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Abstract. Based on a sample of size n, we investigate a class of estimators
of the mean 6 of a p-variate normal distribution with independent components
having unknown covariance. This class includes the James-Stein estimator and
Lindley’s estimator as special cases and was proposed by Stein. The mean
squares error improves on that of the sample mean for p > 3. Simple approx-
imations for this improvement are given for large n or p. Lindley’s estimator
improves on that of James and Stein if either n is large, and the “coefficient of
variation” of § is less than a certain increasing function of p, or if p is large. An
adaptive estimator is given which for large samples always performs at least as
well as these two estimators.
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1. Introduction and summary

Here we state our main results. Proofs are given in Section 2.
Suppose we observe a random sample of size n from Ny (8, vI) with p > 3 and
v > 0 unknown. Let X be the sample mean. Its risk is

E|X — 6> = pyn~L.

Suppose ¥ ~ vx2/(v + 2) independently of X.

We seek an estimate of § with smaller risk than that of X.

This problem arises in 1-way analysis of variance with equal observations per
cell and more generally in regression analysis with normal residuals with v equal
to n less a constant.

Let H be any p X p idempotent matrix of rank rg > 3. The estimator for
that we shall consider is

(1.1) Oy =X —n~Yo(ry —2)HX|HX|2.

Versions of this estimate were proposed in (2.34) of Stein (1966), (4.3) of Sclove
et al. (1972), (1.6a) of George (1986b) and in (1.4) of George (1986¢).
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Unlike these papers our concern is primarily on how the estimator performs
as the sample size n increases. Like George, we consider an adaptive version of
(1.1). However, our adaptive estimator is much simpler than his.

When H = I, it is the estimate of James and Stein (1961)

;s =X —nto(p—2)X|X|2
When H = I, — 1 1'/p it is known as Lindley’s estimate
0, =X —nti(p-3)(X -1X)(|X)? —pX? 2 where X =1'X/p.

For a numerical example using 6 L, see Efron and Morris (1973a, 1973b).

We shall study the risk of 6y firstly for large n and then for large p. In either
case we shall show that for H; and H, of the same rank, 6 1, has smaller risk than
O, if |H 6| < |H6|. This is not directly helpful as  is unknown.

However, our main result, Theorem 1.3, tells us to choose é r, rather than 6 H,

More generally it gives us a rule to choose H efliciently from a predetermined
set—and thus, in general, how to improve on both the James-Stein estimate and
the Lindley estimate.

Our first result is well known, although it does not appear to be specifically
stated anywhere. It shows that 0y has smaller risk than X.

(1.2) Set h(A,r)=r?E(r+2K)"' for r>0
and K Poisson with mean A/2 > 0

Ag =nv ' HO?  and
A(H) = h(Ag, ra — 2).

THEOREM 1.1.
(1.3) Elfy — 0> =n"'v{p—bA(H)} where b=v/(v+2).

Note 1.1. This was proved for H = I by James and Stein (1961) and for
H; =1-1 1'/p by Lindley—see the discussion to Stein (1962). We denote their
corresponding values of

r
T =|HO*/p by 71;5=10/p and T ZP_IZ(Gi —6)?
1

_ P
where § = p~1 3" 6,. Also 7y < 7;55. Thus 7y is bounded as p increases if say {6;}
1

are bounded.

Note 1.2. By (1.3), E|fy — 0|2/E|X — 0|2 lies between 1 — b(ry — 2)/p at
|H6| = 0 and 1 at |H6| = oo.
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CoOROLLARY 1.1. If the direction of 8, i = 0/|6)|, is known and H = I — it’
then E|0g — 6|2 = n~'v(3v + 2p)/(v + 2) for all |6], so that the risk of 8y relative
to that of X is about 3/p for v/p large.

This is an exceptional situation and will not be referred to again.
The following expressions for h(A, r) are due to Stein (1966) and Efron and
Morris (1973b).

(1.4) h(A, 7) = r2e M2 i(r +2h)H(=A/2)" /A,
h=0
(1.5) b\, 1) = ri(—/\/Z)hF(r/Z +1)/T(r/2+ 1+ h)
h=0

=r{l-Ar+2) '+ Xr+2)7r+4) -
= TlFl(l; 7‘/2 + 1, —)\/2),

where , Fy is the hypergeometric function; for r > 0 an even integer, (1.5) can be
written

r/2

(1.6) h(A, 7) = (r/2)1(=A/2) 72 e = N " (—a/2)" /B

h=0

These expressions and others easily follow by noting that h(A, ) is equivalent to
the incomplete gamma function

T
v(a, z) = / % le7tdt,  a>0.
0

THEOREM 1.2.
(1.7) h(A, 1) = r2e 2 (=)/2) T 2~(r/2, —A/2)/2.

For an approximation to the risk for large n, by (1.3) we need to approximate
h(A, r) for large A. From (6.5.32) of Abramowitz and Stegun (1964) it follows that
for I > 1,

I-1

(18)  h(A7)/r? ==Y (-2/2)""}r/2-1);/2+R;

i=0
=AT (=22 (r—2)(r—4)A3—...+ Ry

where

|Re| < (3/2)"7N(r/2~1);]/2  and
(o) =a!/(a— i) =ala—1)---(a—i+1).
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If I <r/2,

A/2
Ry = (-1)!(r/2 - 1)1()\/2)"’"/26_’\/2/ /21 e gy

0

(this follows from integration by parts).
For r > 0 even this implies (1.6), while for 7 odd and I = (r — 1)/2 it reduces
to a result of Egerton and Laycock (1982).

Note 1.3. (1.8) with I = oo yields the expansion for 2 F5(1; 1 —r/2; 2/));
this is divergent if 7 is not even.

Since Ry = O(rTA=1=1) as A\/r — oo, (1.8) gives a useful expansion for \/r
large and I fixed.

Copas (1983) gives expressions equivalent to the following approximations
((3.12) and p. 349);

(C1) h(A, 1) =r?/(A+1-2),
(C2) h(A, 1) = 12N 47 +2)/ (A% + 2rA + 72 4 2r).
Table 1 gives h(), r)/r and the deviations from it for (C1), (C2) and (1.8) with

I = 2 and 3—referred to as (12) and (I3). For A/r small (I2) and (I3) perform
poorly, as expected.

Table 1. A comparison of 4 approximations to h(\, r).

A r h(x, r)/r C1 C2 ) I3
100 3 .030 .000 .000 .000 .000
8 075 .000 .000 .000 .000
18 155 .000 .000 —.004 .000
20 3 142 —.001 —.002 .000 .000
8 .302 —.006 —.002 —.022 .002
18 487 —.013 —.001 -.307 197
10 3 .265 —.008 —.008 .005 .002
8 474 —.026 -.003 .154 .038

18 .659 —.033 .000 —-1.74 2.29
5 3 .446 —.054 —.017 —.034 .010
8 .652 —.075 -.003 —.972 .564

18 797 —.060 —.001 —8.72 23.5
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COROLLARY 1.2. Define tg, 755 and 71, as in Note 1.1.

(1.9)  A(H) = (rg - 2225 {1+ O(ru/ )}
= v(ry — 2)*(npry) "H1 — v(ry — 2)(nprg) " + O(n"2)}
_ {O(n‘lp) if T™m>0
THg — 2 Zf T = 0.

Hence for b of (1.3) and 71, > 0

E|b;s — 0> — El6, — 6> = pn 200* B, {1 +O0(n" )} and

1.10 . .
(1.10) ElBys —012/E)fL — 6> =1+ n~'buB, + O(n"?)

where B, = 77 '(1 — 3/p)* — 779(1 = 2/p)?; thus 61, improves on 835 for large n
(that is, B, > 0) <=

(1.11) 161/16] < (p —2)/(2 - 5/p)"/* &=
(1.12) CV(0) < (p-3)(2p—5)7""

where CV(0) = Ti/2/10_|, the “coefficient of variation of 6”; if < in (1.12) s
replaced by >, then 65 improves on fr, for large n. Similarly, if T35 > 0 and
Ty > 0 then Oy improves on 835 for large n <
|H8|/16] < (rw = 2)/(p—2) =
\HO|/|(I — H)8| < (rig —2)(p — rar) "2 (p+ 7 — 9)71/2.
Note 1.4. RHS of (1.11) and (1.12) both increase with p.

Table 2. Maximum values of |6|/|8| and coefficient of variation for Lindley’s estimate, 61, to
improve on the James-Stein estimate, 8 s for large n.

P 3 4 5 6 7 8 9 10 20 30 40 50 100 oo
RHS (1.11) 1.73 231 3 3.70 4.41 5.12 5.82 6.53 13.6 20.7 27.8 34.8 702 oo
RHS (1.12) 0 .577 .894 1.13 1.33 1.51 1.66 1.81 2.87 3.64 4.27 4.82 695 oo

Note 1.5. (1.10) is a particular case of H; = I —4i’ where i is any given unit
vector. Thus 0y, improves on ;5 for large n <=

(p—3)%|H:0|72 > (p— 2)%|6| "2 < |H.6|/|i'8] < RHS (1.12)
< |sina|<1-(p-2)""

where « is the angle between i and 8. This will be true for p sufficiently large if
is bounded away from 7 /2. Also |H;0)? = |0 — i8> = |8]? — (i'0)2.
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According to (1.9) for large n we would like to choose H to minimise |H6|
/{rg — 2). This motivates the following adaptive estimate.

THEOREM 1.3. Let H be a finite set of p x p idempotent H with rank rg < 3.
Choose H from H to minimise |HX|/(ra — 2). Then for fized p, as n — oo,

(1.13)  Elfz — 6> = n"'v{p — bA(H)} + O(e™*")
(1.14) _ {n_lv{p—bAo(H)}+O(n_3) if T(H)>0
' n~lo{p — bA;(H)} + O(e=?") if T(H)=0
where
A(H) =max{A(H): H e H},
7(H) =min{r(H): H € H},
Ao(H) = n~to/{min[|HO|/(rg — 2): H € H]|}?,
A(H) = max{rg — 2: H§ =0}
and A > 0.

This theorem shows that for large n, 6 g performs as well as the best estimator
from {fy: H € H}.

In practice one might choose H = {I} U H where Hy = {I — i3, i € I} for
some finite collection of unit p-vectors Z = {i}; according to the rule in Theorem
1.3 we can replace Hy by {I — ixy} where i maximises |¢X | in Z; thus H = I
or [ — ixty accordingly to whether

|1X|/(p—-2)< or >|X-ixi%X|/(p-3).

Note 1.6. If we change the origin by § € RP we obtain the “translated”
estimator o B
6=0(H, 0)=X—-2Y

where B
Y=H(X-6) and Z=n"v(rg-2)|Y|"%

Its risk is that of 8y with 6 replaced by 6 — 6. Thus its risk is that of By if 6 lies

3 [44

in the null space of H; (this has dimension p — rg). It’s “positive-part” version is

g+ — g+a 6 = { 0(H, 8) . if Z<1

(H, ¢) {6+(I—H)(X—6) if Z>1.

Also |E6T — 6|2 < E|6 — 6|2. However one can show the difference is only O(n~?)
for fixed p.

We now extend Theorem 1.3 to include such translated estimators.

THEOREM 1.4. Let H be a finite set of p X p idempotent H with rank ry > 3,
and L a finite subset of RP. Choose (H, 8) from H x L to minimise |H(X —
N/(ra —2). Then for fized p, as n — o

n~tv{p — bAo(H,L)} + O(n?) if 7(H,L)>0

E|6(H, 8) - 6| = {n—lv{p_ A(H, D} +0(e)  if 7(H,L)=0



A CLASS OF MULTIPLE SHRINKAGE ESTIMATORS 153

where

Ao(H,L) = n"Yv/{min |H(0 — §)|/(ryz — 2): H € H, L € L)?,
Ay (H, L) = max{ry — 2: H(§ — §) = 0},
7(H,L)=min{|H@-6): He H,Le L} and X>0.

Note 1.7.  George (1986a, 1986b and 1986c¢) considers quite a different sort of

adaptive estimate—an adaptively weighted linear combination of {é(H ,6), H €
H, 6 € L}. Our estimator §( H, §) is much simpler.

So far we have looked at how the risk behaves as the sample size n increases
with the dimension p fixed. We now consider what happens when n is fixed but

p — 00.

LEmMMA 1.1. Forr > 2,

(1.15) A+7/ NP <A, P)r2 <l

and

(1.16) (A, ) = X1+ 0(r/N)}  as  r/A—0.
Also

(1.17) h(rc,r)/r —= (14+¢)"' as r— oo for fized c.

Note 1.8. The first inequality in (1.15) is by Casella and Hwang (1982).
Inequalities are also given by Sathe and Shenoy (1986). Others are obtainable
using
(i) h(\, 7)/r? is decreasing in (A, 7);

(ii) h(A, 7)/r is 1ncreasmg in r;
) h

(iit) h(X, 2) =4A"1 (1 —e7/2).
THEOREM 1.5. Suppose n is fired and
|HO?/ry — 1 and ry/p—Kk as p— oo.
Then
(1.18) A(H)/p — /(1 +nv7 1) as p— .
This result immediately implies.

THEOREM 1.6. Suppose that g, /T, — 1 as p — oo and Ty, /p 15 bounded
away from 0. Then 6y, has smaller mean square error than 9112 for large p and
fixed n < |H10| < |H28|, or more precisely,

(lipminf> (1H20]* — |H,61%)/p > 0.
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COROLLARY 1.3. Under the conditions of Theorem 1.5

(limsup) Elfy —0*/E|IX -0 =1~br/(1+nv 7)< 1

p—o0
with equality <= either rg;/p — 0 or |HO|? /1y — o0 as p — oo.

Thus the risk of §y relative to that of X is generally bounded below 1 for
fixed n and increasing p. But for fixed p and increasing n it tends to 1 if |H8| # 0.

2. Proofs

PROOF OF THEOREM 1.1. Set r = rg, H = U'A.U where U'U = I, and

L. - Y; i

A, = (0 g) Set Y =UX = (YI) with Y7 € R". Then Y ~ N,(U¥, vn~1I)
2

2

_ . Y]
and HX = U'(?). So |0y — 02 = ‘Y— Ué — (r — 2)13n‘1< 01>|Y1|‘2 has
mean
pon~t —2bon"'EA + b(r — 2)*(v/n)?EB
where v
A-——(Y—UH)'(Ol)\Y1|_2=(Y1——U0)’Y1|Y1\_2, and
B = lY1!_2.
By James and Stein ((1961), pp. 364-365),
EA=(r—2)E(r—2+4+2K)™" and EB=nv 'E(r—2+2K)"!
where K ~ Po(6/2) and § = nv™!|(U6);|* = Ag. o
Corollary 1.1 follows from Hf = 0.
PrOOF OF THEOREM 1.2.
1 1
Eb+K) ! = E/ th+o=1gt :/ t"Lexp u(t — 1)dt
0 0
"
= e"‘u"’/ P letds = e (—p) Py (b, —p). o
0

Set | X|, = (E|X|*)Y/.
LEMMA 2.1. |0y — 8|, = O(n~Y/?) for ry > s> 2.
ProoF. |éH — 8|, < Cs +n"tu(r — 2)Cs where r = rg,

Cs =|X - 6], =0(n"'/?)
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and

D, =||HX|™Y,.
Now by p.3 of James and Stein (1961),
HX > =n"lux?(Ag) =n"'vxl,x  for K ~ Po(Ag/2).
So
g v|—s s/2 r—s T
D; = E|HX|™*(n/v)/?ET = + K iy (-2— +K).
Therefore for r > s > 2,

r—3s

I(s/2)Di(n/v)*/? = EB ( + K, s/2>

-1
gEB(T;S+K, 1):12(7~ S+K> < o0

2
since B(a, b) = [, t*~1(1 — t)>"1dt decreases with b. Therefore D, = O(n'/2). o

PRrOOF OF THEOREM 1.3. We give this for the case H= {H;, Hz}, r; = rg,
and A(6): |[H,0|/(r1 — 2) < |H28|/(r2 —2). (Proof for the general case is similar.)
By large deviation theory 3 > 0 such that

P(H = H)) = P(A(X)) =1-0(e™™).
Therefore
E|85 — 0> = E|6y — 0]2I(A(X)) + E|0x, — 6)?
= E)fy, — 0 + A
where A = E(A; — A1)B, B=1—-I(A(X)) and A; = |0y, — 6]2. For

rl4+st=1 and 1<r<oo,
2

|E(A; — A1)B| <) |Al,|Bl,.
1

Also |B|; = O(e™™/*), Take 1.5 < r < 2,502 < s < 3. By Lemma 2.1,
|Ail, = O(n~1), s0 A = O(e™*"/%). Hence (1.3) implies (1.13). (1.14) follows by
(1.9). o

Theorem 1.4 is proved similarly.

Proor oF LEMMA 1.1. The 2nd inequality comes from
Eb+K)'<EQ+K)'=pl—e™®) for b>1 and w=2A/2
(1.15)=-(1.16). o

Theorem 1.5 follows from (1.17). Corollary 1.3 follows from (1.3), (1.18).
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