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Abstract. In this paper, a family of estimators for estimating means when
mixing two independent Poisson samples is proposed. This family is based on
the probability-generating function of the Poisson distribution and is offered as
an alternative to the maximum likelihood estimators, which have some draw-
backs. These estimators include the method of moments estimators as a special
limiting case.
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1. Introduction

Let X;, X;,..., X, beindependent random variables such that X, ,..., X,
have mean 6, and X,, . ,,..., X,, have mean 6;, where 1 <m <nand 0 <6, <
8, < co. It is assumed that m and n are known and that (vy,..., vy), the vector
of indices of observations with mean 6;, is a nuisance parameter. The problem is
to estimate (61, 62), the parameter of interest. This kind of problem arises in real-
life situations where confidentiality of a person’s particular group membership is
extremely important. This problem has been considered before, usually assuming
that 8, and 8, are both exponential or both normal means. Usually, an m-outlier
model is assumed. See Kale (1975), Shaked and Tran (1982), Gather and Kale
(1988) and From and Saxena (1989). Kale presented the maximum likelihood es-
timators under the assumption that the X;’s have distributions with monotone
likelihood ratio in z. These estimators are sometimes inadequate because of in-
consistency and extreme bias.

It is emphasized that X;’s do not form an i.i.d. collection of random variables
so that we are not talking about an i.i.d. mixture. There is an exhaustive literature
in the i.i.d. case, none of which will be given here, with one exception. It should be
mentioned that the approach taken in Section 2 is similar to that used by Quandt
and Ramsey (1978) to estimate the parameters of an i.i.d. mixture of normal
distributions. The major difference is that the estimators proposed in Section 2
are of closed form.
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In this paper, it is assumed throughout that 6; and 6, are Poisson means, i.e.,

6= -6

> z=012,...,
€Il

where 8 = 6y or 02, i = 1,..., n. The probability-generating function (pgf) of X;
is

(1.1) Px.(a) = E(ai) = 1),

Under the m-outlier model given in Gather and Kale (1988), the maximum likeli-
hood estimators are given by the trimmed means

(1.2) gmie ! nf_?x and Gl = 1 Zn: X

. - 1 - K1
1 nemi v i M i1 ©

where X(1) < X(g) <+ € X(5) are the order statistics.

In Section 2, a family of estimators of §; and 62 is proposed as an alternative
to the maximum likelihood estimators, and the relationship of this family to the
method of moments estimators is discussed. In Section 3, some numerical studies
are presented.

It should be mentioned that in outlier problems, one considers (n, m) relatively
small. In this paper, the asymptotic properties of the estimators are considered
as m — 00, n — oo in such a way that m = np + O(n®), where 0 < p < 1 is fixed
and 6 < 1/2.

In the sequel, 8; and 63 are used both as dummy variables to be solved for in
defining the estimators of Section 2 as well as the true values of these parameters.
The same is true for the variables u; and us in Section 2. The particular usage
will be clear from the context.

2. Estimators of 8; and 8,

It is clear that if T(Xi,..., Xn) is any symmetric function of the observa-
tions then the distribution of T depends only on (6, 63) and not on the nuisance
parameter v.

In this section, the method of moments estimators and the proposed probabil-
ity-generating function-based estimators of 8; and 6, are presented. Properties of
these estimators are also discussed.

2.1 Method of moments estimators
Let

1« 1o
WI:;ZXi and Wz:glelz
i=1 i=

The method of moments estimators é‘lmm and @°™ satisfy the equations

(2.1) W, = (1 _ %) 6, + %02

and
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m m
(2.2) Wy = (1- ;) (61 +63) + — (62 +63).

In closed form,

(2:3) P =W =\ [ 75 (W = W = W)
and

. 1-—
(2.4) fmom — W, + \/ —p—p(% ~ W, - W)

provided W, — W; — W2 > 0.

It is clear that the variances of Wy, Wy and W, — Wy — W2 are all O(n™1).
Since all non-negative integer moments of a Poisson distribution exist, the weak
law of large numbers or Tchebychev’s theorem implies that

Wy B (1—p)0+ph, and  WyD (1—p)(8 +62) + p(6 + 62).

Consequently, Wy — Wy — W7 RN p(1 — p)(82 — 6;)? > 0, upon replacing W; and
Wy by their means given in (2.1) and (2.2). Therefore, the estimators can be
found by studying their properties when Wy — Wy — W2 > 0 since it is easily seen
that the joint distribution of (é{“om, 95“"‘“) is asymptotically normal. The variance
covariance matrix is given in the Appendix.

Next, the method of moments estimators are imbedded in a more general
family of estimators. This will allow one to produce more efficient estimators than
9;“0“‘, i = 1, 2, for many parameter combinations of p, §; and 6,.

2.2 A pgf-based family of estimators of 8, and 6,
Let o > 1/2, &« # 1. Let

1 n
A= Ai(o; Xn,.o, X)) =2 ) o
1 1(0-'7 1 3 ) ni:la
and

Ay = Ag(e; X1, Xp) ==Y (20— 1Y%,

Define a family of estimators f;(a), i = 1, 2 indexed by «a as follows. Let 6;(c)
and 02(a) be the values of 8, and 6, satisfying the system

m
(25) Al = (1 h —) Ux + E’U,Q
n n
and
(2.6) o= (1-2)ud + Zud
n n
where

uy =P and gy = ef2lol),
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The motivation for (2.5) and (2.6) comes from the fact that

m m
E(Al) = (1 - 7—1-) u; + ";L‘UQ
and

E(Az) = (1 - %) uf + %ug

The system defined by (2.5) and (2.6) has a unique solution satisfying 0,(c) <
65 () provided A; > A?. Since the variance of A, — A% is O(n™!), either Tcheby-
chev’s theorem or the weak law of large numbers gives

Ag — A3 B p(1 — p)felr (@D - fla-D2 > g,

In order to define the pgf-based estimators, we need to distinguish two cases.
Suppose 1/2 < a < 1. Let

p

i, = A £ (A, — A?

Uy 1+ 1——p( 2 %)
and

. 1-

Ug = A1 — -72(142 —A%)

Again, since the variances of 4; and iz are O(n™1),
iy Befrle-) <1 and Qg D ef2le-1) < 1,

Clearly 4; > 4z when Ay — A2 > 0. Thus, P(i; < 43 < 1) - 1asn — oo.
Similarly, if a > 1,

iy = Ay — [P (A4 — A2),

—
3

and

[y

g = A+ ]| ——L (4, — A2),

3

then P(1 < 4; < @) — 1 as n — oo. In either of the above two cases for a, we

have na I
~ _ nu; ~ _ nug
61(a) = ] and 6s(a) T

with probability tending to 1 as n — oo.

By standard large sample theory given in Serfling (1980), it is clear that él(a)
and 63(a) are consistent (for 0 < 6; < 6;) and asymptotically normal (for 0 <
6, < 6,), for all & > 1/2, a # 1. The asymptotic variance covariance matrix of
Vvn(@i(a) — 8;), i =1, 2, is presented in the Appendix.

The following theorem describes the relationship between 6;(a) and é;“"m,
1 =1, 2.
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THEOREM 2.1. For 0 < 6; < 62, we have

P| lim §;(a)=60"",i=1,2| -1

a—1-

asmn — 0o, m — oo and m/n — p € (0, 1).

Proor. By the law of large numbers,
PW, -W; —W2>0, A2 - A1 >0]- L

It suffices to show that W — Wi — W2 > 0 and A, — A? > 0 imply éi(a) — é;“"m
as o — 17,4 = 1, 2. The proof is for i = 1. Suppose Wy — W) — W2 > 0 and
Az — A2 > 0. Then

(2.7 ZXj >0 or X;2>1

=1

for some j. By L'Hopital’s rule,

. - ) Ina
o8 )= i
= lim 2o
a—1" U
04y, , Oy
04, da 1"8a ( p )
o
"oy MY
= lim -
a—1- Uy
. 1 « . p
=1 =) X,aX! —
where
}g(aa Xl, ’Xn)
(2.9) L= lm 292

and
flog Xq,..., Xp) = Aa(a; Xa,..., X)) — (A1(og Xy,..., Xn))z,

provided L exists. By (2.7), f and 8f/0c are both non-constant polynomials in
o, given X1,..., X,. Thus, eigher |L| = + oo or L exists. Since

1
lim \/f(a; Xl»---aXn): lim _Z_f(a; Xlr-'aXn):O,

a—1- a—1" (07
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we apply L’Hépital’s rule once more to show L exists. Now L can be written as

(2.10) L= lim —(\/fa X, .. ,X,,)).

a—1~

Since

n n 2
(2.11) flog Xq,..., Xp) = %Z(Za—— )% - (%Za’“) ,
i =1

we have

(2.12) %—i(a; Xi,..., X)) = %i){ima—l)x

and

2 n

By (2.13),
19%f 1o
- X n) = — 2X;(X; -1
J 3ok X X = 1 -
1 o 1 o :
- - XiXi-1)—| = X
- (3x)
1 & ?
g (1)
:WQ'—Wl“Wl>0.
Thus,
2
(2.14) lim 16f(o¢ X1, X)) =Wy — W, — W2

a-—1" 28 2
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Now if |L| = + oo, then (2.8), (2.10), (2.14) and L’Hépital’s rule imply M =0
where

18 f

(2.15) M= lim 82 9o’ .

“ %(\/fa; Xl,...,Xn))

Since L = M, L = 0, a contradiction to |L| = + oo. Thus, L exists. By (2.10),
(2.14) and (2.15),

(a Xl,...,Xn)

_ _ 2
M:szil——wi or L*=W,—W; - W2

and so L = £/ Wy — W; — Wf The sign of L is now determined. Since

of
ali)r?_ “%(a, X17' ’ Xn) =0
and
1 52
lim - f(a, Xla- ,Xn)>0,

Jag = ap(X1,..., Xn) € (1/2,1) 3 (1/2)(8%f/0c?)(e; X1,..., X,) > 0 on
(g, 1). So (1/2)(8f/0a), as a function of «, is increasing on (ap, 1) and ap-
proaches zero at 1. This gives

on (ap, 1). So L<0and L = — y/Wp — Wy — WZ. Thus, by (2.15),

.z 1 p /
1 e =—§ X; —_— Wy, - W. 2
aigl— l(a) n +( 1—p)< 2 1T W)

i=1
:WI_\/I—- (Wy — Wy — W}
= rom,
Similarly,
alinf‘ 62() =W1+\/1—;—p(W2‘W1 - WP) = 6gem. o

Remark 1. A similar theorem holds as a — 17.

Remark 2. Let “AV” stand for asymptotic variance. It is not true that

lim AV(vn(bi(a) —8:) = AV(V/n(B™ - 6,)),  i=1,2.

a—1~
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In fact, it can be shown that

lim_ AV(Vn(fi(a) —8;)) = +00, i=1,2

This is not surprising since o = 1 is a boundary case.

Remark 3. The above theorem states that éz‘-‘wm can be thought of as special
limiting cases of 6;(a), i =1, 2.

3. The selection of optimal a-values

In this section, the asymptotic Wilks generalized variances of the method of
moments estimators and the pgf-based estimators are compared. Let Wy om and
Wiet denote the asymptotic Wilks generalized variances of the method of moments
and the pgf-based estimators, respectively. From the appendix,

Wmom = determinant of GmomzmomGﬁom

and

T
pef*

Wiet = determinant of GpgrXpgeG
Define the asymptotic relative efficiency of (6, (c), 62()) relative to (§nom, gmem)
by
Wmom
Wt

e =

This was calculated for various parameter combinations using the a-value in
[.51, .99] which minimizes Wpes. This optimal «, along with e, is presented in
Table 1. The parameter combinations in Table 1 are just a small fraction of all the
parameter combinations the author considered, however, these are representative.

From our detailed calculations, several overall conclusions can be made.

(i) Given 6, and 6,, as p increases, the optimal o decreases and e increases.
Thus, the larger p is, the better the pgf-based estimators perform in comparison
to the method of moments estimators.

(ii) For a given value of p, the larger 6, is in comparison to 6, the greater the
efficiency of the pgf-based estimators relative to the method of moments estima-
tors.

Next, (§mom gmom) and (6;(c), f2(cx)) are compared to the trimmed means
maximum likelihood estimators of Gather and Kale (1988) and also to the maxi-
mum likelihood estimates obtained under the classical mixture model where
Xi,..., X, are i.i.d. with probability distribution function

fe® | f5e
+p

o e r=0,12/...,

g(z, p, 01, 62) = P[X; = z] = (1 - p)
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Table 1.
p .01 .10 .10 .30 .30 .50
61 .50 .50 .50 .50 1.00 1.00
02 2.00 2.00 5.00 5.00 2.00 2.00
a .99 .94 .90 84 95 .88
e 97 1.02 1.12 1.41 1.01 1.09
p 50 70 .90 99 01 10
61 1.00 1.00 2.00 2.00 .10 .10
62 5.00 5.00 3.00 3.00 .20 .20
o 85 80 .86 84 99 99
e 1.45 1.97 1.20 1.28 99+ .99t
p .10 .30 .30 .50 .50 .70
61 .10 .10 .10 .10 .10 .10
02 .50 .50 .90 .90 3.00 3.00
o .82 .68 .62 .59 62 .58
1.04 1.14 1.39 1.52 3.55 5.04
p .90 .99 .01 .10 .10 .30
& .50 .50 2.00 2.00 2.00 2.00
02 1.00 1.00 6.00 6.00 10.00 10.00
a 77 .75 .99 .99 .97 .94
e 1.18 1.20 .93 .99+ 1.02 1.12
P .30 50 .50 .70 .90 .99
0 5.00 5.00 5.00 5.00 .10 .10
82 6.00 6.00 10.00 10.00 20.00 20.00
o .99 99 .95 .92 88 .84
e 997 1.00t 1.10 1.29 39.36 369.01

where p is known and 0 < 6; < 6, < co. Let (610, 1) denote the values of
n

(61, 62) which maximize the traditional likelihood function L = [] g(X;, m/n, 65,

i=1
63) subject to the restriction éTle < <6< é;“le. Since it is unknown to the
author whether or not the classical asymptotic theory of i.i.d. maximum likelihood
estimators is applicable here, empirical Wilks generalized variances based on 200
replications of each parameter combination of m, n, #; and 8, were found. The
actual values of §; and f2 were used to find these generalized variances. Table
2 presents a small representative fraction of the actual results generated. The
optimal value of & was used to find (6;(a), fa(c)).



176 STEVEN G. FROM

Table 2. Generalized variances.

(m,m, 01,02)  (fom, gmem)  (gmle, gmle) (8 (a), b2(a)) (8D, 61P)
(10, 100, 1.0, 2.0) .0073 .0249 .0073 .0067
(10, 100, 1.0, 3.0) .0082 0113 .0082 .0079
(10, 100, 1.0, 5.0) .0048 .0053 .0047 .0079
(10, 100, 1.0, 10.0) .0120 .0097 .0112 .0183
(15, 50, 1.0, 2.0) .0110 0264 .0108 0111
(15, 50, 1.0, 3.0) .0135 .0213 .0130 .0121
(15, 50, 1.0, 5.0) .0165 .0138 .0148 .0185
(15, 50, 1.0, 10.0) .0227 0172 .0201 .0265
(50, 100, 1.0, 2.0) .0037 0135 .0035 .0037
(50, 100, 1.0, 3.0) .0038 .0109 .0033 .0034
(50, 100, 1.0, 5.0) .0033 .0030 .0023 .0041
(50, 100, 1.0, 10.0) .0067 .0034 .0043 0061
(35, 50, 1.0, 2.0) 0175 .0339 0171 .0151
(35, 50, 1.0, 3.0) 0426 .0266 .0329 .0372
(35, 50, 1.0, 5.0) .0278 .0139 0171 0195
(35, 50, 1.0, 10.0) .0352 .0140 .0180 0325
(90, 100, 1.0, 2.0) .0133 .0251 .0123 .0109
(90, 100, 1.0, 3.0) 0432 .0284 .0329 .0314
(90, 100, 1.0, 5.0) .0509 .0089 0114 .0229
(90, 100, 1.0, 10.0) .0689 0101 .0159 .0355
(10, 100, 2.0, 3.0) 0227 1242 .0230 .0199
(30, 100, 5.0, 10.0) .0323 .0855 .0322 .0406
(50, 100, .1, .5) .000165 .000116 .000149 .000140
(70, 100, 2.0, 10.0) 0211 .0106 .0137 .0181
(90, 100, .1, 3.0) .0193 .0003 .0023 .0060

From Table 2, it is observed that
i) The trimmed means estimators are superior when ¢, is much smaller than
62 .
ii) When 6, is near 65, only the trimmed means estimators appear to perform
less well than the others, which appear to perform equally well.
iii) Again, we see that the larger the value of m/n, the better the performance
of (6, (a), 62(c)), relative to (§rom, gmem),
iv) The estimators (6P, 1) are inferior to (6 (), f2(a)) when 85 is much
larger than 6,. They are also much more difficult to compute than the other three
sets of estimators and are not recommended.
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Overall, in non-outlier models, the pgf-based estimators (6 (a), 65(a)) are
recommended. Table 1 should allow for a wise choice of o since one usually
has some idea about the values of 8, and 8> in applications. If 8, is near 6,
the three sets of estimators (§1°m gmom) (4, (a), B3(c)) and (1P, G0 appear
equally efficient. Since the optimal value of « in this case is near 1.0, the method of
moments and pgf-based estimators are virtually the same, by Theorem 2.1. In this
special case, the method of moments estimators are recommended. In m-outlier
models with p near 0 and 6, much larger than 6;, it appears that the trimmed
mean estimators of Gather and Kale (1988) cannot be improved upon. This seems
reasonable since we virtually have “complete separation” of two random samples
and the trimmed means are asymptotically efficient sample means.

Appendix

A1 Asymptotic variances of /(6™ — 6,)
Let
E(W1) = (1-p)61 + pba,
E(W3) = (1 - p)(61 + 67) + p(62 + 63),
- (1=p)61 +p(62) (1= p) (61 +263) + p(6; + 263)
mom T (1—p)(0y +262) +p(62 +263) (1 —p)V, (X?) + pVa,(X2) |

where
Vo, (X?) =462 +66% +6,, i=1,2,

and let . .
G — oo™ /oWy 907 [OW,
" o65™m /oW, 96Fo™ /W,
evaluated at W; = E(W;), i = 1, 2. The partial derivatives are given by:
L (142w
oo™ (oW, = 1+ :
/oW 9/ Wz — W1 — W7
_ p
. 1—
8fmem /G, = L—
2/ Wy — W, — W}
1-—
) ~—Payowy)
afgeom jow, =1 — 4P and
2/ Wy — W, — W2
l-p
BfTo™ /oW, = P

2/ Wy — W, — W2

Then the asymptotic covariance matrix of (v/n(dro™ — ), V/n(05o™ — g,))7 is
GmOmEmOmGT

mom "’
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A.2  Asymptotic variances of /n(i(a) — ;)
Let

1011 012

021 022

where

o1 = (1 _p)(691(a2_1) - 601(20—2)) +p(692(a2—1) _ 602(2a—2))’
012 = 09 = (1 _p)(891(2a2—~a—1) _ 601(301—3)) +p(602(2a2—a—1) _ e92(&1—3))

Ogn = (1 _p)(891(4a2—4a) _ 891(4a—4)) +p(692(4a2—-4a) _ 692(4(1-4)).

Let
801(a)/0A; 86;(a)/DAs

Crat = 80,(c) /0A,  B6y(a)/BA,

evaluated at
A =E(A)=(1- p)efr@-1 + pe¥2(a—1)
and

Ay =FE(A)=(1 —p)e”‘("“l) +p6292(a—-1).

There are two cases:
Case (1) a>1: We have

p
A [
(1224,

agﬁ‘l") = <(a—1). <A1+\/?p(/12—'_;{)))—1' 1= 7\/—{::—]—? ’
i
0 (o (o)) [ L
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Case (2) 1/2<a<1: We have

P

(o (oo (Z ) |-V

P
0o o () )
. -1 l_pAl
Qg_z(_?_):((a-n-(m— 1%’(/12—14%))) ' 1+ﬁ—§—:‘21‘ ’

=
3%?:((%1)-(/11— L;—B(Az—A%)»-l' ;T—E)—;{

The asymptotic covariance matrix of (vn(f1(e) — 8;), Vr(fa(a) — 62))T is

T
Gpgf Epg.'f Gpgf .
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