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Abstract. The redundancy of some variables in discriminant analysis
and its tests were developed by Rao (1946, Sankhya, 7, 407-414; 1948,
Biometrika, 35, 58-79; 1970, Essays in Probability and Statistics, (eds. R.
C. Bose et al.), 587-602, Univ. of North Carolina Press, Cl}apel Hill), and
were further studied by McKay (1977, J. Roy. Statist. Soc. Ser. B, 39,
371-380) and Fujikoshi (1982, Ann. Inst. Statist. Math., 34, 523-530).
These are now extended to the most general situation which includes
redundancy in covariate as well as main variables in discrimination
between two or more groups. The likelihood ratio test is derived in a
closed form. An alternative test is also suggested.

Key words and phrases: Covariate and discriminate variables, likelihood
ratio test, redundancy of variables, test of redundancy, Wilks lambda
distribution.

1. Introduction

Rao (1946, 1948, 1970) discussed the redundancy of a given set of
variables, for purposes of discrimination between two groups with the same
covariance matrix. Rao (1948, 1970), McKay (1977) and Fujikoshi (1982)
have extended this idea to the case of multiple groups. Such a question
arises in the signal detection theory due to the inclusion of more variables
than necessary, and the techniques developed here will be useful in this
area as well.

In this paper we consider the redundancy of a given set of variables in
covariate discriminant analysis, i.e., in the situation where there are covar-
iate variables as well as discriminate variables. Two-group covariate discrim-
inant analysis was considered by Cochran and Bliss (1948) and Cochran
(1964). They proposed using the classification statistic W*. Memon and
Okamoto (1970) obtained an asymptotic expansion of the distribution of
W* and discussed the information gained by assuming that some variables
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have equal means. Fujikoshi and Kanazawa (1976) considered the ML rule
in the covariate case and introduced the classification statistic Z*. For a
summary, see, €.g., Siotani (1982). In Section 2 we give several equivalent
statements for the redundancy in the case of two groups. These statements
are extended to the case of multiple groups in Section 3. In Section 4 we
consider the tests for redundancy. We give a canonical form for the testing
problem. It is shown that the LR test can be decomposed as two indepen-
dent LR tests; some lemmas useful in obtaining the LR test are given in the
Appendix. An alternative test is also suggested.

2. The case of two groups

Cochran and Bliss (1948) and Cochran (1964) discussed the classific-
ation problem when some variables are known to have the same means in
two groups II; and IT,. Let x and z be the vector variates of p discriminators
and g covariates, respectively. It is assumed that

()
£ T)lm)=(" )
z g
X ):xx sz
I | =X = .
Var((z)‘ ) (zzx zzz)
Lettlﬂg Exx-z = Zxx - szzz;lzzx ,
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we can write the population linear discriminant function as

@2.1)
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The last expression shows that the discriminant function is one of the
random variates x* = x — X,,X..'z obtained by subtracting from x its
regression on z. The vector of coefficients in y is

2.2) r=2"'n" - %)

I -1
= — Zxx.z6x .
( - Zzzlzzx )
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In order to formulate the redundancy of subvectors of x and z, we partition
x and z as

X =xl,x5), xipixl, z2=(d,2), zigxl

and y, 7, 2 conformably as follows:

i 14! 2 212 2 i
Y2 Y2 2o 2o 2y X

2.3 = , = , 2=
(2.3) Y 3 v s 231 X X X
Vs Y4 Za Xw 2az 2ua

The Mahalanobis distance between II; and I7; based on y is dp+q =
(6’27'8)'?, while the one based on y. = (yf,p{) is Ap+q = 8iZai 8, Where
Y6 = (¥3,y4),

Ya 5a ) (ya ) ( Zaa Eab )
2.4 E = , V = .
@4 ( Vb ) ( 0Op o o Zba  Zpb

We note that y; involves both the subvectors of x and z. We consider the
following five statements on the redundancy of y,, which are shown to be
equivalent.

(1) The random variate y» — Z5.Zanya obtained by subtracting from
¥ its regression on y, has the same expected value for both groups.

(2) The Mahalanobis distances between I7, and I7; based on y and y.
are the same, i.e.,

(2.5) Ap+q = Ap|+q, .

(3) The coefficients of y, and ys in the linear discriminant function
based on y are all zero, i.e., 2 =0, ys = 0.

(4) The Mahalanobis distances between II; and II; based on the
random variates y,.. = x — 2.2z and yi1.3 = x; — 213253 21 are the same,
ie.,

(2.6) 0.k 26: = 81211361,

where .. = D — 22 Zox and D113 = 21y — 2353 Zan.
5)

(2.7) 8 — 20208 =0 and Zu3X0'36=0.

The statements (1), (2), (3) in the case when the covariate is not
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available were given by Rao (1970). His proof for the equivalence of (1)—(3)
is applicable to our case. The equivalence (1)—(5) will be shown as a special
case of multiple groups.

3. The case of multiple groups
We consider the formulation for redundancy in the case of k + 1

groups. Suppose that y' = (x’, z’) has the means

, (0
G.1) E(y|17i)=n("=(”§ ) i=1,. k+1

and the same covariance matrix 2 as in (2.1). Following McKay (1977) and
Fujikoshi (1982), we extend the statements (1)-(5) to the case of multiple
groups. The statement (1) can be extended as

3.2) M) = ZpaZad ) = = g — TpaZu Y

Let €2 be the population between-groups covariance matrix defined by

(3.3) Q= 660’
k+1 . . Q 0
_ D mnald v [ $2x
Sea” - -y = o).

where g/’s are positive constants such that Xg; =1, = Zgin"”, © = (4" — 7,
w1 — 7)) and G = diag (g1,...,gk+1). A choice of {g;} may be done,
based on the sample sizes from /7. The population Fisher’s discriminant
functions are defined by using the characteristic vectors of Q with respect

to 2. Let y; be the solutions of
3.4 Qvi=12y, yZyv=1, j=1,..,m,

where m = rank Q2 < min (p, k). Let Q and v} = (v, ¥%, ¥4, ¥4) partition as
in (2.3) and (2.4). Similarly we partion @ as

@,

(o) 6, {6
3.5) O = 0. | 92—(@3), @b—(@4).

O,

The statements (2)—(5) can be extended as follows:
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(3.6) tr QX' =tr QuZa ,

3.7 75=0, v4=0, j=1L...m,

(38) tr Qxxz)c_xl~z =1tr Qllzl_ll~3 s

(3.9) 60— 201..21.0:=0 and Zu.3Z1:0,=0.

Statements (3.6) and (3.7) in the case when the covariate is not available
have been considered by McKay (1977) and Fujikoshi (1982), respectively.

THEOREM 3.1. The statements (3.2), (3.6)—(3.9) are equivalent.
PROOF. Though the equivalence of (3.2), (3.6) and (3.7) follows from

the proof as in McKay (1977) and Fujikoshi (1982), we give a complete
proof. Noting that

T Za\' [(Za O — T Za\ ey [~ Zd Zw )
.l = E -a s
(3.10) (zba zbb) (0 0)+( i ) ””( I

we obtain

3.11 tI 522 - tI S2aazaa
( )
tI bea(tb ZbaZaa Ca)G(Cb Zbazaaca) -

Therefore, (3.6) is equivalent to
(3.12) O — ZpaZad 0a =0,

which is equivalent to (3.2). We can write (3.4) as

Qaa Qab ) ( }'aj) ( Zaa Zab ) ( Yaj) .
3.13 =1 s =1,...m.
(3.13) ( Qva Qo ) \ 75 N Zon )\ J "

Suppose that (3.12) is true. Then, premultiplying both sides of (3.13) by
(= ZsaZad, I) we have

0 =150, 25p.q) ( yaj:) .

Vb

Hence, v, =0, j=1,...,m. Conversely, suppose that (3.7) is true, i.e.,
v = 0. Then from (3.13) we have

Qaa}'aj = ljZaaYaj, ] = 1,..., m
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which implies (3.6), i.e., tr QuZm = 21 li=tr QX"'. The equivalence of
f=
(3.8) and (3.9) follows from

tr Qulot. = tr Q21
+tr (Znez — 20122102 212.) (@2 — 221..211.0))
- G(O: — X120k 01)
F U (Zaas — ZaraZit3214.3) (Za3211301)
G(Za 32126

which is obtained in the same way as in (3.11). Substituting

- 0 0 I _ 1 ’
Zaal - ( 3 ) +( ) ) Z l. ( ;- )
0 X3 — oz ) T - 25 X

into (3.12), we can see that (3.12) is equivalent to
(3.14) O~ 232130, =0 and Z4.:Z0':0,=0.
The equivalence of (3.12) and (3.14) is shown by using
T = I+ 22103 (Zaes — Za a2t s Z1as) ZaaZits

This completes the proof.

4. Tests for redundancy

4.1 A canonical form

We consider the problem of testing the hypothe51s that y, = (33 yi) is
redundant, based on random samples yi’.....y¥ of sizes N; from IT,
i=1,....,k+ 1. It is assumed that the samples are multivariate normal. Let
W, Band T= W + B be the matrices of sums of squares and products due
to within-groups, between-groups and the total variation, respectively, i.e.,

B= EN(?"’—yx“" y),

k+1 N; .
,;1 j; ( (i) _ (1))(y(1) “"(1))r ,
) k+1 —i) .
where y" = (1/N)Zy"’ and y =(1/N) L Np" with N= N1+ - + Nevr.

Then W and B are independently distributed as a central Wishart distribu-
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tion W,+,(Z,n) and a noncentral Wishart distribution W,+,(Z,k; NQ),
where n= N — k — 1 and Q is defined by (3.3) with gi = N;/ N. We can write

B=XxXx', WwW=UU’,

where the columns of (X U): (p + g) x (k + n) are independently distrib-
uted as Np+q(+,2) with

EX U)=(@ 0).

Here v satisfies v’ = NQ. Using the same partitions for X, U and v as in
(3.5), we can write the hypothesis on the redundancy of y» as

(4'1) H: Vb — Ebaza_alva = 0 .

Here we note that v; = 0 and vs = 0. From Theorem 3.1 the hypothesis (4.1)
can be decomposed as

(4.2) Hi:vy — 221.22f11.zvl =0 and H: 241.321_11.31/1 =0.

We shall obtain the LR test for H by using a conditional approach. It
is easily seen that

4.3) E[ X: Uy

e ull-er ore m(y )

and

(4.4) E[ (Xe Ui

o wll=o w7 w)

where v¥ = v, — I'vy,

_ PATEEPIPAN
(Fl FZ) a (221 222) ( Ezl Ezz ) ’

. 2 2!
(B B)=(Za Z) ( 5 S ) .

Noting that I'i = 2y ..X1,., and B = 4321153, we can write (4.2) as

4.5) Hi:vi=0 and Hypfmvi=0.
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Therefore, the LR criterion 4 for H can be decomposed as
(4.6) A=z,

where

A1 = the LR criterion for H; based on the conditional density

1% o)

[

and
A2 = the LR criterion for H, based on the conditional density
f((Xl U1) (X1 Ui

X4 U4

X Us
The explicit formulas for A4, and A, are given in Sections 4.2 and 4.3,
respectively.

Xz, Us ) =f( X4, Us ))f(X;, Uil X;, Us) .

4.2 The LR Criterion A,
The problem of testing H: v* = 0 in the conditional model of (X2 )

given ( Xl Ul ) is the one of testing a linear hypothesis in a multivariate
linear model. Therefore, we obtain
| W22- lzl
4.7 Ar= N ===
@7 SR

where Wy, = Wi — WZ(IZ) I'V(_lzl)(lz) [’V(lz)z and To.1; = 1oy — T2(lz) T(—lzl)(lz)T(lz)z.
Here we use the same partitions for W and T as in (2.1) and (2.3). The
conditional null distribution of 4, is the Wilks lambda distribution
Ap,(k,n — p1 — q) which does not depend on (X; U) and (X, U,). There-
fore, the null distribution of 4, is 4,,(k,n — pi — ¢) and is independent of
A>. The limiting null distribution of —log A, is a chi-squared distribution
with kp, degrees of freedom.

4.3 The LR criterion A,

Xi U )
Xe U
parameters are unrestricted. The conditional density can be written as

First we consider the maximum of f(( X, U3) when the
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4.8) f(X1, Uil Xz, U)f(Xs, Us| X5, Us)

— (27.[)*117|"P2)N/2|‘Z'”'Zl‘N/2
| S
X etr { - 7 ):111.2[(/\’1 —vi U)
~ 202 (X UI(X—w Uy

- 2L (X U)Y }
- 1 __ _
X | Zaa.s| M etr { Y Zis[(Xe Us) — ZuZ(Xs Us)]
X [(X4 U4) - 24323_31(X3 U3)]' .

This expression implies that

(4.9)  max/ (( ;; g; )

X;, Us ) = const. X {l Wl].zl l T44.3|}7N/2 .

Next we consider the maximum off((

X Us
Under H, we can write the conditional density as

X1 U .
! l ) X3, Us ) when H, 1s true.

(4.10) f( X, Us

(X1 Ui

X, Us ))f(Xl, Uil X, Us)

— (zn)“(P|+Pz)N/2 |244. 53 |‘1V/2

xetr:—%&}l.la[(x‘% Us) = (B '33)(X1 Ul)]

X Us
o w-a oy u))

_ | G—
X | D115 etrl-——i—2111.3[(X1 -v U)

~ 225X Us)]

X[(Xe—wvi U))— 25325 (X3 Ug)]'}.

Considering the maximization of (4.10) with respect to Zus.13 and Z11.3, it is
easily seen that
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Wit .z|| Taa.s|
4.11 =23 =—]
(4.11) 2T Mlzr& g(f1, B3, v1,0)

where { = 213253,

(4.12)  g(B1, P, v, ) = [{(Xe Us) = Bu(X1 U = fs(Xs  Us)}
X{(Xa U —pi(Xs U)-Bs(Xs Us)Yl
X{Xi—v U)—{X: Us)}
X{Xi—vi U)-UXs UpYl.

Considering the minimization of (4.12) with respect to 3 and {, we have

(4.13)  Min g(hs, Bs, v1,0)
= Min | Tuas = fiTuas = Tars i+ fr T sl
X | Tir.s — vi(Xi — TisT53' XY’ — (X1 — T3 T3 Xs)vh
+vi(l - X3Ts XV

The problem of minimizing (4.13) is discussed in the Appendix. Using
Lemma A.3 in the Appendix and noting that Wi;.53= Ti;.3 — (X1 —
T3 T Xa)(I — X3T5' X3) " '(I — X4T5' Xs), we obtain

Di
@19 Ming(hfon, 0= 1Wiall Tual (T &),

i=p—sp+1

where [ ==L, ->1=21,-4+1=: =1, >0 are the eigenvalues of
Th1.34 W1_11.3. Hence

)4l 5
(4 15) A = |W11-34HT44.3| _ ll:—[] (1—pi)
. i P - D1 )
| Wiis||Taas| 11 BN
=it i=p1=sot1

where pi=---=p; are the eigenvalues of Wis.s WassWai.sWit's. Unfor-
tunately, the distribution of A, appears to be extremely complicated even
under the null hypothesis Ho.

For practical purposes we consider an approximate test. Starting the
conditional model (4.4), we can use the test statistic

(4.16) A2y = | Was.13| || Taa.13]
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instead of (4.15). It is easily seen that the null distribution of 4y is the
Wilks lambda distribution A4,(k,n — pi — q1). This test will not be efficient
because it ignores the information on the mean value of Xs and the
conditional density of [ X, Ui] given [X3, Us]. An approximate test for H is
to use the statistic — n log 414y whose asymptotic null distribution is a
chi-squared distribution with k(p2 + ¢2) degrees of freedom.

We shall rewrite (4.15) in an alternative form to point out the
connection with (4.16). For this, we note that

D
|T11-34'/|W11~3| = 11;11 li

Tz Tus / | T11.3) | Tas. 13
= WisTws|}=———
‘ Ts1.3 Taas Wi Tusl) [ T1.3]| Taa.3]
P
- fra=e Jawasii T
><( Tz T / Wiis Wi )
Tar.s Tiass Wa.s Wasi)’

Hence, we can rewrite (4.15) as

=5 | Taa.s| )( | Wiis| )
Ay = 1 li A = A s say .
) ( I )( Waes] T | ) y

Note that the quantity { depends on (Xs, Us) and hence { and A are
dependent variables. It is not clear whether the distribution of ¢ will
depend on the unknown parameters under H, or not. For this, we require
simulation study which will be done at a later stage.
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Appendix

We consider the minimization problem which is related to (4.13). Let
Q and T be the positive definite matrices of orders m + p, and p) + p2,
respectively, and let
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Tu T
T Tn

Ou On

Q:(Qzl O

), Qu:m><m, T:( ), T]1Ip1><p1.

LEMMA A.l. Let ff and v be p, X p1 and p\ x m matrices such that
Bv = 0. The minimum value of |Q» — vQi» — QuV’ + vQu1V'| over v subject
to v =0 for a given B is

| Q22111 BoQ2251 | | Bo Q221861 ,

where B = fifo, B1 and Po are p»xs and sx p; matrices of ranks s,

s=rank B, and Q».1 = Oy — Q21Q1_11Q12.

PROOF. Note that fv=0< fov =0. Using Lagrangian multipliers,
we have to minimize

¢ =log |Qn —vQi2 — QuV + vQuV'| + 2 tr Afov .
Differentiating ¢ with respect to v and A4, we get
(Q22 = vQi2 — Quv' + vQuv) (Qa1 — vQu1) = oA’
Bov=20
which are equivalent to

(A.1) O —vQOu = (Qn —vQu)poA, Pov=0.

Premultiplying both sides of the first equation of (A.1) by fo, we have
A" = (BoQ2f5) ' fo0n1. Hence (A.1) gives
v=[1— Qufs(BoQupt) 'BolQu[ Qi1 — QuB(BoQ22B1) ' Bo Q]
=[1 = 0n.1B(BoQ22.158) ' Bo] Q21 Q1
because Q:1[Q11 — szﬂ(')(ﬁonz,Bé)flﬂoQﬂ]il = QZIQ—li + Qle]}leﬁG

-(ﬁ()sz.lﬂ('))_ lﬁonlth. Substituting this into [Q22 — vQi2 — Qv +vQuvy,
we have

}}’I}Igl 00 —vQu0unv' +vQOnv|
ov=

= Q2.1+ 0021B6(BoQ22.186) ' Bo( 021 011 O)
X ,Bﬁ(ﬂonz. 1,56)71[))0Q22. 1]
= Q|1+ (BoQ22.186) ' Lo 0 011 Q125]
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= [Q22.1]1B0Q225 | | Bo Q2215

which proves Lemma A.1.

LEMMA A.2. Let = pifo, B1 and Po be matrices of orders p; X pi,
p2 X s, s X p1 and of ranks s. Then, given fo, the minimum of | T, — fT1, —
T + BT is | Tor — Tufo(BoTife) 'BoTial = | Taal|BoTir-286] /| BoTi1 5]
with Ty1.o= T — T12T2721T21-

PROOF. The result follows from the identity

T — BTia— Tuf + fTup
= {TaBo(BoT11f) ' — By BoTuBo) TarBo(BoT1uf) ' — 1y’
+ T — Tzlﬂé(ﬁoTllﬁ(’))_lﬁole .
LEMMA A.3. Suppose that Q»; = Tii. Then,

(A.2) 11\3/1,1:151 | Tos — T2 — T + BThif| | Q2 — vOiz — OV’ + vOuV|

P
=|Tn||Qna| 1T I,

i=py—sp+1

where Iy ==l _o>1=1,_se1=--=10,>0 are the eigenvalues of
Tii.2Qnn.

PROOF. Let s=rank . Then, using Lemmas A.1 and A.2, we can
write the left-hand side of (A.2) as

Min | To2| | BoT11.280] | Qa2.1]1BoQaafi
s, | BoT11 30| |BoQ22.1f0|

pi
= 1\/15111 | T2 | Q2.1 i:pr—Is li

+1

which is equal to the right-hand side of (A.2).
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