2)(1 — p3) + P1p2p3}(1 — pa),
Cov(Y;, Y;) =pi(l—p;) (1<i<j<4).

Hence we obtain
ka(Y1, Y, Y3, Y4) = E[(Y1 — p1) (Y2 — p2)(Ya — p3)(Ya — pa)]
~ Cov(Y7, Y2) Cov(Y3, Ys) — Cov(Yh, Ys) Cov(Ya, Vi)
— Cov(Y1, Yy) Cov(Yz, Y3)
= p1(1 — ps)(1 — 4p2 — 2p3 + 6pap3).

Thus we complete the proof.

PROOF OF LEMMA 2.1. Since W, (t) = /n(F,(t) — F(t)), it is easily seen
that E[W,(t)] = 0 and Cov(W,(t1), Wy(t2)) = F(t1)(1 — F(t2)) for t; < t,. From
Lemma 4.1 we have

£3(Wn(t1), Wa(tz), Wa(ts)) = (1/vn)F(t:1)(1 — 2F (t2))(1 — F(ts))
for ¢, <t <t
£a(Wn(t1), Wa(t2), Wa(ts), Wa(ts))
= (1/n)F(t1)(1 — F(ta))(1 - 4F(t2) — 2F (t3) + 6F (t2) F(t3))
for 131 S 123 _<_ t3 < t4.
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This completes the proof.
In order to prove Lemma 2.3 we have the following.

LEMMA 4.2. Suppose that, for eachi =1, 2, 3, 4, Y, is a real random variable
with mean E(Y;) = m;. Then
EY1(1 -Y3)] = my(1 — my) — 012,
E[Y1(1 - 2Y2)(1 — Y3)] = my — mymg — 2mymg + 2mymgmsg
— 013 — 2012 + 2m1 093 + 2Mooi13 + 2macia + 2K123,
E[Y1(1 - Y3)(1 — 4Ys — 2Y3 + 6Y3Y3)]
= my — 4012 + mimg) — 2(o13 + mimg) — (014 + mimy)
+ 6(Kk123 + M1093 + My013 + M3012 + M1MaM3)
+ 4(K124 + M1024 + M2014 + My012 + MyMamy)
+ 2(K134 + M103g + M3014 + My013 + M1M3MyY)
— 6(K1234 + MaK123 + M3K124 + M2aK134 + M1 K234
+ M1 My023 + MaMy0O13 + M3MaT12 + M M3024 + M2M3014
+ mymaoss + mimemamy + 012034 + 013024 + 014023),

’LUhCTC, fO'f' 1<:¢< .7 < k <r< 4; Oij = COV(}/’iy )/_’))a Kijk = H3(}/‘l7 Yja Yk) and
K'ijkf‘ = i"“’41()/;33 Y'j’ Yim Y'r)

ProOF. The first one is easily derived. Since
E(Y1YaY3) = K123 + m10o3 + ma0o13 + m3o12 + mymams,
it follows that

EYi(1 -2Y5)(1 - Y3)] = E(Y1) — E(Y1Y3) — 2E(Y1Y,) + 2E(Y1Y,Y3)
=Mmy —mimsg— 2m1m2 + 2m1m2m3

— 013 — 2012 + 2my 023 + 2mgoy3 + 2m3oi2 + 2K1903.
Since

E[V\Y2YsY]
= Ky234 + 012034 + 013024 + 014023 + MyK123 + M3K124 + MaK134 + M1K234
+ MiMaOa3 + MaMy013 + M3M4012 + M1M3024 + MaM3014 + M1M2034

+ mymaom3amy,
it follows that

E[Y1(1 - Ya)(1 — 4Y2 — 2Y3 + 6Y2Y53)]
=my —4E(1Ys) - 2E(V1Y3) ~ E(V1Ys) + 6E(Y1Y2Y3) + 4E(Y1YaYs)
+2B(V1Y3Ys) ~ 6E(Y;Y2Y5Ys),
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hence the desired result follows.

PROOF OF LEMMA 2.3. Fori =1,2, 3,4, we put ¥; = F,(t;) and m; =
F(t;) = E[Fy(t;)]. Then we have oy; = (1/n)m;(1 — m;), Kijk = (1/ny/n)m(1 —
2m;)(1 — mg), Kijkr = (1/n*)m;(1 — m,)(1 ~ 4m; — 2my + 6mymy,) for 1 < i <
j <k <r <4. From Lemmas 4.1 and 4.2 we have the conclusion of Lemma 2.3.

PROOF oF LEMMA 2.4. From Lemmas 2.2 and 2.3 it follows that

= E[EW; () | Fa(t)] =0,
E[Cov(Wy(t1), Wi(tz) | Fa(th), Fu(t2))]
fOI‘ tl S t2,

EW;(t)]
Cov(Wyi(t1), Wi(t2)) =
={1-(1/n)}F(t)(1 - F(t2))
ra(W(t), Wi (ta), Wy(ts))
= E[K3(Wrt(tl)’ Wrt(tZ)’ W;(tl’t) | Fn(t1)7 Fn(t2)v Fn(t3))]
= (1/vr){1 = (1/n) {1 = (2/n)}F(t1)(1 - 2F (t2))(1 ~ F(ts))

for t; <ty <ts.

In a similar way, we have

wa(Wi (1), Wi (t2), Wyi(ts), Wi (ts))
— Blka (W3 (t2), Wi (t2), W3 ta), Wa(ta) | Fulta), Fa(t), Fults), Falta)
+ Cov(Cov(W2 (41), W (ts) | Falts), Fu(ts),
Cov(Wy (t3), Wy (ta) | Fr(ts), Fu(ta)))
+ Cov(Cov(Wi(t1), Wi(ts) | Fult1), Fu(ts)),
Cov(Wy (t2), Wi (ta) | Fu(ta), Fu(ta)))
+ Cov(Cov(Wr(t1), Wr(ts) | Fu(tr), Fn(ts)),
Cov(W (t2), Wy (ta) | Fult2), Fults)))
= Elrg(Wy (t1), Wi(t2), Wii(ts), Wi (ts) | Fu(tr), Fu(ta), Fu(ts), Fu(ta)))
+v (say).
Since, by Lemma 2.2,
Cov(W3(t), Wits) | Falt), Falty)) = Falt)(1 - Falts) for & <t

it follows that

Cov(Cov(Wpi(ty), Wi(ta) | Ful(ty), Fu(ts)),
Cov(W(ts), Wyi(ts) | Falts), Fn(ts)))

= Cov(Fr(t1)(1 — Fr(t2)), Fn(tS)(l ~ Fn(t4)))
= E[F,(t,)(1 - F, (tz))F (ta)(1 — Fn(ts))]
— E[Fa(t1)(1 = Fu(t2))E[Fr(ts)(1 — Fu(ta))].
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We put Y; = F,,(t;) and m; = F(t;) = E[F,(t;)] for i = 1, 2, 3, 4. Then we have
from Lemma 4.2

1= EY1(1-Y2)¥3(1 - Ya)] - E[V1(1 - YV2)| E[Y3(1 - Ya)]
+ EY1(1 - Y5)Y2(1 - Yy)] - E[Y1(1 - Y3)|E{Y2(1 - 1))
+ EY1(1 - Ya)Y2(1 - Y3)] — E[Y1(1 - Y3)|E[Y2(1 - Y3)]
= (1/n)m1(1 — m4)(3 — 8mz — 4mg3 + 12moms3)
— (2/n%)m1(1 — my4)(3 — 10my — 5m3 + 15mam3)
+ (3/n)my (1 — my)(1 — dmy — 2m3 + 6mam3) + o(1/n?).

Hence we obtain from Lemmas 2.2 and 2.3

ka(Wy(t1), Wi (t2), Wi(ta), Wy (ta))
= (1/n){1 = (1/n) {1 - (2/n)H{1 = (3/n) } F(t1)(1 — F(ts))
(1~ 4F(t2) — 2F(t3) + 6F(t2) F'(t3))
— (1/n?){1 — (1/n)}F(t1)(1 - F(ts))
+ (1/n)F(t1)(1 — F(t1))(3 — 8F(t2) — 4F(t3) + 12F (t2) F'(t3))
(2/n*)F(t1)(1 = F(t4))(3 — 10F(t2) — 5F (t3) + 15F (t2)F (t3))
(3/n3)F(t1)(1 — F(ta))(1 — 4F(t3) — 2F (t3) + 6F (t2) F(t3)) + o(1/n?).

+
Thus we complete the proof.

ProorF oF LEMMA 3.2. From Lemma 3.1, it follows that the conditional
cumulants of T, given F),(t), have the form of

E(Ty | Fn) = (1/v/n)b] + 0p(1/n) = (1/v/n)by + (1/n)é1 + 0p(1/n),

V(T | Fa) = v5 + (1/n)v] + 0p(1/n) = v + (1/v/n)€2 + (1/n)v1 + 0p(1/n),
k3(Ty | Fo) = (1/vn)B5 + 0p(1/n) = (1/v/n)Bs + (1/n)és + 0p(1/n),

ka(Ty | Fo) = (1/n)B5 + 0p(1/n) = (1/n)B4 + 0p(1/n).

This completes the proof.

PROOF OF LEMMA 3.3. Since Wa(z) = vi(Fa(z) — F(z)), it follows that
b= [ S@amn@) - [ [~ a@ewdv.@dne
[ [ ewawanneire - [ [ a@ewirea.o
- [ Z ¢2(2)dWn(z) — 2m /_ Z ¢1(z)dWh ()

— (1/vm) ( / Z ¢1<w)dwn(w>>2,
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where m = [*°_¢,(z)dF(z). Then we have

B =-avmE| [ [ o (z)¢1(y)dwn(w>dwn(y)]

=—(1/vn) {/: i (x)dF (x) - (/:o ¢1(I)dF(fc)>2}

= 0(1/Vn).

We also obtain
E&)=E U_: /_C: ¢1(x)d1(y){d1(z)#1(y) — 4mo1(z) + 4m2}de(x)de(y)]
+o(1/vm)
- [~ GO0 - 10 + )i (e)
[ [ a@n@en@ew - o) + andreir)
+o(1/vm)
- [ sen) —ompare - { [~ ware) -me)

+ o(1/+/n).
Since V(&) = E(£2) + o(1/4/n), we have the desired result.
PrOOF OF THEOREM 3.1. Since the scaling of 8 is arbitrary, without loss of

generality, we assume that 6o = 0 and 1(0) = 1. It is enough to obtain v (z) which
maximizes [Ovg/00)g=o under the condition

1= [ (@00 g fo(@lomofow)d [ 1¢0)+ $(a) P o)
that is, to get () which minimizes
[ € +v@P e
‘under the condition
| 610010 - 200 + vlo)} alo)du = 1.

We put h(z) = ¢1(z){¢1(z) — 2m}. With the Lagrange multipliers Ao and A;, we
have ¥ (x) + ¢'(0) = Aoh(z) + A; and it follows that

Yo [ B @) fole)di+ |~ h@rpo@au=1,

)\0 /oo h(.’l))fo(l‘)d,u + )\1 = 0,
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hence

o=1/|[" hz(w)fo(x)du—{ | h(w)fo(x>du}2 ,

— 00 —

w=-{ [ h@ o / [ @ { [ h(x)fo(x>du}2

From Lemma 3.3 we have

/ Z{c’(m + (@) h(z)du = 1 / [ [ ol - { I h(x)fo(w)dﬁ}2

= 1/{V(&) + o(1)},
hence, by (3.3),

rrjl__axr%inano (v5,) = V(&2) + o(1) = nVa, (v, ) + o(1).
. 6. "

This completes the proof.
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