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Abstract .  A yoke on a differentiable manifold M gives rise to a whole family 
of derivative strings. Various elemental properties of a yoke are discussed in 
terms of these strings. In particular, using the concept of intertwining from the 
theory of derivative strings it is shown that a yoke induces a family of tensors 
on M. Finally, the expected and observed a-geometries of a statistical model 
and related tensors are shown to be derivable from particular yokes. 
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i .  Introduction 

The concept of a yoke was introduced in Barndorff-Nielsen (1988a) and has 
been further discussed by Barndorff-Nielsen (1987a, 1988b) and Blmsild (1987a). 
A yoke on a differentiable manifold M induces a whole family of connections on 
M. In Section 4, where the definition of a yoke is reviewed, it is shown that  the 
expected and observed a-geometries of a statistical model introduced by Chentsov 
and Amari (cf. Amari (1985, 1987)) and Barndorff-Nielsen (1986a, 1987b), respec- 
tively, are particular instances of geometries derived from yokes. Consequently, 
these statistical geometries may be studied within a unified framework. 

Some quantities derived from a statistical model, for instance the Bartlett ad- 
justment factor of the log likelihood ratio statistic, are known to be parametriza- 
tion invariant or, equivalently, if the statistical model is considered as a differen- 
tiable manifold these quantities are geometricaJ quantities. Typically, the quanti- 
ties are expressed as a sum of invariant terms each such term being a contraction 
(product) of tensors. At the end of Section 5 it is illustrated that the most com- 
monly used tensors in statistical theory are related to the expected yoke or to the 
observed yoke, introduced in Section 4. More generally, a yoke on M induces via 
the concept of derivative strings a whole family of tensors. The relevant part of 
the theory of derivative strings is reviewed in Subsection 2.2. After the defini- 
tion of a yoke in Section 4, we show that  a yoke gives rise to a whole family of 
derivative strings including what we refer to as the a-connection string, which is 
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a generalization of the a-connection. Furthermore, we give in Section 4 various 
elemental properties of yokes. Examples 2 and 3 are concerned with, respectively, 
the expected and observed yokes of a statistical model, which produce the above- 
mentioned a-geometries of the model. Moreover, in Example 2 we discuss the re- 
lation between the expected geometries and the geometries introduced by Eguchi 
(1983, 1985) by means of contrast functions (or functionals), and in Example 3 we 
discuss observed geometries similar to those of Eguchi. 

Tensors are obtained from derivative strings by means of the concept of inter- 
twining. After giving the relevant results concerning intertwining in the beginning 
of Section 5, we derive various properties of the tensors corresponding to some of 
the derivative strings induced by a yoke. Furthermore, we show in Section 5 that 
tensors of statistical interest, such as the skewness tensor, the a-curvature ten- 
sor and the tensors entering the invariant expression for the Bartlett adjustment 
factor, can be expressed in terms of the tensors derived from a yoke. Finally, we il- 
lustrate the well-known fact that the concept of a statistical manifold, introduced 
by Lauritzen (1987), is insufficient for the discussion of asymptotical statistical 
theory and we comment on a proposal of extending the definition of Lauritzen. 

Subsection 2.1 is concerned with notation and local coordinates of the mani- 
fold M. The definition and properties of a yoke given in Section 4 are formulated in 
terms of general, non-standard operations on functions defined on M × M. These 
operations are reviewed in Section 3 in terms of local coordinates. However, using 
the theory of derivative strings it is shown that the operations are parametriza- 
tion invariant. As mentioned above Subsection 2.2 gives a short review of those 
concepts from this theory which are relevant in the present context. 

2. Notation, local coordinates and derivative strings 

2.1 Local coordinates 
Throughout the paper M denotes a d-dimensional differentiable manifold. A 

chart around p C M is a pair (U, w) consisting of an open neighbourhood U 
around p and a homeomorphism w from U onto an open subset of R d. We speak 
of w = (wl , . . . ,  w d) as a set of local coordinates and use the letters i, j ,  k, l , . . .  to 
denote arbitary components of w. Since we shall be concerned with local properties 
only we often implicitly assume that M can be covered by one chart. The set 
of realvalued smooth functions whose domain of definition includes some open 
neighbourhood ofp  is denoted by C p M .  We write 0kp or just Ok for the coordinate 
frames, corresponding to w, of the tangent space at p. 

We let Kt signify a set k] --. kt of t indices related to the local coordinates w 
with the convention that K0 is the empty set. For f C C p M  and t, ~- = 0, 1, 2 , . . .  
we let f/Ks(P) and fK~/~(P) or just f /gt  and f~:~/~ be defined by 

(2.1) 

and 

(2.2) 

f/Ks(P) = f/Ks = OK~f = gkl"'" gktf  

fKtlr(P) = fKtl~" = E f l K t l ' ' ' f / K t . ,  
Ks / ~" 
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where the r ight-hand sides are to be understood as f (p )  and 1, respectively, if t = 0. 
In (2.2) and in the rest of the paper ~ signifies tha t  the summat ion  is over all 

K t / r  

ordered parti t ions of Kt = kl . . .  kt into 7" (non-empty) subsets Kt l ,  . . . , Ktr  such 
tha t  the order of the indices in each of these subsets is the same as their order in 
Kt  and such tha t  for # = 1 , . . . ,  7" - 1 the first index in K t ,  comes before the first 
index in Kt,t,+l as compared with the ordering within Kt.  For 7" > t the sum is 
to be interpreted as 0. The number of indices in the subset K t ,  is denoted ]Kt~,l. 

Let ¢ = ( ¢ 1 , . . . ,  cd)  be an alternative set of local coordinates for which ar- 
bi t rary components are denoted by the letters a, b, c, d, . . . .  For t, 7" = 0, 1, 2 , . . .  
and for two sets of indices Ct and K~ related to the local coordinates ¢ and w, 
respectively, we set 

{ ~  if r = t = O ,  

= /c,~ /c,~ if l < r < t ,  (2.3) /c,'t 

O,/~- otherwise. 

Throughout  the paper the Einstein summation convention is adopted and with 
this convention one has 

t 

(2.4) Oc, = E w ~ ,  OK~. 
"r~l  

Finally, we use the generalized Kronecker delta 

5j, ~1 if J ~ = K t ,  (2.5) 
K, = t 0 otherwise. 

2.2 Derivative strings 
The discussion of derivative strings in this subsection has been extracted from 

Barndorff-Nielsen et al. (1988) which reviews and extends the papers on tha t  
subject by Barndorff-Nielsen (1986b) and Barndorff-Nielsen and Blmsild (1987a, 
1987b, 1988). 

A derivative string on a manifold M is defined relative to a set of local coor- 
dinates w as a col lect ion/~ of arrays 

(2.6) TjI~L" t = 1, T, u = 1, ., U, 
~ J s g t  ' " ' ' '  ' " 

satisfying the t ransformation law 

(2.7) 
t U 

HA,,D• ~ " ~ " ~  rrI~Lv K ~ D ~ . A ~  Js 
B~Ct  2..,2.., 1-1Js K~ ~2 / C  t ~2 / L .  Vfl / I~ ~d/ B~ 

r = l v = u  

for t ---- 1 , . . . ,  T and u ----- 1 , . . . ,  U. The string H is said to be of tensorial degree 
( r , s )  and of length (T, U), and we denote the class of all such strings on M by 

We do, in fact, allow tha t  some of the numbers r, s, T and U are 0, in which 
case the relevant groups of indices do not occur in (2.6) and (2.7). In particular, if 
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U = 0 and T > 0 we speak of (2.6) as a costring (or a (r, s) costring), while (2.6) 
is called a contrastring provided U > 0 and T = 0. We refer to the indices il " "  i~ 
and j l  "'" j~ of (2.6) as tensorial indices and to kl " "  kt and la ... l, as structural 
indices. Furthermore,  the indices i l . " i ~  and l l . . . l u  are called contravariant 
indices in contrast  to the indices J l " " j ~  and k l " "  kt which are referred to as 
eovariant indices. 

A derivative s t r ing /4  is structurally symmetric if the arrays in (2.6) are invari- 
ant under arbi t rary permutat ions of s tructural  indices within each group of such 
indices. 

The transformation law (2.7) generalizes those for tensors, affine connections, 
and derivatives of scalars. Accordingly, members  of the particular classes S~ ° and 

00 Sow are referred to, respectively, as connection strings and scalar strings. 
Impor tan t  classes of derivative strings are the so-called co- and contrastrings 

generated by a connection string. If F denotes any connection string of infinite 
length and with F~I = 6~1, then for r fixed r = 2, 3 , . . .  the set of arrays { F ~ :  
t = 1, 2 , . . . } ,  where 

( 2 . 8 )  : . . .  r , 

Kt/r 

consti tutes a (r, 0) derivative costring of infinite length, which is referred to as the 
(r, 0) derivative costring generated by F. The elements of {G)~: u = 1 , . . . ,  s}, 

the (0, s) derivative contrastring generated by F, are determined recursively from 
the equations 

t 

(2.9) X-" t'u_Lur J~ = ~L.~ 
/ ' ~  ~ J ~  ~ K t  K~ " 
8 = U  

If V denotes a connection on the tangent  bundle of M,  one has that  ~ = {FKt . i  . 

t = 1, 2, .} where F i is determined by 
• . , K t 

V0k, ("" (Vok~ 0kl )'" ") = PK, 0i, 

is an element of Sow10 with Fikl = 5ikl and we refer to F as the canonical connection 
string corresponding to V. Similarly, the canonical derivative co- and contrastrings 
corresponding to V are the co- and contrastrings generated by F. 

Multiple derivative strings are strings with more than one set of s tructural  
covariant or s t ructural  contravariant indices. In this paper  we consider only double 
derivative costrings of degree (0, O) and of length (T, U), i.e. collections /~r of 
arrays of the form 

(2.10) HK~M~ , t = 1 , . . . ,  T, u = 1 , . . . ,  U 

satisfying the transformation law 

(2.11) HCtD. ~ ~ ,-. K-~ wM. = 1-1K. MvW/Ct /D,~" 
r = l  v = l  
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O0 The set of such strings is denoted S0(T,U) and a double costring is structurally 
symmetric if the arrays in (2.10) are invariant under arbitrary permutations of the 
indices within each of the sets Kt and Mu. 

Here we have given coordinate-bound definitions of derivative strings. In 
Barndorff-Nielsen and Blmsild (1988) it is shown that (multiple) structurally sym- 
metric derivative strings are smoothly varying multilinear forms on spaces which 
are suitable products of the tangent bundle of M, the zero-truncated jet bundles 
(of various orders) of M and the duals of such bundles. 

3. Functions on M x M  and related strings 

The product space M × M = {(p,/5): p • M, /5 E M} is a differentiable 
manifold of dimension 2d. If w = (w 1, ._., w d) and & = (&l , . . . ,  &d) denote local 
coordinates in neighbourhoods U and U around p • M and/5 • M, respectively, 
then 

(~ ,  0~1) ~--- (COl , . . . ,  03 d, m l , . . . ,  ~ d )  

is a set of local coordinates around (p,/5) • M x M, which we refer to as a set of 
product coordinates. Taking p =/5, w = & and U = U one obtains, that 

(w, w)(q, c~) = (~o(q), w(q)), (q, ~) • U × U, 

defines a set of local coordinates around (p, p). This point belongs to the differ- 
entiable manifold diag M x M = {(p, p): p • M}. A set of local coordinates on 
this d-dimensional manifold is of the form 

(w, co)(q, q) = (w(q), w(q)), (q, q) • diagU x U. 

For f • C ~ ( M  x M) and for a set of product coordinates (co, &) we let for 
t = 0, 1, 2 , . . .  and u = 0, 1, 2 , . . .  

fg<;M,,(w, &) = OK, DM,,I(w, Co) = Ok," .O<&~, .. "Omlf(w, &) (3.1) 

and 

(3.2) fK,;M.(W) = fK,;M,,(~O, w). 

Note that the functions ~; are defined on M by considering the restrictions of f; 
defined on M x M, to diag M × M. 

Letting ¢, ~ denote an alternative set of product coordinates such that ~ = 
¢(w) and ¢ = ¢(&) one has, using (2.4), the following transformation formula 

r = l v = l  / / = r = l v = l  JK.HM.  ~me /D,, 

and consequently 

(3.3) u K~ M .  
fC<;D,, = ~ I K . ; M , , W l C < W l D , ,  " 

r = l v = l  



100 P. BL/~SILD 

00 It follows from (3.3) that  f; = {IK,;M,,: t, U = 1, 2 , . . . }  E ,S0(¢~,oo), i.e. l; is a 
double costring of degree (0, 0) and of length (oo, oo), and tha t  {/K,;: t = 1, 2 , . . . }  

o0 and ~f;M,: u = 1, 2 , . . . }  are elements of ,Soo o. Furthermore,  by restricting the 
length of one of the set of s t ructural  indices of f ;  to 1, i.e. by considering 

{fK,;m: t = 1 , 2 , . . . }  or {fk;M,, : u =  1 ,2 , . . . }  

one obtains a costring of degree (0, 1) and length oc, as seen from (3.3). 
For later use note that  

(3.4) OqnlKt;M,, = IKtUn;M,~ + IK,;M,,Un" 

4. Yokes 

With  the notat ion introduced in Section 3 a yoke is defined in the following 
way. A function g E C ~ ( M  × M) is called a yoke if for every w we have that  

(4.1) ~k~(w) = 0, k = 1 , . . . ,  d 

and that  

(4.2) the matr ix {--t~kl k2; (w) } is positive definite. 

Example 1. In the terminology of Barndorff-Nielsen (1978), let M be a reg- 
ular exponential  family of order d and with minimal representation 

exp{witi(x) - to(w) - ¢(x)}. 

Then it is easily seen that  the function g E C a ( M  x M )  given by 

(4.3) = - + 

is a yoke. 

The concept of a yoke was introduced in Barndorff-Nielsen (1988a). A yoke 
gives rise to a whole family of connections on M as shown below. The expected 
geometries and the observed geometries of a statistical model may be derived from 
particular yokes as demonst ra ted  in Examples 2 and 3 below. In these examples 
we also comment  on the (expected) geometries of Eguchi (1983, 1985) defined by 
means of contrast  functions. However, first we derive some basic propert ies of 
general yokes. 

For a yoke g one has for t = 1, 2 , . . . ,  that  

(4.4) + Z = o 
K, / 2 
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which was proved in Blmsild (1988) by an induction argument based on (4.1) and 
using (3.4). 

From (4.4) with t = 2 we obtain 

(4.5) Ok ;k  = 

and formulas (4.2) and (4.5) imply that  the matrix {~k~;k:} is a (symmetric) 

positive definite matrix whose inverse will be denoted by {~k~;k: }. 
Furthermore, from Section 3 one finds that  

00  
(4.6) t~; = {¢Kt;M~ : t, u = 1, 2 , . . . }  C SO(oo,oo) , 

}o0 (4.7) t~l = jKt =OK, ; j "  t = 1, 2 , . . .  e 8 1 ~ ,  

1 {; ) o o  
(4.8) ~1 : jEt  : ¢j;K~ : t = 1, 2 , . . .  • 81oo, 

(4.9) ¢ 0 =  Kt = ¢ g , ; :  t = l ,  2 , . . .  • 8 0 0  

and 
1 {; ) 0o 

(4.10) ~ o =  K~ =¢;Kt : t = 1 , 2 , . . .  •80c¢ .  

OL 
oo Since 81~  is a vector space, it follows for a C R that  the set ~1 of arrays 

c~ (4.11) OjK, 1 + 4 1  1 - - a - 1  1 + a  1 - -a  
-- 2 ~ j K t - ~ T  C jKt - 2 ~ K t ; j - ~ - T  ~j;Kt t---- 1, 2 , . . .  

constitutes a (0, 1) costring of infinite length. 
Formula (4.6) implies that  the matrix {0k;m} is a covariant tensor of degree 

2 and, consequently, a Riemannian metric on M. Together with formulas (4.1), 
(4.2) and (4.5) this fact implies that  the concept of a yoke is a geometrical concept, 
i.e. a yoke is invariant under transformations of the local coordinates in terms of 

which it is defined. Moreover, raising the tensorial index of the string ~1 by means 

of the contravariant tensor {¢i;J} one obtains a connection string Ol of infinite 
length whose elements are 

(4.12) 
c~ c~ 

~}(t = ¢ jKt¢  i;j - 1 +  a ~ ,~i;j 1--  a i.j 

Since ~1 C 8~ ° and ~ ,  = 5' kl one has, in particular, that  

° k, ,k, }¢o  
(4.13) ~1c, = /~klk,'~/c,~'/c2 + /c,c,  /i  

which is recognized as the transformation law for the Christoffel symbols of an 

affine connection V, called the a-connect ion corresponding to g. 
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From (4.11) and (4.12) it is seen that  the costrings t~x and t~ 1 are structural ly 
symmetric,  i.e. invariant under permutat ions  of the structural  indices; conse- 

quently the connection V is torsion free. 
For g E C ~ (M × M )  let 0 be defined as 

(4.14) 5;) = 5;) - g(5; ,  5;). 

Clearly, one has that  ~ is a yoke if and only if 9 is a yoke and in tha t  case we refer 
to 0 as a normal i za t ion  of g. If g = ~ or, equivalently, if g is identically equal to 0 
on diag M × M we call g a no~malized yoke. Furthermore,  if g is a yoke one finds, 
using (4.1), that  

g;ml (w, 9)  = g;ml (w, 5;) - gin1; (5;, 5;) - g;ml (5;, 9)  = g;ml (w, 5;) - 9;ml (5;, 5;) 

and 

(l;m,rn2 (W, 5;) = g;m,m: (W, 5;) -- 9rn~;ml (5;, 5;) -- 9;m,m: (&, 5;). 

Consequently, it follows from (4.5) and (4.14) that  *g E C ( M  × M )  given by 

9 )  = 0 ( 9 ,  

is a norlnalized yoke such that  for t = 0, 1, 2 , . . .  and u = 1, 2 , . . .  one has 

(4.15) *t~ = ~M,,;K~ = t~M,,;K, Ks ; M,~ 

Applying the formulas (4.7)-(4.15) we obtain that  

O~ w O t  

(4.16) *~1 ~-- ~ 1' 
O~ - - O r  

(4.17) .01 = ~1  

and 
--1 1 

(4.18) * ¢ 0 = 00" 

As the last general result which will be mentioned here we have that  a yoke on 
M induces a yoke on any (regular) submanifold N of M (for details, cf. Blmsild 
(1988)). 

In Examples 2 and 3 below we consider two yokes of part icular statistical 
interest. In these examples we let p(x; w) denote the model  function with respect to 
a dominat ing measure/~ of a statistical model  with sample space 2( and parameter  
space ~. We assume that  the model function is positive and we denote the log 
likelihood function by l, i.e. 

(4.19) l = = x )  = l o g p ( x ;  

Note that  {lg~ : t = 1, 2 , . . . }  is a costring of degree (0, 0) and of infinite length 
which is referred to as the str ing o f  log likelihood derivatives.  
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Example 2. Let I denote the Kullback-Leibler information function 

(4.20) I(&, w) = g~{l(&) - l(w)}, 

where E~ indicates the mean value under the probability measure corresponding to 
&. Assuming that the order of differentiation and integration may be interchanged 
and, furthermore, that the expected (or Fisher) information matrix, i.e. 

: 

is positive definite, it is easily seen that 

(4.21) g(w, cb) = -I(cb, w) = Ec~{l(w) - l(&)} 

is a normalized yoke, which is called the expected yoke. 
As proved in Blmsild (1988), one has for t = 1, 2 , . . .  and u = 0, 1, 2 , . . .  that 

u 

(4.22) gKt;M~(W, w) = E E~{lK~(W)IMu/.(&)} 

and for u -- 1, 2 , . . .  that 

u - - 1  u 

(4.23) g;M~(W, &) = E ( u - -  v)E~{IM./.(&)} + E E~{(l(w) - l((z))IM./.(&)}. 
v = l  v = l  

Notice that  the quantities gK,(~, £) are the moments evaluated at the pa- 
rameter value & of the log likelihood derivatives lEt (w). These quantities are often 
referred to as the non-null moments of the log likelihood derivatives and they 
are valuable when assessing the robustness of test statistics depending on these 
derivatives (cf. McCullagh (1987)). 

Replacement of & by w in (4.22) yields that the elements of the double string 
0; are given by 

(4.24) CK~;M~ ---- "K~;M~, ---- E "K,,M,,/v ---- E ~'K,,M,,I ..... M~v, 
v=l v--1 Mu/v 

where u denotes the mixed moments of log likelihood derivatives, i.e. 

(4.25) lZKt,M~I ..... M~.(W) = Ew{IKt(W)IM~,(w)" "lM~.(w)}. 

The double string ~; was introduced in Blmsild (1987b). Letting A denote the joint 
cumulants of log likelihood derivatives, i.e. 

)~Kt,M,~I ..... M , ,  (w) -= C~ { lK, (w), IM,~I ( 0 2 ) , . . . ,  IMp,, ' (0 . ) )}  
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one has the rather surprising result (cf. Blmsild (1987b)) that  

v=l v = l  Mu/v 

Consequently, the double strings ~;, u; and A; are identical. Furthermore, one has 
that  

(4 .27)  ~ , ;  = E ~ { Z , ~ t ( ~ ) }  = ~ , ;  = ~,; 

and from (4.23) it follows that  

u--1 

( 4 . 2 8 )  ~;M,~ = E (  ~t - -  V)VM,~/v" 
v----1 

Using (4.27), (4.4) and (4.24) one has the identity 

M ~ , / 2  

IM,,=I 

Mu/2 a = l  Mu2/a v=2 

which gives the following alternative expression f o r  ~;M~ 

(4.29) 
U 

v=2  

1 - 1  
The elements of the costrings ~1 and ~ 1, expressed in terms of the mixed 

moments v are, respectively, 

1 
(4.30) . ~ ,  = - ' ;J-K,, j ,  

--1 t 
(4.31) ¢ i : tli;j Kt Z llj'Kt/r 

"r=l 

and it follows that  the a-connections corresponding to g are the (expectea~ a- 
connections introduced by Chentsov and Amari (see Amaxi (1985, 1987)). 

We conclude this example by showing that  the geometries introduced by 
Eguchi (1983, 1985) by means of contrast functions axe examples of geometries 
derived from yokes. Following Eguchi we say that  for an arbitrary model paxam- 
eterized by ~, the function 

,o: ~ ×£z--,[O, oo) 
(~, ~) - ,  p(,.,, ~) 
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is a contrast function provided p(w, &) = 0 if and only if ¢o = &. As noted by 
Eguchi (1983) any strictly convex function w: R+ --* R with w(1) = 0 generates, 
due to Jensen's  inequality, a contrast  function pw given by 

pw(w, &) = E,,{w(p(x; &)/p(x; w))}. 

For each such function w we set 

(4.32) z = - w  o exp 

and define the function ~g: M x M --* R by 

~g: ~ x ~ R  

(4.33) (w, &) ~ - p ~ ( & ,  w) = E~{z(l(w) - l(&))}. 

Provided Zg E C ~ ( M  x M) one has, as shown in Blaesild (1988), tha t  Zg is a 
normalized yoke for which 

t 

(4.34) :~K~; = E z(T)(O)UKd T M  

T = I  

C) (4.35) Z~;M~ = (--1) a z(~)(O)VM~/, 
v ~ l  0"=1 

and 
t u v 

(4.36) ~¢K~;M =EEE(-- I )"( ; )Z(~-+")(O)UK,/~- ,M, , / ,  
r=l v = l  ~=0 

for t = l, 2,... and u = l, 2, .... Here z(r)(0) denotes the T-fold derivative of z 

evaluated at 0. 

Example 3. Let & denote the maximum likelihood estimator of w. Assuming 

the existence of an auxiliary statistic a such that the transformation x -+ (&, a) 

is one-to-one, the log likelihood function may be written as 

(4.37) l = / ( w ;  &, a). 

In part icular  applications the statistic a is often ancillary, either exact or ap- 
proximately, and in such cases inference on w may be drawn by considering the 
conditional normalized log likelihood function given a, i.e. 

(4.38) g(w, (J) = [(w; &) = l(w; (z, a) - t(&; &, a). 

It is easily seen tha t  g is a normalized yoke provided that  the observed infor- 
mat ion matr ix  evaluated at & = w, i.e. 

j(w) = { - J } l k 2 ( w ) }  
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is a positive definite matrix. This yoke, which is seen to depend on the value of 
the auxiliary statistic, is called the observed yoke. 

Note tha t  the analogy between the expected and observed yoke given by (4.21) 
and (4.38), respectively. 

Writing 
l(w, &) --- l(w; &, a) 

it is easily seen tha t  for u, t -- 1, 2 , . . .  one has 

(4.39) ~K,; = ~K~;, 

(4.40) ~J;M. =- -  E ]IM.,~M.1 
M~/2 

and 

(4.41) ~Kt;Mu =~Kt;M~," 

The double string ~;, which was introduced in Barndorff-Nielsen (1986b), is called 
the string of mixed log model derivatives. The costrings of tensorial degree (1, 0) 
corresponding to a = 1 and a = - 1  are given by, respectively, 

1 1 

(4.42) ~<~ = ~- ,  = ] K , ; y  ;j 

and 
- i  - i  

(4.43) ~ i ~ r r ~;j Kt DE ~ Kt :/~j;Kt/~ " 

The corresponding a-connections were referred to as the observed a-connections 
in Barndorff-Nielsen (1986a, 1987b). 

Finally, letting w: R+ --4 R denote a strictly convex function with w(1) = 0 
and setting z -- - w  o exp one finds tha t  Zg given by 

zg(~, 9) = z(t(~, 9) - z(~, 9)) 

is a normalized yoke provided Zg E C ~ ( M  × M).  It is proved in Bl~esild (1988) 
tha t  for t, u = 1, 2 , . . .  and with a notat ion similar to tha t  in (2.2) one has 

(4.44) 

(4.45) 

( 4 . 4 6 )  

and 

(4.47) 

%<,; = Z z(7.>(o)i~,/7.;, 
7-=1 

z~,<,;m, = Zz(7.>(°) ~ O,<,~;'"~,<,.;m~ 
7.=1 Kt/r tt=l 

" " ' # K t ~ - ; '  

v=l M,,/v ~=1 
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Example 1. (continued) Since E~ti = a/i(&), it follows from (4.21) that (4.3) 
is the expected yoke for a regular exponential family. 

The probability density function of the minimal sufficient statistic t -- 
( t l , . . . ,  td) is of the form 

(4.48) p(t; w) = exp{w~ti - to(w)} 

and the equations a/~(&) = ti establish a one-to-one correspondence between & 
and t. Consequently, no auxiliary statistic a is needed in this situation and from 
(4.19) and (4.48) one finds that the observed yoke is also given by (4.3). 

From (4.3) it is easily seen that  for t = 2, 3 , . . .  and u = 1, 2 , . . .  one has 

(4.49) #K~; = --t~/K,, 

(4.50) #k~;M. = I'¢/klUM*,' 
(4.51) ~K,;M~ -- O, 

(4.52) ~;M. = - ( u -  1)a/M~. 

5. Tensors derived from yokes 

Inspired by an idea in McCullagh and Cox (1986), Barndorff-Nielsen (1986b) 
introduced the concept of intertwining which has been further developed in 
Barndorff-Nielsen and Bleesild (1987a, 1987b). Given a connection string F with 
F~ = 5i this concept establishes a one-to-one correspondence between a deriva- kl 

tive string and a sequence of tensors. More specifically, if, for instance, /4 is a 
double derivative costring of degree (0, 0) and length (oc, oc), it follows from 
Barndorff-Nielsen and Bl~esild (1987a) that there exists a sequence of tensors 

= {TI~j,: T, V = 1, 2, . . .},  where TI~j, is a covariant tensor of degree 7 + v, 
such that 

(5.1) 

u 

IT Jv 

~-~--I v----1 

or equivalently 

T V 

~ I ~  "-" J .  " 

t = l  u = l  

In (5.1) and (5.2) the F- and G-quantities refer to, respectively, the co- and con- 
trastrings generated by the connection string F (cf. Subsection 2.2). Furthermore, 
the relations (5.1) and (5.2) specialize in an obvious way to elements 0o of S0o ~. The 
elements of the sequence T are referred to as the tensorial components of /~  with 
respect to F and the formulas (5.1) and (5.2) as the intertwining formulas. 

1 
Letting ~; and ~1 denote, respectively, the double string and the 1-connection 

string corresponding to a yoke g we now derive and give some properties of the 
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(covariant) tensorial components, which will be denoted by ~I';, of ~; with respect 
1 

to ~1. At the end of this section, we comment on the role of these tensors in 
statistical theory. 

The tensorial components ~; of ~; with respect to ~1 may be calculated from 
(4.12) with a = 1 and (5.2) and the tensors up to degree four are: 

(5.3) -- ~ . .  ,~ Ak;k' 
~i l i2 i3; j ,  ~- O, ~ i l i2 ; j l j2  = ~i l i2; j l j2  ~ , l l2;k~kt; j l j2  ~ ' 

~,~ ,~k;k' r31 

where [ ] refers to the number of similar terms obtained by suitable permutations 
of the indices. 

In general one has that 

(5.4) TI,;j = 0 if r k 2. 

1 1 
To see this, we denote by (~ the contrastrings generated by ~1. From (5.2), (2.9) 
and (4.12) it follows that 

r 1 tft  1 m V ~ , 4  [ ~ K t b m  
~rir;j = E ~ K t ; m ( ~  ir e J : ~ . . t S K t ; m  W I~- j 

t = l  t = l  

~- 1 T 1 
. ,  1 K 

t = l  t = l  

1 
The tensorial components of ~0 = {~Kt;: t = 1, 2, . . .}  E 8 oo will be denoted 

by ~FL; , T = 1, 2, . . . .  These tensors may be described in terms of the tensors ~r 
since we have the following formula analogous to (4.4) 

(5.5) + Z =o. 
L / 2  

Conversely, it is not possible to express the tensors ~FL;j~ in terms of the tensors 

~ r i ~ ; .  

In the light of these facts and in line with the concept of yokes, the tensors 
~rlT;j" may be considered as more fundamental than the tensors TI~;- 

The identity (5.5) may be proved by an induction argument, using the formulas 
(2.9), (5.1) and (5.2) and brute force. However, here we give a proof of (5.5) which 
may add to the understanding of the concept of tensorial components. 

For an arbitrary structural symmetric connection string F we consider, in line 
with Murray and Rice (1987) and Morn (1988), the extended normal coordinates at 
p with respect to F. These coordinates will be denoted by ~ and we use the letters 
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x, y, z , . . .  for arbitrary indices of y. The  coordinates % defined in a neighbourhood 
of p, satisfy the conditions 

(5.6) ~/~(p) = 0, F ~ z~ (P) = 0 for t = 2, 3 , . . .  

and so the concept of extended normal coordinates is indeed a generalization of 
the concept of normal coordinates of a torsion free connection. Formulas (2.8), 
(2.9) and (5.6) imply that  

FXr (p) = 0 for Zt  

and 

(5.7) a ~ o ( p )  = ~ 

r > 2  

For the double string ~;, one obtains, using (5.2) and (5.7), that  

(5.s) 
v 1Z t 1W,~ 

~fX.;y,,(P) = EOZt;W,,(P)(~x.(P)(~Y~ (P)=OX,.;Y.(P) 
t = l  u = l  

i.e. the tensorial components of ¢; at p are simply the elements of ~; expressed in 
the system of extended normal coordinates at p. Similarly, one has that  

(5.9) ;rx~;(p) = ¢x.;(p) 

and consequently, by (4.4), (5.8) and (5.9), that  

(5.10) ~t'x~;(P) + E Tx~,x~2(P):0.  
X~/2 

Since all the terms in (5.10) are covariant tensors of degree ~- the proof of (5.5) is 
complete. 

From (5.3)-(5.5), one finds the following expressions for the tensorial compo- 
1 1 

nents up to degree four of ~0 with respect to ~1: 

(5.11) 
Tili2; =--~ia;i2 =--¢il;i2' 

= ¢ i 2 i 3 i 4 #  1 - -  ~ i l ; i 2 i 3 i 4  - -  ~ i l i 2 # 3 i  4 [3l 
+ ¢,,~,k~k,;,3~,¢ ~k'[6] - ¢,,~;k¢,~,,;k,gk;k' [3l. 

1 1 

Since the strings ~o and ~1 are both structurally symmetric one has generally 
that  the tensors ~FI,; are symmetric. In particular, one has that  the tensors 

(5.12) 
and 
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(5.13) 

are symmetric. 

~i l ; i2 i3  -~ - -~ i l i2 i3 ;  -~ ~il;i2i3 -- ~i2i3;il  

E x a m p l e  1. (continued) For a regular exponential family one obtains, using 
(4.49)-(4.51), (5.3) and (5.11), the following expressions for the non-vanishing 
tensors T; up to degree four expressed in terms of the canonical parameter w: 

r~il; i  2 : --~l~ili2; ~-- ~/ i l i2~ 

~i l ; i2 i3  : - -T i l i2 i3 ;  : I~/i l i2i3'  

~ i l ; i2 i3 i4  : - - ~ i l i 2 i 3 i 4 ;  : t¢/ili2i3i4" 

It is well-known that the difference between the lower Christoffel symbols for 
two connections is a (0, 3) tensor. For the c~-connections corresponding to a yoke 
g, one has according to (4.12) and (5.3) that 

(5 .14)  
(o o )  (; 

2 j k lk~  -- ~ j k l k 2  = C~ j k l k2  -- ~jk~k~ 

=  ( j;k,k2 -  k,k2;j) 

O/~ j;k l k 2 

In particular, for the expected yoke considered in Example 2 formula (4.24) implies 
that 

~ j ;k l  k2 : l]J,kl k2 -~- lfJ,kl,k2 -- lgkl k2,j = VJ, kl ,k2 " 

In statistical theory this tensor is known as the s k e w n e s s  t e n s o r  (cf. Lauritzen 
(1987)). 

Most tensors in classical differential geometry, for instance the curvature ten- 
sor, axe expressed in terms of the canonical connection string corresponding to the 

c~ 

connection considered. We now show that the connection strings ~1 corresponding 
c~ 

to a yoke g are not in general canonical. Letting c~ 1 denote the canonical con- 
c~ 

nection string corresponding to V, the a-connection induced by g, it follows from 
Subsection 2.2 that 

In particular, one has that 
c~ c~ 

_ _  ~ i ° ~ ' t  ~ "  (5.15) ~ ~ C~kl]g2]¢3 - -  k3~klk2 + ~ k l k 2 ~ i ' k 3 .  

It is proved in Blaesild (1988) that 

~i ( l + a _  i -(~ 
(5.16) = + 

i --  0:2 T ~ i ' ; j ' ~ i ; j  
4 ~ i ' ; k l k 2 ~ ' j ' ; j k 3 ~  / ~  
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(5.17) 

and 

which shows the assertion above. Note that for a = 1 and a = - 1  formula (5.16) 
turns into 

1 1 
C ~ l  k2k3 i 

- 1  1 
(5.18) c~ i i klk2ka -- t~k, k2k3 = Tk3j;klk2~ i;j" 

The curvature tensor R of V may be expressed in terms of the canonical 
connection string as 

Rkak~k l j  c¢ i i = k~k2k3 -- ct~k~k3k~ ¢i;j, 

so, using (5.16), we obtain 

l + o t  1 - a  
(5.19) Rk, k:k~j -- 2 (Tk~k:;k~j -- ~kl~3;]~2j) + T ( ~ k 3 j ; ~ l k 2  -- r~]¢2j;kl~3) 

1 - a 2 
T ~,4 i ';j '  

which for a = 1 and a = - 1  reduces to, respectively, 

1 
Rk3k2k~j = Tk~k2;k3j -- Tk~k3;k~j (5.20) 

and 
-1  

(5 .21)  Rk3k2k,j  = Tk3j;klk2 -- Tk j;klk3" 

In statistical theory the tensors ~; up to degree four corresponding to the 
expected and to the observed yoke, respectively, appear again and again in discus- 

1 
sions of invariant asymptotic theory. The tensorial components of t~0 corresponding 
to the expected yoke, i.e. the mixed moments of the so-called MSbius derivatives 
of the log likelihood function, were introduced in McCullagh and Cox (1986) and 
used to express the Bartlett adjustment of the log likelihood ratio statistic as a 
sum of invariant terms. A similar expression in the case of observed geometry was 
given by Barndorff-Nielsen (1986b). The formal analogy between these expressions 
was established in Bleesild (1987b) using the analogy between what is now known 
as the double strings ~; corresponding to the expected and observed yokes, re- 
spectively. More specifically, if w and w ~ denote, respectively, the original and the 
Bartlett adjusted log likelihood ratio statistic for testing a point hypothesis about 
the parameter w, it was shown in Bl~esild (1987b) that both for the expected and 
observed geometries one has 

w' = w(1 + B/d),  

where d is the dimension of w and where 

(5.22) 12B = {3Tijkm; + 12Tik;jm}Ti;~T k;m 

+ {3:r ;jk:rm;n, + 2;ri; n:rj;mp};r ;5:rk;m;r n;p. 
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The tensors T; corresponding to the observed yoke also occur in the asymptotic 
expansions of the conditional distributions of, respectively, the maximum likeli- 
hood estimator and the score vector given an (approximately) ancillary statistic 
derived in Mora (1988) (see also Barndorff-Nielsen (1989)). Finally, the tensors ~F; 
corresponding to the expected yoke appear in the asymptotic expansions for the 
distributions of the maximum likelihood estimator and the score vector considered 
in Amari and Kumon (1983) and Barndorff-Nielsen (1986a) (cf. also Amari (1985) 
and Mora (1988)). 

One of the topics in the discussion in Dodson et al. (1987) is concerned with 
the need of supplementing the concept of a statistical manifold, introduced in 
Lauritzen (1987), in order to be able to handle asymptotic theory within a unified 
framework. The t enso r  ~ili2;jl j2 corresponding to the expected yoke was men- 
tioned as a candidate. The formulas (5.19)-(5.22) support this proposal. Despite 
the formulas (5.20) and (5.21), it does not seem possible to express the tensor 

c~ 

~Fili2;jlj 2 in terms of the curvature tensors R. The present author is not aware of 
any interpretation of the tensor Tili2;jlj~ in terms of classical geometrical quanti- 
ties. From (5.17) it follows that 

1 1 

~klkz;k3j  = c~jklk2k3 -- ~jklk2k3 

showing that the tensor is simply the difference between the third elements of the 
1 1 

canonical string c~1 and of the string ~1, i.e. the tensor is easily expressed in terms 
of derivative strings. 

As a final remark, note that the tensor T~i2~i4; appears in (5.22) and that, ac- 
cording to (5.11), this tensor can not be expressed in terms of the tensors Ti~i2;~3~4 
and ~Fi~;i2i 3 only. Consequently, it is not enough to supplement the concept of a 
statistical manifold with the tensor ~Fi~i~;i3i ,. The basic quantity to consider in 
relation to asymptotic theory seems to be the expected yoke itself from which the 
Fisher metric, the skewness tensor and the appropriate tensor of higher order may 
be derived. Finally, the demand on g being smooth on M × M, i.e. infinitely often 
differentiable, may be reduced to g being continuously differentiable a suitable 
number of times; for instance in the case of Bartlett adjustments it suffices that g 
is four times continuously differentiable. 
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