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Abstract. A class of Orthomin-type methods for linear systems based on
conjugate residuals is extended to a form suitable for solving a least
squares problem with weight. In these algorithms a mapping matrix as
preconditioner is brought into use. We also give a necessary and sufficient
condition for the convergence of the algorithm. Furthermore, we also
study the construction of the mapping matrix for which the necessary and
sufficient condition holds.
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1. Introduction

Let A be an m xn (m=n) real inconsistent matrix, x and b real
vectors of respective dimensions n and m. The system of linear equations

(1.1) Ax=b

possibly has no solution. Alternately, it is natural to consider solving the
least equares problem with weight of equation (1.1):

(1.2) Hb—AEMw=m%Hb—AﬂW

where x is a solution and the W-norm || - ||w is defined by || x||w = (x, Wx)
for a symmetric positive definite matrix W. There is an n X m matrix G
such that Gb is always a solution of the W-least squares problem equation
(1.2) for any b (Rao and Mitra (1971)). This G is called a generalized
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inverse of A.
Let P=AG, then P has the following properties (Rao and Mitra
(1971)):

PA=A4; (WP)'=wp;

(1.3)
PP=P, PWA=WA.

Since P= W' PW™"* is a symmetric and semi-positive definite matrix
from the above properties, we can write P= QQ" where Q is an m x p
matrix (p = rank (A)) with orthonormal column vectors.

A common technique for solving the least squares problem is to solve

the normal equation by a conjugate gradient method (Hestenes and Stiefel
(1952))

(1.4) A"WAx=A"wb .

However, since the condition number of A4 is the square of that of A,
numerical methods based on 4”4 should not be used.

In Oyanagi and Zhang (1987), we presented the Orthomin(k) method
of conjugate residual type for the linear least squares problem, and gave a
sufficient condition for convergence of the algorithm. Successively, in this
paper, we will extend the technique to the least squares problem with
weight, and also discuss the necessary convergence condition. In Oyanagi
and Zhang (1987), we also pointed out the computational advantages of
employing the concept of the mapping matrix B. Incorporating the mapping
matrix B into the Orthomin(k) method (Concus and Golub (1976), Vinsome
(1976)), we have the following algorithm.

ro=b— Axo, po= Bro
for i = 0 until convergence
o; = (ri, Ap))w/(Api, Ap)w ,
(1.5) Xi+1 = Xi + api,  Fie1 =1 — GAp;
forj=0to min (k — 1,i)
Bii-j = — (ABri, Api-)w|(Api-j, Api-)w ,

1
piri=Brii+ X Bip.
JEi—k+1
Here xo is an arbitrary initial guess, «; is so determined as to minimize the
W-norm of new residual |[ri— adpi||lw as a function of a along the
direction p; called a correction vector, and the choice of pi+i is ri+1 plus a
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linear combination of former correction vectors, pi-1, Di-2,.-., Pi-k+1. Lhis
means that p;+, are so chosen as to make pi+i AW A-orthogonal to only
previous k vectors {p;}i-x+1. We will call this algorithm CR-WLS(k) meth-
od. The number k may be 0, 1,2,..., depending on the characteristic of the
problem and the computer used. The work vector necessary to implement
CR-WLS(k) is x, r, ABr and k sets of p and Ap.

The residual and the correction vectors obey the following relations
due to the construction of the correction vectors p; (Eisenstat et al. (1983)).

THEOREM 1.1.

(1.6a) (Api, Ap)w =0 li—jl<k, i#],
(1.6b) (ri, Ap))w =0 0<i—-j<k,
(1.6¢) (ri, Ap)w = (ri, ABr)w ,

(1.6d) (ri, ABrj)w =0 O<i—j<k,
(1.6e) (r, Ap)w = (ri-i, Ap)w ~ 0si—j<k.

In Section 2 we give a necessary and sufficient convergence condition
and the rate of decrease of the residuals (Theorem 2.2). In Section 3 we
present an analysis of the choice of an appropriate mapping matrix B.
Section 4 is the conclusion.

2. A necessary and sufficient condition for convergence

In this section, we will give a necessary and sufficient condition for the
convergence of the CR-WLS(k) method. We present an error bound as the
result of convergence.

Now we will present the following result, which gives an error bound
of CR-WLS(k) (Oyanagi and Zhang (1987)).

THEOREM 2.1. Let {r} be a sequence of residuals in algorithm (1.5),
then the following inequality holds:

_ j-ﬁ'lm(j‘l)
Amax(M )Amin(M) + p(R)*

lries =71l

7= rll

=1

Q2.1

provided

(a) AB(I— P)=0and

(b) M=Q(W"ABW ™' + w™"2BTATW Q|2 is positive or nega-
tive definite,
where T=b— Ax, R= Q" (W"ABW™ "> — W '"?B"A"™W"*)Q/2, Jmn and
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Amax are the maximum and minimum eigenvalues and p(R) is the spectral
radius of R.

The proof of Theorem 2.1 is given in Oyanagi and Zhang (1987). The
theorem shows that the CR-WLS(k) method is at least linearly convergent
where (a) and (b) are the sufficient condition for the convergence.

Now, we will prove that (a) and (b) are also necessary by constructing
counterexamples. First we will present two lemmas.

LEMMA 2.1. X is a solution of W-least squares problem (1.2), if and
only if X is a solution of the normal equation (1.4).

LEMMA 2.2. Suppose that the convergence condition (a) and (b)
hold. Let (ri, Ap)w = 0, then A"Wr; = 0.

PROOF. From the property (1.6¢) of Theorem 1.1,
(r,-, ABri)W = (r,-, Api)w =0.

We have W' 2QQ" W' ABW 200" W "r; = 0 by (a) and (1.3).
From (b), we have Q" W '?r; = 0. Hence,

A"Wri= A"WPri= A"W'" Q"W ', = 0. O

Lemma 2.2 implies that the algorithm (1.5) will no longer improve x; if
a; =0 at the i-th step, in which case the x; is a solution of the W-least
squares problem (1.2).

In order to prove that the conditions (a) and (b) are necessary, we will
present two counterexamples such that a; = 0 but A”Mr; # 0, when either
(a) or (b) does not hold.

Example 2.1. Suppose that the convergence condition (b) does not
hold. Then, there is a vector ¢ = 0 € R", such that ¢'Q"W "2 ABOW "¢ = 0.
Since Q is a full-rank m X p matrix, the vector
e=W"PQc=w"Qc
is non-zero. Hence, A" We # 0 by definition of P and non-singularity of W.
We consider the following least squares problem with weight which
has a particular right-hand side:

Ax=e.

Let the CR-WLS(k) algorithm start with an initial guess xo = 0. Then,
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ro=e— Axo=e, po= Bro = Be and a0 =0, while ATWro = A"We # 0, which
means ro is an not an optimal residual. Since p; =0, we cannot continue
the iteration. In this case, the CR-WLS(k) algorithm does not give the
correct solution.

LEMMA 2.3. Let C be an m x m matrix. C is skew-symmetric if and
only if

x"Cx=0 forevery xeR".

Example 2.2. Suppose that the convergence condition (a) does not
hold. Then it is easy to prove that WAB(I — P) is not a skew-symmetric
matrix usmg the relation PTWA = WA. There exists a vector x # 0 such
that x’WAB(I— P)x+#0. Note that A™Wx #0. Since the vector x 18
decomposed x = Qy + z, where y € R’ and z € Ker (Q 7, we have x "TWAB-
- P)x = (Qy)'WABz # 0 If we choose 6 = — (Qy)" WABQy/(Qy) WABz,
then x{ WABxs =0, and A" Wx; # 0, for xs = Qy + dz.

Consider the W-least squares problem

Ax = x5

which is solved by the CR-WLS(k) algorithm starting with the initial guess
xo = 0. At the zero-th iteration, we will have

ao=0 by relation (1.6c), but A"Wry#0 .

Hence, a counterexample of convergence can be given analogously as
in the previous example. In conclusion, we have proven the following main
result.

THEOREM 2.2. The CR-WLS(k) algorithm converges for any right-
hand side and for any initial guess, if and only if the conditions (a) and (b)
hold.

The proof is an immediate consequence of Theorem 2.1, Lemma 2.2,
Example 2.1 and Example 2.2.

3. Discussion about the choice of mapping matrix B

In the previous section we did not specify the mapping matrix B. In
this section, we will discuss how to choose an appropriate mapping matrix
B in order to make CR-WLS(k) converge quickly.

The most trivial choice would be B= G, where G is a generalized
inverse of A. In this case, in the first step of (1.5), x1 gives one of the least
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squares solutions. This choice is unrealistic, since if we knew G, we would
simply compute Gb without applying any iterative method.

There is a certain trade-off between the number of iterations and the
complexity of computing Br. The more the B resembles G, the faster the
method will converge. On the other hand, the cost to compute Br at each
iteration will become large if B is made close to G.

The CR-WLS(k) algorithm covers a wide class of methods. They differ
in the choice of the mapping matrix B and the parameter k. The particular
choice of B critically depends on the application and cannot be discussed in
general. First we discuss what is meant by the convergence condition (a)
ABP = AB and how to construct B satisfying the condition (Oyanagi and
Zhang (1987)).

THEOREM 3.1. AB(I— P)=0 holds, if and only if there exists an
m x m matrix D such that AB= DAA".

We will give here a few general comments concerning the choice of B.

The simplest choice of B which automatically satisfies the two condi-
tions (a) and (b) in Theorem 2.1 is B= DA” where D is an appropriate
n X n matrix. In this case M is symmetric and the convergence rate is
controlled by 1 — Amin(M )/,lmax(M ). In practical cases, A is a large sparse
matrix, so that multiplying 4" from the right will not be too time-
consuming. The matrix D should not have too complex a structure. If the
symmetric part of D is positive definite, the condition (b) is also satisfied.
The user will obtain variant algorithms by choosing different D’s.

We have to make the condition number of M in Theorem 2.1 as small
as possible. The extreme choice would be to set D equal to a generalized
inverse of (A"WA). In this case, B is a generalized inverse of A. If the
columns of 4 are approximately orthogonal, we may take D as the inverse
of the diagonal part of (4"WA). Incomplete Cholesky decomposition
(Meijerink and van der Vorst (1977)) of (A" WA) will also be applicable.

Using Theorem 2.1, we have the result that if B is chosen to make 4B
symmetric, and M has dense eigenvalues, the convergence of CR-WLS(k)
is fast.

4. Conclusion

We have given a necessary and sufficient condition for convergence of
the conjugate residual type Orthomin(k) method which is extended to the
W-least squares problem. This method has computational advantages by
virtue of the mapping matrix B which we introduced.

Several numerical tests have been performed and we found that the
algorithm works well for data smoothing problems by discrete splines,
which will be discussed elsewhere.
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