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A b s t r a c t .  In this paper, a family of estimators for estimating means when 
mixing two independent Poisson samples is proposed. This family is based on 
the probability-generating function of the Poisson distribution and is offered as 
an alternative to the maximum likelihood estimators, which have some draw- 
backs. These estimators include the method of moments estimators as a special 
limiting case. 

Key words and phrases: Poisson distribution, probability-generating function, 
generalized variance. 

1. Introduction 

Let  X1, X 2 , . . .  , X n be independent  r andom variables such tha t  X v l , . . . ,  Xvm 
have mean 02 and X~m+l , . . . ,  X ~  have mean 01, where 1 ~ m < n and 0 < 01 < 
02 < oc. It  is assumed tha t  m and n are known and tha t  ( V l , . . . ,  vm), the vector  
of indices of observations with mean 02, is a nuisance parameter .  The  problem is 
to es t imate  (01, 02), the pa ramete r  of interest.  This  kind of problem arises in real- 
life s i tuat ions where confidentiali ty of a person's  par t icular  group membership is 
extremely important. This problem has been considered before, usually assuming 
tha t  01 and 02 are bo th  exponential  or bo th  normal  means. Usually, an m-outl ier  
model  is assumed. See Kale (1975), Shaked and Tran (1982), Ga the r  and Kale 
(1988) and From and Saxena (1989). Kale presented the maximum likelihood es- 
t imators  under  the assumption tha t  the Xi 's  have distr ibut ions with monotone 
likelihood ratio in x. These est imators  are sometimes inadequate  because of in- 
consistency and ext reme bias. 

It  is emphasized tha t  Xi 's  do not form an i.i.d, collection of r andom variables 
so tha t  we are not  talking about  an i.i.d, mixture.  There  is an exhaust ive l i terature 
in the i.i.d, case, none of which will be given here, with one exception. It  should be 
ment ioned tha t  the approach taken in Section 2 is similar to tha t  used by Quand t  
and Ramsey (1978) to es t imate  the parameters  of an i.i.d, mixture  of normal  
distributions.  The  major  difference is t ha t  the es t imators  proposed in Section 2 
are of closed form. 
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In this paper, it is assumed throughout that 01 and 02 are Poisson means, i.e., 

0~e-0 
P [ X ~ = z ] -  x! ' x = 0 , 1 , 2 , . . . ,  

where 0 = 01 or 02, i = 1 . . . . .  n. The probability-generating function (pgf) of Xi 
is 

(1.1) Px,(a) ~-- E ( o l  X i  ) : e 0(a - l ) .  

Under the m-outlier model given in Gather and Kale (1988), the maximum likeli- 
hood estimators are given by the trimmed means 

n--llZ ~ 
(1.2) ~ n l e  n --1 m E X(i) and  O~nle __~ ml X(i) 

{:1 i = n - - m + l  

where X(1) __< X(2) _< ""  ~ X(n) are the order statistics. 
In Section 2, a family of estimators of 01 and 02 is proposed as an alternative 

to the maximum likelihood estimators, and the relationship of this family to the 
method of moments estimators is discussed. In Section 3, some numerical studies 
are presented. 

It should he mentioned that in outlier problems, one considers (n, m) relatively 
small. In this paper, the asymptotic properties of the estimators are considered 
as m --* oc, n --~ o0 in such a way that m = n p  + O(n~), where 0 < p < 1 is fixed 
and 5 < 1/2. 

In the sequel, 01 and 02 are used both as dummy variables to be solved for in 
defining the estimators of Section 2 as well as the true values of these paraxneters. 
The same is true for the variables Ul and u2 in Section 2. The particular usage 
will be clear from the context. 

2. Estimators of 01 and 02 

It is clear that if T(X1,. . . ,  X, 0 is any symmetric function of the observa- 
tions then the distribution of T depends only on (01, 02) and not on the nuisance 
parameter v. 

In this section, the method of moments estimators and the proposed probabil- 
ity-generating function-based estimators of 01 and 02 are presented. Properties of 
these estimators are also discussed. 

2.1 Method of moments estimators 
Let 

W I =  1 ~  and W~__ 1 ~  ~X - X ~  . = - . 

n n i=1 i=1 

The method of moments es t imators  ~nom and O~nom satisfy the equations 

(2.1) W 1 = 1 - n 01 + m02n 

and 
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(2.2) 

In closed form, 

T n  
W 2 = (1- -  n )  (01 + 02) + m(02 +02)" 

(2.3) 

and 

(2.4) 

~rll°m ~ W1 - ~ l ~ p ( W 2  - W l  - W ? )  

provided W2 - W1 - W12 > 0. 
It is clear that the variances of W1, W2 and W2 - W1 - W 2 are all O(n-1). 

Since all non-negative integer moments of a Poisson distribution exist, the weak 
law of large numbers or Tchebychev's theorem implies that 

W1 p (1 - p)01 + p02 and W2 ~ (1 - p)(01 + 021) + p(02 + 02). 

Consequently, W2 - W1 - W12 P p ( 1  - p)(02 - 01) 2 > 0, upon replacing W1 and 
W2 by their means given in (2.1) and (2.2). Therefore, the estimators can be 
found by studying their properties when W2 - W1 - W~ > 0 since it is easily seen 
that the joint distribution of (~nom, ~nom) is asymptotically normal. The variance 
covariance matrix is given in the Appendix. 

Next, the method of moments estimators are imbedded in a more general 
family of estimators. This will allow one to produce more efficient estimators than 
Omom i = 1, 2, for many parameter combinations of p, 01 and 02. i 

2.2 A pgf-based family of estimators of 01 and 02 
Let a > 1/2, a # 1. Let 

and 

A1 = Al(a ;  X I , . . . ,  Xn) = _1 ~ aX ~ 
n 

i = 1  

A2 = A2(a; X I , . . . ,  Xn) 1 ~ (  = - 2 a -  1 x'  . 
n 

i = 1  

Define a family of estimators 0i(a), i = 1, 2 indexed by a as follows. Let ~1(O:) 
and 02 (a) be the values of 91 and 02 satisfying the system 

(2.5) 
and 

(2.6) 

where 

: - -  U l  -4- - - U 2  
n 

m m 2 

ul = e °1(~-1) and u2 = e 62(~-1). 
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The motivation for (2.5) and (2.6) comes from the fact tha t  

and 

E(A1)  (1 n m~) ?Tt 
n 

m 
E(A2) = ( 1 -  n ) u ~  + mu~. 

The system defined by (2.5) and (2.6) has a unique solution satisfying ~l (a)  <_ 
02(a) provided A2 ~ A 2. Since the variance of A2 - A12 is O(n-1) ,  either Wcheby- 
chev's theorem or the weak law of large numbers  gives 

A2 - A21 ~ p ( 1  - -p ) [ e  01(a-1) -- et~2(a-1)] 2 > 0. 

In order to define the pgf-based estimators,  we need to distinguish two cases. 
Suppose 1/2 < a < 1. Let 

and 

ul = Al  + i l - ~ p  (A2 - A~) 

~2 = AI - ~ / ~ - ~ ( A 2  - A~). 

Again, since the variances of ul  and u2 are O(n-1) ,  

?~1 p ¢ 01(a-l)  ~ 1 and u2 p e °2(~-1) _< 1. 

Clearly Ul _> fi2 when A2 - A 2 > 0. Thus, P(ft2 _< 1~1 _ (1 )  --* 1 as n --* oo. 
Similarly, if a > 1, 

and 

• /  P ( A 2 - A 2 ) ,  /~1 = A1 - 1 - p 

~2 = A1 + - p (A2 - A12), 
P 

then P(1  < ul _< u2) --* 1 as n --* exp. In either of the above two cases for a ,  we 
have 

In ~1 and 02 (a) - In u2 
0 1 ( a ) -  a - 1  a - l '  

with probabil i ty tending to 1 as n -* oo. 
By s tandard large sample theory given in Serfling (1980), it is clear tha t  ~1 (~) 

and ~2(a) are consistent (for 0 < 01 ~ 02) and asymptot ical ly normal (for 0 < 
01 < 02), for all a > 1/2, a # 1. The asymptot ic  variance covariance matr ix  of 
v ~ ( ~ i ( a )  - 0i), i = 1, 2, is presented in the Appendix.  

The following theorem describes the relationship between 0~(a) and ~mom i 
i = 1 , 2 .  
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THEOREM 2.1. For 0 < 81 < 82, we have 

amom ] P ~i(c~)= i , i = 1 , 2  ---,1 
c~ 

as n -+ oo, m - - +  oc and rn/n --+ p e (0, 1). 

PROOF. By the law of large numbers, 

P [ W 2 - W 1 - W ~ > O ,  A 2 - A  T > 0 ] ~ I .  

It suffices to show that  W2 - W1 - W~ > 0 and A2 - A~ > 0 imply 0i(a) - +  ~ m o m  

a s a - - +  1 - , i =  1,2. The proof is f o r i =  1. S u p p o s e W 2 - W 1 - W 1 2  > 0 a n d  
A2 - A~ > 0. Then 

n 

(2.r) ~ x j > o  or X , _ I  
j = l  

for some j.  By L'H6pital 's rule, 

In Ul 
(2.8) l i m  ~l(Ot)= lim 

c~----+l- a - - d -  ~ - -  i 

= lim Oa 
a - ~ l -  ~t I 

where 

lim 
~- - - -+  1 - 

lira 
o ~ - - +  1 -  

(2.9) L = lim 
w - ~ l -  

and 

OA1 + 

OA2 . OAI \ ] 

J 
i n  
-- E XiotXi-1 .-~ 
n i=1  / 

P L, 
1 - p  

i o f  
2 ~ a ( a ;  X 1 , . . . ,  Xn) 

x/f(~; Xl , . . . ,  xn) 

f(a; X 1 , . . . ,  Xn) = A2(a; X1 , . . . ,  Xn) - (Al(a;  X l , . . . ,  Xn)) 2, 

provided L exists. By (2.7), f and ~f/Oa are both non-constant polynomials in 
a, given X 1 , . . . ,  Xn. Thus, eigher ILl = + oo or L exists. Since 

lira x/f (or; X1,... X,~)= lim 1 Of a---.l- ' a-*l- ~--~(ot; XI , . . . ,  Xn) -~- O, 
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we apply L'H6pital's rule once more to show L exists. Now L can be written as 

(2.10) L - - - l i m  0 (V/ )) ~ -  ~ f (a;  X ~ , . . . ,  X~ . 

Since 

(2.11) f (ol;  X l , . . .  , X n )  = ~ E ( 2 q  -- 1) x'  - E ax' ' 

i=1 i=1 

we have 

(2.12) l Of (a; Xa,... Xn)=-I ~ Xi(2a-1) x~-I 
20a ' n 

i=1 

/ ~ + ,  Z~o~ 1 
i=1 i=l / 

and 

(2.13) 1 02f(a; Xl, . . .  Xn ) = 2 ~ X i ( X i _  1 ) ( 2 a -  1) x~-2 
20c~ 2 ' n 

i=1 

) - ax' E Xi(Xi - 1)a x~-2 
i = l  i=1 

) -- Xio~Xi-1  E x i ~ X i - 1  " 

i=1 i=1 

By (2.13), 

lim 1 02 f • 

~--.1- 2 gh-5~ 2(c~; X l , . . .  

n 

, Xn)=-I E 2 X i ( X i - 1 )  
n 

i=1 

1 E Xi (Xi -  1 ) -  Xi 
n i=1 i--1 

( i t )  1 X 1 Xi Xi z . . . .  

n i=1 n i = l  

= W 2 -  W l  - W 2  > O. 

Thus, 

(2.14) liIn 1 02f+ ~-+~- ~ b - ~  ~,~; X l , . . . ,  x n )  = w~. - w ,  - w~.  
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Now if ILl -- + oc, then (2.8), (2.10), (2.14) and L'H6pital 's  rule imply M = 0 
where 

(2.15) 

1 02f, 
M = lim 2-~2a21s; X1,..., Xn) o_ o( Z) 

Since L = M,  L = 0, a contradiction to ILl = + oc. Thus, L exists. By (2.10), 
(2.14) and (2.15), 

M = L =  
L 

o r  L 2 : W 2 - W 1 - -  W12 

and so L = + v/W2 - W1 - W~. The sign of L is now determined. Since 

and 

lim 1 Of, 
o~---.1- -~ -~-~ [ Ot ; X 1 ,  . . . , X n  ) : 0 

1 O2f 
lim ~-5~2(a; X l , . . . ,  X , )  > 0, 

a - - ~ l -  

3a0 = c t 0 ( X l , . . . ,  Xn) • (1/2, 1) ~ (1/2)(02f/Os2)(a; Z l , . . .  , Xn) > 0 o n  

(a0, 1). So (1/2)(Of/Oa), as a function of a ,  is increasing on (s0, 1) and ap- 
proaches zero at 1. This gives 

1 Of 
20a ---(o~; X l , . . . ,  X,d _< o 

on (s0, 1). So L < 0 and L = - v/W2 - W1 - 14112. Thus, by (2.15), 

lim Ol(a)= l ~ x i +  ( l~_p) ( . . . .  v/W2 W1 W21) 
c~--+ 1 -  TL i = l  

= ~ o ~ .  

Similarly, 

lim 02(a) Wl + ~ / ~ ( W 2  W1 W~) ^ m o m  . . . .  0 2 • 
a - - - * l -  

Remark 1. A similar theorem holds as s --41 +. 

Remark 2. Let "AV" stand for asymptot ic  variance. It is not t rue tha t  

lim AV(v~(0 i (a )  - 0i)) = AV(v/~(0 m°m - 0i)), i = 1, 2. 
a---+ 1 - 
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In fact, it can be shown that 

lim AV(v~(0~(a) - Oi)) = + oo, 
~.-.-.+ 1 -  

i = 1 ,  2. 

This is not surprising since a -- 1 is a boundary case. 

R e m a r k  3. The above theorem states that ~mom can be thought of as special 

limiting cases of 0/(a), i = 1, 2. 

3. The selection of optimal c~-values 

In this section, the asymptotic Wilks generalized variances of the method of 
moments estimators and the pgf-based estimators are compared. Let Wmom and 
Wpgf denote the asymptotic Wilks generalized variances of the method of moments 
and the pgf-based estimators, respectively. From the appendix, 

and 

Wmom determinant of T = G m o m E m o m G m o  m 

T Wpgf = determinant of GpgfEpgfGpgf. 

Define the asymptotic relative efficiency of (01 ((2), 02 (O~)) relative to (0~nom, {}~nom) 
by 

W m o m  
e = 

W p g f  

This was calculated for various parameter combinations using the a-value in 
[.51, .99] which minimizes Wpgf. This optimal a, along with e, is presented in 
Table 1. The parameter combinations in Table 1 are just a small fraction of all the 
parameter combinations the author considered, however, these are representative. 

From our detailed calculations, several overall conclusions can be made. 
(i) Given 01 and 02, as p increases, the optimal a decreases and e increases. 

Thus, the larger p is, the better the pgf-based estimators perform in comparison 
to the method of moments estimators. 

(ii) For a given value of p, the larger 02 is in comparison to 0x, the greater the 
efficiency of the pgf-based estimators relative to the method of moments estima- 
tors. 

Next, (O~nom, O~nom) and (01(a), 02(a)) are compared to the trimmed means 
maximum likelihood estimators of Gather and Kale (1988) and also to the maxi- 
mum likelihood estimates obtained under the classical mixture model where 
X1 , . . . ,  Xn are i.i.d, with probability distribution function 

• 8~e -°~ 8~e-O~ 
g(x ,  p, 01, 02) = P [ X i  = x] = (1 - p ) - - - ~ - .  + p  ~. , x = O, 1, 2 , . . .  , 
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Table 1. 

p .01 .10 .10 .30 .30 .50 

01 .50 .50 .50 .50 1.00 1.00 

92 2.00 2.00 5.00 5.00 2.00 2.00 

a .99 .94 .90 .84 .95 .88 

e .97 1.02 1.12 1.41 1.01 1.09 

p .50 .70 .90 .99 .01 .10 

01 ].00 1.00 2.00 2.00 .10 .10 

02 5.00 5.00 3.00 3.00 .20 .20 

.85 .80 .86 .84 .99 .99 

e 1.45 1.97 1.20 1.28 .99 + .99 + 

p .10 .30 .30 .50 .50 ,70 

01 .10 .10 .10 .10 .10 .10 

02 .50 ,50 .90 .90 3.00 3.00 

.82 .68 .62 .59 .62 .58 

e 1.04 1.14 1.39 1.52 3.55 5.04 

p .90 .99 .01 .10 .10 .30 

01 .50 .50 2.00 2.00 2.00 2.00 

02 1.00 1.00 6.00 6.00 10.00 10.00 

a .77 .75 .99 .99 .97 .94 

e 1.18 1.20 .93 .99 + 1.02 1.12 

p .30 .50 .50 .70 .90 .99 

01 5.00 5.00 5.00 5.00 .10 .10 

02 6.00 6.00 10.00 10.00 20.00 20.00 

c~ .99 .99 .95 .92 .88 .84 

e .99 + 1.00 + 1.10 1.29 39.36 369.01 

w h e r e  p is k n o w n  a n d  0 < 01 < 02 < o(). L e t  (~]ID, 012ID ) d e n o t e  t h e  v a l u e s  o f  
n 

(01, 02) w h i c h  m a x i m i z e  t h e  t r a d i t i o n a l  l i k e l i h o o d  f u n c t i o n  L = I I  g(Xi, m/n, 01, 
i--1 

02) subject to the restriction ~nle ~ 01 ~ 02 ~_~ ~nle. Since it is unknown to the 
author whether or not the classical asymptotic theory of i.i.d, maximum likelihood 
estimators is applicable here, empirical Wilks generalized variances based on 200 
r e p l i c a t i o n s  o f  e a c h  p a r a m e t e r  c o m b i n a t i o n  o f  m ,  n ,  01 a n d  02 w e r e  f o u n d .  T h e  

a c t u a l  v a l u e s  o f  01 a n d  02 w e r e  u s e d  t o  f ind  t h e s e  g e n e r a l i z e d  v a r i a n c e s .  T a b l e  

2 p r e s e n t s  a s m a l l  r e p r e s e n t a t i v e  f r a c t i o n  o f  t h e  a c t u a l  r e s u l t s  g e n e r a t e d .  T h e  

o p t i m a l  v a l u e  of  a w a s  u s e d  t o  find (01(0/), 02(0/)). 
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Table 2. Generalized variances. 

(m, n, 81, 82) (~mom ~om) (~m|e, ~|e) (~1(~), b2(~)) (~ID, ~ID) 
(10, 100, 1.0, 2.0) .0073 .0249 .0073 .0067 

(10, 100, 1.0, 3.0) .0082 .0113 .0082 .0079 

(10, 100, 1.0, 5.0) .0048 .0053 .0047 .0079 

(10, 100, 1.0, 10.0) .0120 .0097 .0112 .0183 

(15, 50, 1.0, 2.0) .0110 .0264 .0108 .0111 

(15, 50, 1.0, 3.0) .0135 .0213 .0130 .0121 

(15, 50, 1.0, 5.0) .0165 .0138 .0148 .0185 

(15, 50, 1.0, 10.0) .0227 .0172 .0201 .0265 

(50, 100, 1.0, 2.0) .0037 .0135 .0035 .0037 

(50, 100, 1.0, 3.0) .0038 .0109 .0033 .0034 

(50, 100, 1.0, 5.0) .0033 .0030 .0023 .0041 

(50, 100, 1.0, 10.0) .0067 .0034 .0043 .0061 

(35, 50, 1.0, 2.0) .0175 .0339 .0171 .0151 

(35, 50, 1.0, 3.0) .0426 .0266 .0329 .0372 

(35, 50, 1.0, 5.0) .0278 .0139 .0171 .0195 

(35, 50, 1.0, 10.0) .0352 .0140 .0180 .0325 

(90, 100, 1.0, 2.0) .0133 .0251 .0123 .0109 

(90, 100, 1.0, 3.0) .0432 .0284 .0329 .0314 

(90, 100, 1.0, 5.0) .0509 .0089 .0114 .0229 

(90, 100, 1.0, 10.0) .0689 .0101 .0159 .0355 

(10, 100, 2.0, 3.0) .0227 .1242 .0230 .0199 

(30, 100, 5.0, 10.0) .0323 .0855 .0322 .0406 

(50, 100, .1 , .5)  .000165 .000116 .000149 .000140 

(70, 100, 2.0, 10.0) .0211 .0106 .0137 .0181 

(90, 100, .1, 3.0) .0193 .0003 .0023 .0060 

From Table 2, it is observed that 
i) The trimmed means estimators are superior when 81 is much smaller than 

82. 
ii) When 81 is near ~ ,  only the trimmed means estimators appear to perform 

less well than the others, which appear to perform equally well. 
iii) Again, we see that the larger the value of re~n, the better the performance 

of (~1(c~), ~2(c~)), relative to (O~om, ~nom). 
iv) The estimators (~ID, ~ID) are inferior to (~1(c~), ~2(a)) when 82 is much 

larger than 81. They are also much more difficult to compute than the other three 
sets of estimators and are not recommended. 



ESTIMATION IN A NON-I.I.D. POISSON MIXTURE 177 

Overall, in non-outlier models, the pgf-based es t ima to r s  (01(o~), 02(Ct)) are 
recommended. Table 1 should allow for a wise choice of a since one usually 
has some idea about the values of 01 and 02 in applications. If 01 is near 02, 
the three sets of estimators (O~om 0~om), (01(a), t92(a)) and (t}] ID, ~IID) appea r  

equally efficient. Since the optimal value of a in this case is near 1.0, the method of 
moments and pgf-based estimators are virtually the same, by Theorem 2.1. In this 
special case, the method of moments estimators are recommended. In m-outlier 
models with p near 0 and 02 much larger than 01, it appears that the trimmed 
mean estimators of Gather and Kale (1988) cannot be improved upon. This seems 
reasonable since we virtually have "complete separation" of two random samples 
and the trimmed means are asymptotically efficient sample means. 

Appendix 

A.1 

~mom 

where 

and let 

^ 

Asymptotic variances of V~(0 m°m -- Oi) 
Let 

E(W1) = (1 - p)O1 4- p02, 

E(W2) ---- (1 - p)(O, + 01 z) -I- p(02 +022), 

(1 -- p)O 1 4- p(02) (1 -- p)(01 + 20 2) 4- p(02 4- 2022)] 
(1-p)(O14-20~)+p(Oz+20~) (1-p)Vox(X2)+pVo2(X 2) J '  

Vo,(X 2) = 403 + 602 + Oi, i -- 1, 2, 

[ oOr~°m/ow10~r~°m/ow2 ] 
Gmom [ Oop°m/ow1 oor~°m/ow2 J 

evaluated at Wi = E(Wi), i = 1, 2. The partial derivatives are given by: 

O0~°m/ow1 ~- 1 + 
1 ~ _ ~  (1 p + 2W1) 

2 v / W z -  Wx - W 2' 

0 ~ n o m / 0 w 2  = 1 - p 
2,/w  - - w ? '  

- + 2 w l )  P(1 

O0~°m/OWl = 1 -  P 
w ,  - w ?  

•/1 - p  

00~n°m/0W2 = P 
2v/W - - W ?  

and 

Then the asymptotic covariance matrix of (v~(0~ '°m -01) ,  V/'~(0~ n°m - -02 ) )  T is 
T GmomEmomGmom. 
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A.2 Asymptot ic  variances of  v~(Oi(a)  - 0~) 

Let  

: [0.~ 0.12] 
Epgf L0"21 0"22 J 

where  

0"11 = (1 - p ) ( e  e~(a2-1) - e e~(2~-2)) + p(e e2(a2-1) - ee2(2a-2)), 

a12 = a21 -- (1 - p ) ( e  0~(2~-~-1) - e e~(3~-3)) + p ( e  e~(2~2-~-1) - e e2(3~-3)) 

0.22 -~ (1 - p ) ( e  9 1 ( 4 a 2 - 4 a )  - e 01(4a-4)) -~ p ( e  0~(4a~-4c~) - e°2(-4c~-4)). 

Let 

[O~I(.)IOAI 0~1 (o~)/0A2 1 
oe2 (~)/0A2 J 

eva lua ted  at  

and  

A1 - - E ( A 1 )  = (1 - p ) e  e1(<~-1) + pe ~2(`~-1) 

A2 = E(A2)  = (1 - p )e  2°1(~-1) + pe 2°2(<~-1). 

There  are two cases: 
Case ( l )  (~>  1 :  We have 

_ _ ,,. /A, / -, ( A, ) _ . 1 

-1 / /_~/ 
OA1 

O~2(a) (A1  + - P (A2 -1 . 
OA2 -~ ((c~ - 1) • l l p  - A ~ ) ) )  2 
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Case (2) 1 / 2 < a < 1 :  We have 

0{~1 (O~) (A1 
OA1 - ( ( a -  1). 

1 . i l  _ P 

OA2 - ( ( a -  1). 

T h e  asymptotic covar iance  m a t r i x  of  ( v ~ ( ~ l ( O ~ ) -  ~1), v/n(~2(O~) - ~ 2 ) )  T is 
T Gpgf~]pgfGpgf. 
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