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Abs t r ac t .  This paper is concerned with the theory of testing hypothesis with 
composite null hypothesis or with nuisance parameters. The asymptotic be- 
haviour of the likelihood ratio and the associated test statistics are investigated. 
Under a class of local alternatives with local orthogonality relative to the nui- 
sance parameter vector~ a unique decomposition of local power is presented. 
The decomposition consists of two parts; one is the influence of nuisance pa- 
rameters and the other is the power corresponding to the simple case where 
the nuisance parameters are known. The decomposition formula is applied to 
some examples, including the gamma, Weibull and location-scale family. 
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1. Introduction 

We are concerned with testing hypothesis based on a random sample from a 
distr ibution P~ depending on a parameter  vector ~, which varies in fL Let w be 
part i t ioned into two vectors ~ and 0 of dimension p and q, respectively, so tha t  

= E × O. The problem of test ing hypothesis H:  0 = 00 with a nuisance vector 
is considered. Thus H consti tutes the subplane E × {00} in ~ and is referred to as 
the composite null hypothesis (see Cox and Hinkley (1974)). Under a sequence of 
alternatives Ks :  0 = 00 + e / v  ~ with arbitrarily fixed ~, the likelihood ratio or the 
associated test statistics asymptotical ly has a noncentral chi-square distr ibution 
with q degrees of freedom and a noncentrali ty parameter  v = eTI(~, Oo)e, where 
I(~, 00) denotes the Fisher information matr ix  of 0, evaluated at  (~, O0). The 
higher-order asymptot ic  powers are investigated by Hayakawa (1975) (see Harris 
and Peers (1980) for the efficient scores statistics and also Peers (1971) for a simple 
null hypothesis case). 

In the present paper we deal with the more general problem of testing the 
hypothesis H: w E ~t0 against K:  w ~ f~0- Here ~0 is a p-dimensional subsurface 
of f~, which is practically introduced by either a parametrized case or a constrained 
case as in Section 2. The general form can be locally reduced to the part i t ioned 
form by a one-to-one t ransformation ¢ of Afo into -- × O such tha t  ¢(f~0) -- 
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E x {00}, where N0 denotes a tubular neighbourhood around fl0. The domain 
No of ¢ cannot generally be extended to the full space f~. However the local 
powers can be given by application of Hayakawa's formula to the reduced form. 
Such transformations ¢ constitute a subclass of transformations on f~. Here an 
embarrassing aspect arises; the form of null hypothesis and the corresponding test 
statistics are independent of the choice of ¢; nevertheless, this is not so of local 
powers. 

The objective of the paper is to give intrinsic characteristics of the test proce- 
dures in the local powers. For this we modify the sequence K~ into K* such that 
the Kullback-Leibler divergence from K~ to H is asymptotically the noncentrality 
parameter ~ to o(n-1/~). Furthermore we give some insight into the behaviour of 
/4* in the large sample size n. In effect we assume the local orthogonality of ~ with 

in the sense that the mixed part of the information matrix of ~ relative to 0 is 
zero when evaluated at 00 (see Cox and Reid (1987) for statistical interpretation). 
We present a decomposition formula of local powers under the adjusted sequence 
K* of alternatives. The decomposition consists of the sum of the two parts; one is 
the local power for the case with known nuisance parameters and the other part 
represents the effect of nuisance parameters. The latter part is expressed by the 
imbedding curvature tensors. 

McCullagh and Cox (1986) have discussed the Bartlett adjustment for chi- 
square approximation from the invariance viewpoint (see also Voss (1989) for fur- 
ther discussion). Kumon and Amari (1983) have given an invariant representation 
of local powers for the simple case of one-parameter curved exponential model in 
terms of modifying the range of the signed root squares of the test statistics. In 
a further development of this result, Amari (1985) has also pointed out that the 
imbedding curvature plays a fundamental role for expressing the effect of nuisance 
parameters, of which intuition coincides with our result from another approach 
(see also Kumon and Amari (1988)). 

The present paper adopts the differential geometric framework (see Amari 
(1985) and Eguchi (1985) for detailed discussion). In Section 2 we investigate the 
effect of the composite null hypothesis. First two practical cases of the composite 
null hypothesis are introduced as are the corresponding partitioned forms. The 
simple case where the nuisance parameters are known is reviewed for the compar- 
ison with the composite case. We present a decomposition formula of the local 
powers in the composite null hypothesis case. Section 3 introduces the applica- 
tions of the decomposition formula to some examples. Section 4 discusses about 
local unbiasedness. 

2. Effect of nuisance parameters 

Let xl, x2 , . . . ,  xn be a random sample from a distribution having density 
f (x  I w), where the space of possible values of a~ is assumed to be an open subset 
of R p+q, say ~. Let ~0 be a p-dimensional submanifold of f~. We consider a 
problem of testing hypothesis H: w E fl0 against K: w ¢ ~0- We wish to look at 
the effect of the composite null hypothesis from a geometric point of view. 
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2.1 The forms of hypotheses 
For the test problem, the following three types of test procedures based on the 

log-likelihood function, 

n 

j=l 

are available: 

the likelihood ratio test statistic, $1 = 2n{/(5;) - /(&o)},  

the efficient scores test statistic, $2 = n~(d;o)TI,~(&o)-lS(~Zo) 

the MLE test statistic, $3 = n(& - & o ) T I ~ ( & ) ( &  - -  &o)  

and 

with $(w) = (O/Ow)[(w) and the information mat r ix /w(~l )  of ~d when evaluated 
at Wl. Here & is the MLE of w by maximization over ~t and &0 is the restricted 
MLE to D0. 

All the test statistics Si's enjoy invariance under one-to-one transformations 
of the sample space. Furthermore, consider a transformation ¢ of w into w*, so 
that the form of hypothesis is rewritten as H: w* E ¢(ft0) and K: w* @ ¢(f~0). 
Then both of the statistics Si and $2 keep invariant under such a transformation 
¢. Generally $3 is slightly changed to 

= - - 

where /~ .  (¢(d;)) denotes the information matrix of w*, evaluated at ¢(&), i.e. 

~0¢(~d)T~-l/w(0~d) ( 0 ¢ ) - 1  
= / . 

In a subsequent discussion, the difference between $3 and S~ will be expressed as 
only the terms coming from the effect of parameters in the local powers. 

Henceforth we introduce some notations of differential geometry for the pa- 
rameter vector (~, 8) which leads to the reduced form of the hypothesis. The 
information metric g, the skewness tensor T and the exponential connection F (e) 
have the components with respect to (~, 8)-coordinates 

(2.1) gaff = E(e(,e~), T ~  = E(e~e~e~) and F (e) = E(O~e~e.y) afl,~ 

respectively, for 1 < a, fl, "y < p + q, where e~ = (0/0~ ~) log f( .  [ ~) with ~ = 
(~, 8). Furthermore we use the letters a, b, c , . . .  for the indices of ~-part and 
i, j, k , . . .  for those of 8-part. We assume the local orthogonality of ~ to 8, which 
is defined by 

(g~o)O = ( ( g a i ) O ) a = l  ..... p , i = l  ..... q = O, 

where the subscript 0 denotes the evaluation at (~, 80). Hereafter the subscript is 
omitted throughout the paper. 
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The condition implies that the 8-subcoordinate are orthogonally transverse to 
~t0. Hence the components of the embedding curvature tensor H (m) of ~0 with 
respect to F (m) , or the m-curvature are written as 

(2.2) ~( '~)  - r  (¢) ~ a b , i  ~- ~ai,b~ 

where F (m) denotes the mixture connection, which is conjugate to F (~). Similarly 
the e-curvature H (~) has the components 

I-Ia(~) = H (m) - T~bi.  b,i ab,i 

Define a line C~ = {(~, 8(t)); t e ( -1 ,  1)} by 8(t) = 80 + t o  with the direction 
vector e, so that C~ goes through the local alternative K~ at t = n -1/2 and 
traverses ~t0 at t = 0. For a subsequent discussion we introduce the following 
geometric quantities associated with C~; 

(2.3) 

v = g i j e i e  j : p -~ T i j k e i e J e  k ,  ~tl = T i j k g j k e  i,  

A1 - - F  (e) " i ' J e k  A2 _{9p(e) + F (e) ~ g j k £ j  
i j , k  ~ ~ ~ = k ' ~ i j , k  k i , j /  , 

h(m) (m) _~b.~ h(~) h(m) = H~ab,iY t and = --  T a b i g a b e  ~. 

when evaluated at (~, 80). Here and hereafter we use the summation convention. 
We note that u, #, ttl, h (m) and h (~) are invariant under transformations of (~, 8) 
with local orthogonality. The term u is the square length of the tangent vector of 
Ce at 80. The coefficients # and #1 come from the skewness along the 8-parameter 
curves to be tested in the parametric model. The terms h (~) and h (m) are led to 
by the embedding curvatures H (~) and H (m) of the null hypothesis or the nuisance 
parameters. On the other hand, A1 and A2 are parametrization-dependent. We 
shall show that only the terms express the local powers in the test procedures Si's. 

2.2 Simple null hypothesis case 
We pay attention to the case where the parameter vector ~ is known. Then 

the corresponding statistics are given by 

(2.4) 
$10 = $10(~) = 2n{/(~, 0) - / ( ~ ,  80)} ,  

S20 = S2o(~) = nel(~, 80)~j(~, 80)giJ(~, 80), 

S30 = S30(~)  = n ( ~  - 80)~(~ - 8 0 ) % j ( ~ ,  ~), 

where ~ is the MLE of 8 in the case where ~ is known. Thus the comparison 
between Si's and S~0's will illustrate what influence ~ exerts on the performance 
of test procedures. 

We note the parametrization-invariance of $1o and S20. Of course both of 
these two statistics have invariant distributions under the null hypothesis but this 
is not the case for the asymptotic powers under the local alternatives Kn. This is 
caused by the choice of {Kn}. For discussion consistent with the null case we wish 
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to obtain the invariant expression of local power. Hence we introduce an adjusted 
local alternative K*: 0 = 00 + ¢/v ~ + A(e) /n  with the i-th component 

1F(~)~t~ Oo)de k. Ai(e) : - - 2  jk k%' 

with a = -1 /3 ,  where F ~  )~ denote the components of the a-connection F (~) 

(1 - a)F(m)/2 + (1 + a)F(~)/2. We have the following theorem from the geometric 
viewpoint. 

THEOREM 2.1. Under the adjusted local alternatives K*, the asymptotic den- 
sities of the statistics S1, $2 and $3 are given, to o(1/v/-~), by 

(z.5) 

(2.6) 
1 

g2o(S) = fq(S I u) + ~-~[#{L(s I u) - 2fq+2(s I ~) + fq+6(~ I ~)) 

- 3 . 1 { f ~ + ~ ( s  I ~ ) -  L+4(  s I~)}1 

and 

(2.7) 
1 

- ~ l { L + 2 ( s  I ~) - L + 4 ( s  I ~)} 
- 3AI{L+~(~  I ") - f .+6(~ I ~')} 
+ a2{fq+2(s r u) - fq+4(s I u)}], 

where fq(S I v) denotes the noncentral chi-square density function with q degrees 
of freedom and a noncentral parameter p. 

The proof will be outlined in the Appendix. 
Thus the invariances of u, # and ~1 lead to the invariant densities of glo and 

g20. The noncentral parameter u is the square length of the tangent vector of C~ 
at 0o. 

Alternatively, the statistic $30 does not have such an invariant property. Thus 
the terms A1 and A2 in go3 tell us the dependence of the statistic 5:30. Let 40 be 
a transformation of 0 into 0* and let S~o be the corresponding statistic to $30 via 
40- We see that  the density of S~3 is the right-hand side of (2.7) with coefficients 

o4y 04o e~ejek 
A* = A,~ + OOi OO------- ~ O0 k gmt 

in place of A~ for a --- 1, 2, noting the transformation rule of {Fij,k }(~) as coefficients 
of affine connection. Specifically we choose 4o as 

4~(0) = C0-e)'-  ~r~)'(eo)(e-Oo)J(0-0o) k, 
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so that the terms A~ and A~ vanish and # and #1 keep invariant in (2.7). 
The Kullback-Leibler divergence from K to H is defined by 

p(K, H) =/{logf(y~ log/(y~ I wo))f(y~ I ~)dm(y~) 

with Yn =- (Xl , . . . ,  Xn) and the dominating measure m, where the parameters 
w and w0 designate K and H,  respectively. Then we see that the original local 
alternatives Kn satisfy 

p(K~, H) = ~, + 0(n-1/2), 

and further the adjusted alternatives K* satisfy 

p(K*, H) = v + o(n-1/2), 

which implies that the p-sphere centered at K* is approximated by the ellipsoid 
{(~, 00 + e); v < c} in O up to o(n-1/2). Furthermore we have another viewpoint. 
Define a curve C* = {(~, g(t)); t e ( -1 ,  1)} by 0(t) = 00 + gt + A(e)t 2, so that C* 
goes through K* when t = n -1/2 and traverses the subsurface f~0 at t = 0. Thus 
we observe that the curve satisfies 

F (~)i(~, (i 1, / / (o)  + jk  ,4  0 o ) O J ( 0 ) 0 k ( o )  = 0 . . . .  , q), 

which implies that C* is orthogonally r(~)-transverse to flo (see Eguehi (1983) for 
the relation of such a transversality with the estimation theory). 

2.3 Decomposition of local powers 
We now return to the general form of the composite null hypothesis H: w E f~0, 

which reduces to H: 0 = 00 with nuisance parameters ~. We assume the local 
orthogonality condition as introduced in Subsection 2.2. Under the adjusted local 
alternatives {K*} as defined in Subsection 2.2, we have the following asymptotic 
result, of which proof will be given in the Appendix. 

THEOREM 2.2. The asymptotic densities gi(s) of Si (i = 1, 2, 3) under the 
adjusted local alternatives K* are decomposed into 

h (m) 
gl(S) = g 1 0 ( 8 ) -  -~n { fq ( s  I v ) -  fq+2(s l v)}, 

h (m) 
g2(s) = g2o(S)- ----~{fq(S I v ) -  fq+2(s Iv)}, 

h(e) 
g3(s) = g3o(S) + - ~ { f q ( s  I v) - fq+2(s [ v)}, 

where gio's are defined in Theorem 2.1. 

From Theorem 2.2 it follows that the local powers are expressed as 

Pr(Si > s [K*)  

Pr(Sio < s I g* )  + -~-l_~h(m){Pr(Xq2,~ _> s) - Pr(Xq+2,~ > s)}, 
V,n 
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for i = 1, 2, where X~,~, denotes the chi-square random variable with q degrees of 
freedom and noncentrality parameter u. Thus the effect of nuisance parameters 
appears only as h (m) or h (e) in the local powers. 

In practical situations, the subspace f~0 specifying the composite null hypoth- 
esis is given in either of two forms. One is of parametrized form, ft0 = k(.=.) = 
{k(~); ~ E E} with an open subset E of R p, where k(~) is a non-singular mapping 
from ~ to ~ in the sense that the Jacobian matrix 

, /o~=l , , . . ,p+q,  a = l  ..... p 

is of rank p. Thus each component of ~ constitutes nuisance parameters in the 
testing problem. Alternatively the other is of constrained form 

(2.8) = h- (Oo) = {co • h(co) = 00},  

where h is a mapping of f~ into O with the Jacobian matrix of rank q. In this case 
the null hypothesis is H: h(w) = Oo. In such situations, the unrestricted MLE ~b 
of co has often a simple form; the restricted MLE &0 is intractable and needs to 
be solved by some iterative methods. For example, assume that the underlying 
density f ( x  I/3) belongs to a regular exponential family of order p + q, f ( x  I ~) = 
exp[b(x) + xT/3 -- ¢(/3)] with expectation parameter vector co = E ~ X .  Let a null 
hypothesis H be of the form (2.8). Then the MLE test $3 has a more tractable 
version $3 = h(&)Y(&)h(&) T depending only on ~, where & = Y~:=I x,~/n and 

- 1  
Oh Oh T 

V(&)=  (~-~(&)I~(&)~-~(&))  

The simple version $3 has the same asymptotic behaviour as $3, of which proof 
will be given at Remark 1 in the Appendix. 

We return to the parametrized form ft0 = {k(~); ~ e E}. Let a (p + q) x q 
matrix JX (~) satisfy the orthogonality condition 

J(~)T I~ (k(~))JX (~) = 0 

with p × q zero matrix 0. The mapping of (~, 0) into w, 

0(~, 0) -- k(~) -4- J±(~)(O - 0o) 

leads to the direct application of Theorem 2.2; in gi(s)'s 

u = 6~6Zg~, # = 6~bP57T~7, 

~ 1 3  ~ ab #1 = 6~TazTg ~'~ - 6 Jr a Jb Tc~z,~g , 

h(m) = 5aH(m)ab,ag-ab and h (e) = h (m) - 5 ~  j~aJbT,~z,~g~3 "~ ab, 

j ~  j ~  - where 6 ~ = J ~ d  and gab is the inverse element of a b Y~ with J~ -- Ok~(~)/ 
O~ a and the (a, /)-element J ~  of J±  (~). 
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For the constrained form ft0 = {.w E f~; h(w) = 00}, we can express gi(s)'s 
in terms of h(a~). Let B~ = g~jg~13B~, where B~ = OhJ/Ow 13 and let g~j be the 

~ j  ~ i  ..a~ inverse element of g*a = "-'~'-'Z~ . Then in gi(s)'s we have 

a [3 "1 i j  u = 6 a S S g ~ ,  # = 6aS~5"rT,~.~, [-t 1 = 6 B~ Bj  T,~z.rg , 

h(m) , a g ~ n ~ . j k  _ ,,5%F(e) = -  v~'j~'k~ ~ J 13~,a and 

oe 13 "/ ,~j  k a13-r T(e) 
h ( ~ ) = h  ( m ) - 5  ( B j B k s  - ~  J 13"r,~ 

where 5 ~ ~ i = B  i e . 

We introduce both of the two forms for the following example, which is related 
to the ABO-blood system. 

Example 1. Let p, q and r be frequency parameters of the alleles A, B and 
O, respectively, with r = 1 - p -  q. One considers the problem of testing whether a 
population is subject to a Hardy-Weinberg equilibrium. That is the cell parameters 
(wl, w2, wa, co4) with four phenotypes A, B, AB and O are written as, respectively, 
(p2 + 2pr, q2 + 2qr, 2pq, r ~) = w(p, q), say. Thus the nuisance parameter vector 
(p, q) designates the null hypothesis. The MLE of (p, q) under the null hypothesis 
is not known to be in a closed form, so that the three statistics Si's have no closed 
form. Alternatively let h(w) = v/ (wl  + w4) + V/(W2 + w 4 ) -  ~ -  1, so that 
h[w(p, q)] = 0 for any p and q. Hence the hypothesis is rewritten as H: h(w) = 0 
in the constrained form. Thus the simple version of $3 is given by Sa = h(&)2/v(&) 
with the vector & of observed frequencies, where v(w) = H~/wl  + H 2 / w 2 + H 2 / w 3 +  
H24/w4. Here 

H1 = 1 / 2 v / ~  - 1/2 V/(W2 + w4), H2 = 1 / 2 v / ~  - 1/2 V/(wl + w4), 

H3 = 1 / 2 v / ~  - 1/2V/(Wl + w 4 ) -  1/2~/(w2 +w4) and 

H4= Hl + H2+ H3. 

Let a (p + q) × q matrix J±  (4) satisfy the orthogonality condition 

(2.9) = O 

with p × q zero matrix O. 

The following example relates to the functional relation of a sample in a 
location-scale model. 

Example 2 (location-scale model). Let f ( x )  be a probability density function 
on R such that f ( x )  = f ( - x )  and f > 0 on R. In the location-scale model 
{ a - l f ( ( x  - #) /a) ;  a > 0, t t e  R}, we wish to test the hypothesis for which 
w = (#, a) belongs to {k(~) = (#(~), a(~)); ~ E --.} with an open interval E. 
The typical example is then the case of a known variation coefficient, say c, or 
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k(~) = (ce ~, e ~) for ~ E R. Finney (1976) expands the model further in a regression 
situation. We here assume that the following moments exist; 

al = / l ' 2 ( t ) f ( t )d t ,  

b~ = / tl '(t)l"(t)f(t)dt, 

a2 = / t21'2(t)f(t)dt, 

b2 = / t31'(t)l"(t)f(t)dt, 

with l(t) = logf( t) .  For example, if f is the standard normal density, f ( t )  = 
e x p ( - t 2 / 2 ) / ( ~ / ~ ,  then (el, a2, bl, b2) -- (1, 3, 1, 3). We locally parametrize 
the alternative hypothesis around the null hypothesis by 

w(~, 0) = (#(~) + a2~r'(~)0, a(~) - al~'(~)) 

for 9 e ( -e ,  e) with a sufficiently small ~ > 0. Note that w(~, 0) = k(~) and that 
is orthogonal to 9 when 9 = 0. 

Similarly, the constrained form leads to a one-to-one transformation ¢ of 
into (~, O), defined by (~, O) -- ¢(w) = (h*(w), h(w)). Here h*(w) = J*(w)w with 
a (p + q) × p matrix J*(w) satisfying the condition 

= 0 ,  

so that 0 and ~ are orthogonal at 190. 

3. Some examples 

We apply the formula for the effect of nuisance parameters to some examples. 
First we review a testing problem concerning covariance in the m-variate normal 
distribution with mean vector ~ and covariance E. 

Example 3. The null hypothesis considered is H: E = I, where ~ forms the 
vector of nuisance parameters orthogonal to E in the global sense. Sugiura (1973) 
has given the asymptotic distribution of the modified likelihood ratio statistic $1 
under a sequence of local alternatives Kn: E = I + e/x/n with symmetric matrix 
e, see Hayakawa (1975) for the exact likelihood ratio test and Nagao (1974) for the 
modified scores statistic $2. In our formulation, the adjusted local alternatives are 
given by 

K*: E = I ÷ e/v/-n + tr(e2)I/6n. 
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Under K~ the asymptotic densities of $1 and $2 are then 

(3.1) 

(3.2) 

g~(s) = [fq(81 -) + +{fq(sl.)-2fq+2(st.)+ fq+4(s t-)}] 

1 
2v:n tr(e){fq(s I . )  - fq+2(s I . )},  

[ 1 
g2(s) ----- fq(s I u) -I- ~--~{#fq(S I ") - (3#1 + 2/-t)fq+2(s I u) 

÷ 3plfq+4(s I u) + . fq+e(s t u) }] 

1 
2v:- d tr(e){fq(S I u) - fq+2(s I ")}, 

respectively with q = m ( m  + 1)/2, u = tr(e2)/4, # = tr(e 3) and .1 ~--- mtr(e) .  
From Theorem 2.2, we can interpret that the bracket of the right-hand side of 
(3.1) or (3.2) is the asymptotic distribution under the simple case with known 
and that the other term expresses the influence of the nuisance parameter vector 

We next consider the problem of testing exponentiality. 

Example 4. The density of gamma distribution takes the form 

_o (:)/ 
where ~ is orthogonal to 0 in the global sense (see Cox and Reid (1987)). Consider 
the problem of testing the hypothesis 0 = 1, which designates the family of expo- 
nential distributions, against 0 ~ 1. The adjusted local alternatives are given by 
0 = 1 + e/x/~ + ce2/n with c = (1 + ¢ '"(1)) /3(¢"(1)  - 1), where ¢(0) = logF(0). 
The skewness tensor and embedding curvature tensor of the family of gamma 
distributions are given as follows; 

(goo, g0~, g~) = ¢"(0)-  ~, 0, , 

(Hee,o, Tooo) = , 02 + ¢'"(0) , 

from which it follows that the asymptotic densities of Sa are 

1 
gl(8) = f1(8 Il/) -~- ~[(1 -- ¢'"(1))e3{fl(S I U) -- 2f3(s I U) + fh(S I U)} 

+ e{f1(s ]b')- f3(8 It/)}]. 

with u - e2(~:"(1) - 1). 
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The following example is not of (curved) exponential  family. 

Example 5. Let X be a random variable with the Weibull distribution. Cox 
and Reid (1987) give the following expression of density 

f ( x  I~, e) = c~ exp - c  

by the global orthogonal system of parameters ~ and 0, where c = exp{F~(2)}. We 
are concerned with a test  for the null hypothesis 0 = 1 against alternatives # # 1 
with the nuisance parameter  ~. The Kullback-Leibler divergence takes the form 

/? p((, O; ~1, 01) = f ( x  [ ~, O){logf(x [ ~, O) - log f (x  [~, O)}dx 

= log(O/01) - O1 log(~/~l) + (1 - 01/0)(1 - V(2)) 
+ r ( 1  + 0 1 / 0  ) exp{F'(2)(1 - 0 1 / 0 ) }  --  1, 

since the changed variable Y - c(X/~) ° has a s tandard  exponential  distribution: 
Pr(Y _< y) = 1 - e -y.  We apply the expression to the formula given by Eguchi 
(1983): 

9 ~  = - - b ~ p  = o/~ 2, 9~o = - p = o ,  
01=0,~a =~ ~ 01 =0,~1 =~ 

gO0 = - o - ~ P  = (1 + r " (2 )  - r ' ( 2 )~ ) /0  2, 

H~,o = p = ~ • 
01 =0,~1 =~ % 

Consequently we conclude tha t  the part  of the influence of the nuisance parameter  
vector is given by 

h (m) = H~,o(g~)- le  = 2e. 

We note tha t  the local power is free from ~, which is a very special case in addition 
to Examples 1 and 2. 

In the following example a global orthogonal vector relative to the parameter  to 
be tested is not known. Hence we introduce local orthogonal vectors of parameters.  

Example 6. Let X have a bivariate normal distr ibution with mean vector 0 
and unknown covariance matr ix  

We wish to test  for the hypothesis p = Po with a fixed value P0, where (al,  a2) is 
a vector of nuisance parameters.  Transform (~1, ~2) into (al ,  a2) as 

{ P o ( P - P o ) }  
a, = ~, 1+ -~(1-- ~o ) 
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for i = 1, 2, so that  (~1, ~2) is orthogonal to p, evaluated at Po. The geometric 
characteristics are given by 

1 
(g~l~,, g~,~2, g~2~)_-- 4(0-12(2_ p2), ~rlo.2p ' o .2 (2_  p2)). 

(H(m) H(m) = r4(m) ~(m) ~ _  P ( 1 + p 2  p2 
~ p '  ~ 2 p  " ' ~ p '  ~ 2 ~ p J  (1 " p)2 0 .2 ' a la2 '  

1 _~_ p2 ~ 

which yields that  the corresponding coefficient to the influence of nuisance param- 
eters is given by 

h(m) = ~X" H (m)¢,~jpg~j e = po(2  + po2)/2(1 - po 2) 
i , j  

when evaluated at (~, po). In this way the influence term vanishes at po = 0 for 
any ~. 

We finally return to Example 2. 

Example 2 (continued). Under the condition for moments we see that  the 
coefficient of nuisance parameter effect is expressed as 

[P'(~) r /a  a 
= 1 2 -{- a l  ~- 52 -- 251)G'2(¢) -[- (albl + a12)p'2(¢)} 

+ a la2{#"(~)a ' (~ ) -  #'(~)a"(~)}l / (a2a'2(~) + #'~(~))' 

which is reduced to h (m) (~) -- 2c for the case of a known variation coefficient c 
under the normal family. 

4. Discussion 

We discuss the local unbiasedness of the test statistics. According to Peers' 
investigation, the likelihood ratio statistics $10 is locally unbiased but so are not 
the other two statistics $20 and $30. We can modify both $2 and $30 into being 
locally unbiased in the following way; 

SOt2 = S02 -- ~1 and Sago -- $3o - /~2,  

f t  1 ---- TijkgJk~ i and /~2 = ~ijkg jk~ ,  

where 

with aijk = EOiOjek. Thus the modified statistics S2¢0 and S~0 have the common 
asymptotic density 

got(S) = fq(s I ") + ~ { / q ( s  I . )  - 2f .+2(s I ~) + fq+~(* I ~)}, 
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so that the linear term of e in the local power of $2 t and $3 t vanishes. This im- 

plies the local unbiasedness of s t  and S~. Of course there exists a variety of 
modifications; for example, 

s2t0 t = S 2 0 -  "/=1 and sat0 t = G3o-  ~, 

where 

T1 = l (Tijkgigjek)o and k = ( t ~ i j k e i e j e k ) o  
3 

for which asymptotic densities are common and coincide with that of $10 defined 
in (2.4). 

We next consider the composite null hypothesis case. As Hayakawa has sug- 
gested, all the Si's have no local unbiasedness. Similarly, Si's can be modified into 
being locally unbiased; 

S~ = S l  Jr- ~ (m) ,  S~ = S 2 -t- ~t (rn) -- ~tl, $3  = $3 t --  ~t (e) --  /~2, 

where the symbol ..... denotes the evaluation at the MLE (~0, 00) in the null hy- 

pothesis. Thus S t 's  are found to be locally unbiased since the asymptotic densities 
are reduced to that  of $10. 

All the modifications discussed here are supported only in the asymptotic 
sense. In effect the modified statistics do not satisfy the nested condition (cf. 
Section 4.2 in Cox and Hinkley (1974) though this aspect may be asymptotically 
negligible). 
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Appendix 

We present a simple outline of proofs of Theorems 2.1 and 2.2 (see Eguchi 
(1987) for detailed proofs). The derivations used here are almost based on the 
same way by Hayakawa (1975) except for adding to a geometric interpretation. 
We use the following notation: 

= o) = l oj( , o), 
n 

,~(~)-~ _ 

where 0~ -- 0/0(~, O) a and l(~, 0) denotes the log-likelihood. We note that 
{~}l<~<p+q and {A~z}l_<~,Z_<p+q are exactly uncorrelated. Here we use the let- 
ters a, ~, % . . .  as the indices of the full coordinates (~, 0), so that symbolically 
c~ = (a, i). 
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LEMMA A.1. Under a sequence of alternatives K ~ :  0 = 00 + e/x/~, the test 
statistics Si0, i = 1, 2, 3 are expanded as 

1 i k $10 = n D 2 + A i j ( e i g  j - ~ i ¢ )  _ 5 T i j k g  ~3~ 

_ r ~ ) e ~ ¢ ~  k + 1 ~ • k }; 
S:o --- n{ D 2 + 2A~j(a - a)~aJ + Tuka~aJa k 

+ (T - F ( e ) ) k j , i ~ i ~ J ~  k - F (e)ijk£'-izj~ ~; 

F(e) ~-i z j  z k  Sao = n{ D 2 + 2Aiy(~ - ~)~J + ij,k,~ ,~ ,~ 

+ ~ y k ~ J e  k + (T + 2r(~))~j,k~Jg~}, 

where ~ = e/v/-n, D 2 = (~ - ~)i(~ _ e)Jgij. 

The proof follows from a straightforward but complicated routine using the 
Taylor theorem by neglecting the terms of op(1/x/-~ ). 

By correcting the expressions in Lemma A. 1 under the adjusted local alterna- 
tives K~, it follows that the moment functions are given by 

E[exp{tSlo}  

E[exp{tS2o} 

E[exp{ tS3o } 

Kn] = ( 1 -  2t)-q/2 exp{up} x ( 1 +  3 ~ u 2 # )  , 

K~] : (1 - 2t)-q/2 exp{u.} 

[ 1 { ( ~  ) }] 
× ] - b ~  (2U2+U)# l+  U2+2U2-F~U # , 

K*] = (1 - 2t) -q/2 exp{uv} 

>< 1 +  # + # 2 - # 3  u 

+(2#+4/z2--2#3)u2+ (4#+4#2) u3}], 

where u = t / (1 - 2t) and v, #, #1, #2 and ~t 3 are defined in (2.3). Consequently 
the inversion formula leads to (2.5), (2.6) and (2.8). 

Next we give the sketch of the proof of Theorem 2.2. The following relation 
will be helpful in giving the asymptotic powers of Si's. 

Let ~o be the MLE of ~ under the null hypothesis, or under known 00 and let 
be the ~-part in the simultaneous MLE of (~, 0). Then under the local alternatives 
Kn: 0 = 00 -b ~ with ~ = e /V~ the difference ~ - ~0 is expanded to be of order 2 
in terms ( ~ ,  A ~ ,  ~). This is easily seen from the expansion of the estimating 
equations for ~o, ea(~0, 00) = 0 (a = 1 , . . . ,  p). 

The test statistics Si's for the composite null hypothesis have the following 
relation with the corresponding statistics for the simple null hypothesis by letting 
nuisance parameters be known. 
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LEMMA A.2. Under the adjusted local alternatives K*: 0 -- 00 + ~ + A(~) 
with ~ = e / v ~  , it holds that 

Sl  ---- Sl0 "+" n { 2 A a i e i e  a Jr r l ; ) j ea (e i e  j - 2ei~ j ~- ~i~j) _ H(m)'-ab,i [e -~- ~)i~a~b} 

<c) z/-:  ~H ( 32 ~-- S20 ~- 2n{Tiaj~a~ j ~- (F~;),j - ~ij,a)~ e - ~ , ~ a ~ b } ( ~ _  ~)i 

83 = $30 + 2n{,4ai(e + ~)ie ~ + Oagijea(e + ~)i(~ + ~)j 

I_H(~) (g ~_ ~)i~agb}. 
- -  (T + F(~))ia,j~jga(~ + ~)i + 2 ab,i\ " 

The proof is here omitted (see Eguchi (1987)). 
By a similar argument to the simple null hypothesis case in Subsection 2.2, 

we obtain that 

( uh(m)h 
E(e  tS1 I g : )  : E ( e  tSl° I K*) 1 v ~  ] ,  

E(e i K;) = E(e i K;) 1 ] '  

{  h(c) }   3iK;)=E(e t 3°iK;) 1 ' 

to order o(n -1/2) because of Lemmas A.1 and A.2, where u = t / (1  - 2t) and h 
and 7 are defined in (2.3). Hence, the inversion formula leads to the asymptotic 
densities of S~'s. The proof is complete. 

Remark 1. The simple versions $3 as discussed in Subsection 2.1 are asymp- 
S *---- totically equivalent to $3, noting that $3 is exactly equal to S~ and that 3 - S~ 

o(ii(2.,, e., 
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