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Abstract. We prove that the bootstrap principle works very well in
moving average models, when the parameters satisfy the invertibility
condition, by showing that the bootstrap approximation of the distribu-
tion of the parameter estimates is accurate to the order o(n "*) a.s. Some
simulation studies are also reported.
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1. Introduction

The bootstrap procedure was introduced by Efron (1979, 1982). Since
then there have been theoretical studies dealing with the accuracy of the
bootstrap approximation in various senses (asymptotic normality,
Edgeworth expansion, etc.). Some of the references are Bickel and
Freedman (1980, 1981), Singh (1981), Beran (1982), Babu and Singh (1984)
and Hall (1988). One class of results show that in the i.i.d. situation where
the normal approximation holds with an error of O(n™ "), if we replace the
normal distribution by a sample dependent bootstrap distribution, then the
error rate is o(n” ") a.s.

The bootstrap does not give correct answers in general dependent
models. However, some dependent models do allow for an appropriate
resampling so that the bootstrap works. Freedman (1984) has shown that
the bootstrap gives the correct asymptotic result for two stage least squares
estimates in linear autoregressions with possible exogenous variables or-
thogonal to errors. Basawa er al. (1989) have proven the validity of
bootstrap in explosive first order autoregressions. Bose (1988a) has shown
that the rate result alluded to in the i.i.d. situation holds for stationary
autoregressions.
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Here we deal with moving average models. The moment estimators of
the parameters have an asymptotic normal distribution and the approxima-
tion error can be shown to be O(n”"/?). The structure of the process enables
appropriate resampling. We show that the bootstrap distribution approxi-
mates the distribution of the parameter estimates with an accuracy of
o(n "*) a.s. The idea is to develop one term Edgeworth expansion for the
distribution of the parameter estimates and their bootstrapped version. The
leading terms of these expansions match and the difference of the second
terms is o(n %), yielding the desired result.

2. Preliminaries

I
Let (Y.) be a process satisfying Y, =& + ;} Qi&-i, where

(A1) (&) isiid.~ Fo, E(e) =0, E(e}) = 1, and Eei**" < oo for some
s=3.

(A2) (e, &) satisfies Cramer’s condition, i.e. for every d>0, 36> 0
such that

sup | Eexp (it'(er, )| <1 -6

Fellzd

a1, 02,..., 0y are unknown parameters which can be estimated by
moment estimates.

Remark 2.1. The assumption that the mean and variance of ¢ are
known has been made to keep the proofs simple. See Remark 3.2 for a
discussion of how this assumption can be dropped. The Cramer’s condition
is required to obtain Edgeworth expansions.

Remark 2.2. The minimum moment assumption we need is Et} < oo,
which may seem too strong. However, the estimates of a;’s involve quadratic
functions of ¢ and we need the (s + 1)-th moment of & with s at least 3.
This is in contrast to the situation of i.i.d. observations where the s-th
moment suffices to derive the o(n™°~?") expansion.

We first assume that /= 1, i.e. Y; = & + ag,-1. The moment estimate of

n
: : . -1
a, given the observations Yo, Yi,..., Y, IS 0 =n E] Y. Y.-1. Under our
5

1/2

assumptions, @, is strongly consistent and n'“(a, — @) has an asymptotic

normal distribution.
i-1 L.
Define & = ZO(— 1)’ Yi-j, and & = Y;. Using the structure of the
P

process,
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2.1 G=e—(— )eo.

Hence & and & are close for all large i if |a| <1, which shows that
resampling is proper in this situation. (For /> 1, this condition should be
replaced by the invertibility condition, see Hannan (1970)). So motivated
by (2.1), we compute the pseudo errors as

i-1 .
tn=2 (= VahYiy, i=2..n, fn=Vi.
~

For ease of notations we will often drop the suffix n. Let G,, denote the
empirical distribution function which puts mass n” ' at each &, i=1,2,.

Let F.(x) = G.(x + &) where e, =n" ,;l &m. It is expected that F, will be

close to Fy with increasing n. Take an i.i.d. sample (&) from F, and define

* * .
- &in t Qn€i-1.n, i=1,.,n,
i =
& + aneiy, dropping the suffix n .

Pretend that a, is unknown and obtain its moment estimate by an =

Z Y* Y. So the bootstrapped quantity corresponding to n'*(a, — @) is

n" 2(an — ax). In the next section we will see how accurate the distribution

of n'*(a¥ — a,) is (given Yo, Y\,..., Y,) in estimating the distribution of
n'*(a, — ) as n — oo
Before discussing the main results, we introduce a few notations. C
stands for a generic constant, which in probability arguments may depend
on the particular point w under consideration in the basic probability

n
space. For a sequence of random vectors X, S,=n "/* Zl Xi. Gn= G
=

denotes that the distribution G, converges weakly to G (G, may be
random). The function w,, represents the first (s — 1) terms of the
Edgeworth expansion of the distribution of S, whenever such an expansion
1s valid. See Bhattacharya and Ranga Rao (1976, p. 145) for the definition
of w.; when X, are i.i.d. Go6tze and Hipp (1983) may be consulted for a
definition of v, when X, are dependent. For any random vector X, D(X)
denotes the dispersion matrix of X. f = (f:---fx) denotes a vector where
each f; is a nonnegative integer and for /: R* — R,

181

8
D'f(x)= b oxp )/ 1o xe) and 1Bl =B+ fot -+ Pi.
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3. Main results

We first need some auxiliary results. Let F, denote the empirical
distribution function of &,..., &,

LEMMA 3 1. Under (Al), we havefor all k<2(s+ 1),
(a) n' Z B En(éh) and n”! ,2 & 2% Er(eh),
(b) F,= Fyas. and F,= F as.

PROOF. Throughout the proof, arguments are for a fixed w in the
basic probability space and hence all bounds, etc. depend on w in general.

n
a) To prove the first part, it is enough to show that n ' X e — &
g i=1

— 0 a.s. But n”'(¢} — &) — 0 trivially. Furthermore,
n k-1 k . n . .
| =n ( ) leol*” Z, lelal
0| =
It easily follows from Theorem 2.18 of Hall and Heyde (1980) that
n! Z lei)’|a|' 2 0V j < k — 1. To prove the second part, it suffices to show

that v Z (&F — 823 0. Note that a, % a and |a| < 1. Hence for all large n
and for all] =1,

G.D el +|om—al<f<1 as.
and
(3.2 lad —a'| = (an— o+ af — | < Cla,— alé’ forsomed<1.

Hence

n
n' X&)

][ e ) (e

2
)]

i~

=2
22[2"‘2|an—a||1’,,|{

X (- DY,
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n i-1 k
< Cn'an — a 2 ( % 'Yl ) (by (3.1) and (3.2)) .
1= Jj=

n i-1 k
Since Y;=e& + ag_1, it is enough to show that n™' ,22 ( ‘20 5’|8i-_,-|) is
i= Jj=

bounded a.s. The sequence Z; = '20 &'|ei-j|, i =1 is a stationary autoregres-
=

sive process of order one and hence is ergodic (see Hannan (1970), p. 204).
So the second part of (a) follows from the observation

n [i-1 k n

n' X ( % el ) <n'2 Zkas E(ZH) < oo .
i= j= i=

(b) Since (&) is i.i.d. Fo, the first part readily follows from (2.1). The

second part follows from the following observation: if F, and G. are

empirical distributions based on n tuples (x1,..., x») and (y1,..., yx), then for
all f'such that f” is bounded,

| 1z
|Er.(f) — Ea.(/) s;,};l |/Ce) =Sl = {1l 7.; |xi—yil . O

To study the bootstrap approximation, we need an Edgeworth expan-
sion for a,. For this, we use a result of Gotze and Hipp (1983) (henceforth
referred to as GH).

Let (X:) be R* Vablued random variables on (2, &, P). Let there be

o-fields &; ( write o (jLZJa G; ) = @ ) and a* > 0 such that

c(l) EX,=0Vi.

C(2) E|X|"""< M. < oo V¢ for some s = 3.

C(3) Y€ @ 3 E|| X — Yomll = Cexp (— o*m).

C(d) VAe@ . Be Dym |P(AN B)— P(A)P(B)| < Cexp( — a*m).

c(5) 3d,5>OaV||t||zd,E‘Eexp(n',"zm Xj)‘@j,j?en <1-6
j=n-m

<1.
C(6) VA e}, Nn,p,m, E|P(A|D);, j#n)— P(A1Z);,0<|j—nl|
<m+p)| < Cexp (— a*m).
C( }lifg D ( n 12 E’l X, ) = X exists and is positive definite.
Let so be s or (s — 1) according as s is even or odd, ¢ be the normal

density with mean 0 and dispersion matrix . The following results are due
to Gotze and Hipp (1983).

THEOREM 3.1. Let f: R* — R be a measurable function such that
| AX)| < M1+ ||x||™) for every x € R*. Assume that C(1)-C(7) hold. Then
there exists a positive constant do not depending on f and M, and for any
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arbitrary k > 0 there exists a positive constant C depending on M but not
on f such that

< Cw(f,n 5y + o(n %72

| E7(s) [y,

where w( f,n”™*) = [ sup (1 f(x + ) — f()1: 19| = 1" bs(x)dx. The term of-)
depends on f through M only.

COROLLARY 3.1. Assume C(1)-C(7). Then the following approxima-
tion holds uniformly over convex measurable C < R".

P(S.€ C) = yn,(C)+ o(n 7.

Let X, =Y, Y,-1 — a and &, = sigma field generated by ¢. It can then
be easily shown that X satisfies the conditions of the above theorem under
(Al) and (A2). We omit the details (see Bose (1988b)). Thus we have the
following proposition.

PROPOSITION 3.1. Assume that (Al) and (A2) hold. Let S,=

n'% 5 (Y. Yo - a). Then

(@) Theorem 3.1 holds with the above S,; consequently,
(b) P(Sn€ C)=yn (C)+ o(n "2, uniformly over convex subsets
of R.

We now develop an Edgeworth expansion for the bootstrapped version
of the above S,. In what follows we make the convention that the presence
of (*) indicates that we are dealing with a bootstrapped quantity; as a
result, expectations, etc. are taken w.r.t. (¢¥) i.i.d. F, given Yo, Y1,..., Yo

Define

o B
X*=Y*Y* -, j=1 and HFf®)=E|" X X*|.
j=1

We have the following lemmas. The proofs are only sketched and the
details can be completed by arguments similar to those used by GH.

LEMMA 3.2. V|| <Cn”and|f| <s+ 2, we have

| DA(HA (1) = pss(1))]
< C(l + m;k+],n)(l + ,113(s_l)+|m) exp ( —_ C|t|2)nf(572+£n)/2
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for some g <1/2 and C depends on the bounds of mf .= (s+ 1)-th
moment of X;*. Here (1) is the Fourier transform of Wi,

The proof is exactly as the proof of Lemma 3.33 of GH and we omit
it.
Let

L={tCn"<|t|<Cn'", L={rCn<|]<&'n"}
where C; is to be chosen and 0 < &< 1 is fixed.

LEMMA 3.3. Under (Al) and (A2), we have for almost every se-
quence (Y;),

fle{z | D*H¥(0)|dt = o(n” 2% .

PROOF. A careful look at the proof of Lemma 3.43 of GH shows
that it suffices to show that E*|E*A4S| @, j+# j,| < 1 uniformly in t € I,
and p = 1,2,...,J where @ = a(¢f), A = exp ( itn ? ‘IIPZ z* ) ; see GH

J=dp—m
for the definition of j, and m. We omit the details of these definitions since
they are not explicitly used in the sequel. It suffices to note that j, is fixed
and that the above expectation is independent of m (see below). This
expectation equals

5::" = E*

j,,+m
E* exp ( im'* Y X* )

J=jp—m

6?3 j;éh

Jekm
Note that X Xj* =¢f(YV;t 1 + o Yo+ gfi 1+ oef- ) + anef” + V where V

J=p-m
is independent of &;.
Let K,* denote the distribution function of Y"1+ a, Y2+ &, +
af,e_}ff.. Then 6%, =f fexp (itn *xy + itn_l/zanxz)dﬁn(x) ’ dK(y).
As t varies in b, (tn”"?, tn” "* a,) varies in a compact set bounded away
from zero. Let D denote any such set in R’. Let b1, 52 >0 (to be chosen).
Then

Omn < sup f’fexp (idyxy + idyx")dF(x) ‘ dK;(y)

(d,d)eD

< K¥bi < | Y| < b))+ KXY < b))+ KX Y| > b2)

where
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Iin< sup sup fexp (id\xy + idsx*)d Er(x)

bi<|y|<b; (dh,d2)eD

By Lemma 3.1, K, = K a.s. where K is the distribution of ¥j_; + a¥j+> + &+1 +
a’¢ -1, which is non-degenerate. Thus b; and b, can be chosen such that for
all large n,

KF( Y| <b)+ KX Y| >b)<an<1.

Note that F,"= F, a.s. and F, satisfies Cramer’s condition. Since the
convergence of characteristic functions to the limit is uniform over compact
sets, we have [, <1—y <1 for all large n. Thus s <(1—9)+ awy <1,
proving the lemma. O

LEMMA 3.4. Under (Al) and (A2), for a sufficiently small C,, we
have for almost every sequence (Y;), |f| < s+ 2,

| IDPHX@)dt = o(n 7).

PROOF. We proceed as for Lemma 3.3 but use a different estimate
for E*|E Ap*lej , J#j»|. We have to deal with &%, = E*IE* exp (itm '
(X AF + 0,88 | DF, j # n| where AF = V¥ ) + o Vibo + efo + aneko.

Note that o = E*|1 — (t7/2n)D(e¥, e¥) 1o + (¥/6)(|| 1a]|* | R E* .
1(e¥, e¥H)|1°| where 7, = (tA¥, tan), | y| < 1. Thus

EX(ltll)) o

5;?;1 <E*|1- er *Z)tn 61’13/2 M3n

2
where
= EX||(eX, &) — Ell(en,e))|®  aus,
E*(1tall®y < HIP[E*(AF + 02)'].

Note that E¥(4}* + 7)) — E(A*+ )’ as. where A=Y, +aYs+ Ya +
o’ Y1. Thus

E*(lltall®) C||t|| 1211
6(n3/2 ,U;3kn— n < CC n

Let A(A) and A(A) denote, respectlvely, the maximum and minimum
eigenvalues of 4. Denote 5= D(e1, &), £, = D(et, eF?). Note that A(5,) —
A(E)>0as. and A(Z,) - AE) >0 as. (by Lemma 3.1). Then we have the
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following relations.

E*|1- 2t D(e¥, e¥) 'ty
s[E*[l ; o *2)+(_t;D(;;*,g;',‘2) )2 }]1/2,
n
o[ BEntn 2 o o Nzall ]}
E <A (2)E o < CC o a.s.

r g 2
(2 ) e (1212 cusp 12

By combining these estimates and choosing a C, sufficiently small,

II || ylell?

n

Onm=1— < exp ( - ) forsome y>0 as.

A look at the proof of Lemma 3.43 of GH shows that this proves the
lemma. O

From Lemmas 3.2-3.4 and Lemma 1 of Babu and Singh (1984)
(henceforth referred to as BS), we have the following theorems for the
cases /=1 and /> 1, respectively.

THEOREM 3.2. Assume (Al), (A2) and |a| < 1. Suppose f- R — R is
such that | f(x)| < M(1 + |x|?). Let o} = E¥(S¥?). For a.e. Yo, Y\,... and
uniformly over x € R,

@ | Eesh - Lravi| < cusint oty + o,
(b) P* ok 'S}<x) :f_’; dy ¥3(cky) + o(n ") = P(67' S, < x) +
o(n ).

We omit the proof. See BS for a proof in the i.i.d. case.

THEOREM 3.3. Let H be a function from R' — R which is thrice
continuously differentiable in a neighbourhood of 0. Let h denote the
vector of first order partial derivatives of H at 0. Assume h# 0 and that
(@) satisfies the invertibility condition. Let

n—oo

z:an(n‘”zkg1 Yi Yi-i, | Sisl),
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n
It = D¥ (n"‘/z Z VY 1=is 1),

Bi= E(YiYei), PBa=EXYEYE), i=1,.,1.

T(F) = n""? [ H(n‘ S (VeYei=B)i=1.... 1) — H(0) ] :
ot=1'2I.

T(F*)=n" [ H( n’! él (YEYE -, i=1,.., 1) — H(0) ] ,

o =12},

Then sup | P(c 'T(F) < x) — P*o¥ ' T(E}) < x)| = o(n” ") a.s.

PROOF. Proposition 3.1 and Lemmas 3.2-3.4 remain valid, respec-
tively, for

(n_l/2 él (Y Yi-i— B, i=1,..., 1) and

1

Arguments analogous to Theorem 3 and Corollary 2 of BS yield the
theorem. We omit the details which involve a Taylor expansion of H and a
change of variable formula. O

The above result is true for vector valued H with proper modifications
since Theorem 3 and Corollary 2 of BS remain true for such functions. The

estimates of ai,...,; in a general MA model are smooth functions of
n

n' 21 Y;Yj-i, i=1,...,I. Hence Theorem 3.9 can be utilized to prove the

results for these parameter estimates.

THEOREM 3.4. Under the assumptions (Al) and (A2) for a.e. Yo,
Yi,...,
(a) Let I=1, and |a| < 1. Let ¢* and o» be respectively the limiting
variance of n"*(a, — ) and the variance of n'*(af¥ — a,) (given Yo, Y1,...,
Y,). Then

sup | P(n"(an — @)/ 0 = x) — P(n'"(a = )/ 00 = ) = o 7).

(b) Let =2 and (a;) satisfy the invertibility condition. Let G, be the
distribution function of X~ n"*(a, — ai,..., o — o), where X is the limiting
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covariance matrix of n'*(ai, — ai,..., o, — a1). Let G be the corresponding
bootstrapped version. Then

sup | Ga(x) — GX(x)| = o(n™ ).
xeR'

PROOF. The case /=1 is Theorem 3.2. For /=2, the moment
equations are

wn=n'2X YYi2 and au(l+ow)=n'X Yi¥e.

Thus

Zm +ai(l + a)
1+ 02 + Zon

(a1 — ai, Q2n — a2) =( - ai, ZZn) ,

where
n' 2 (Y.Yer-f)=Zn and n' X (YiYeo-Bo)= 2.

Now the result follows from the multidimensional version of Theorem 3.3.
The idea of proof for a general / is clear from what we have shown.
However, solving for the estimates ain,..., &, becomes increasingly difficult
with an increase in /. O

Remark 3.1. For i.i.d. observations, Hall (1988) has shown that
error rates of O(n') can be achieved for quantile estimates. This is based
on a O(n ') expansion of the bootstrap statistic. Abramovitch and Singh
(1985) have shown that an error rate of o(n %), s >3 can be obtained
for the cdf of a modified bootstrap statistic provided that a sufficiently
high order Edgeworth expansion is valid for the bootstrap statistic. Our
attempts to derive O(n" ') results in the present context have not been
successful since we have not yet been able to prove a higher order
Edgeworth expansion for the bootstrap distribution.

Remark 3.2. The assumption that (&) has mean 0 and variance 1 was
imposed to keep the proofs simpler. We sketch below how the case Ee; = 4,
Ee! = 6* (both u and ¢ unknown) can be tackled. We illustrate the case
/=1 only.

The model in this case is Y, = u + & + ag.-1 where (Al) and (A2) hold
but Ee! = ¢*>0. Under the assumptions (A1) and (A2), the Edgeworth
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expansion is valid for the distribution of
(3.3) n'? ( E‘l (Y:— ), El (Y. Yi-1 — y2), t; (Y - ¥3) )

where y1 = EY,, 9, = EY,Y:-1 and y; = EY/.
The estimates u», @, and o5 of u, @ and ¢” are obtained by solving the
following moment equations:

n n
n'E Yi=p, n' 121 Y. Yi-1 = pp + @no»  and

n' X Y =+ ol + o).

=1

Hence

n

w=n"'2 Y, on=[y+0i+45)") 2 and o= y/on

t=1

where

n

yr=n"' 2 YY1~ pa and yi=n'2 Y~

n n

Thus all these estimates are smooth functions of l; Y., El Y, Y.~ and
n

Hence for a normalizing factor fo, the distribution of n'?fo(a, — a)
admits an Edgeworth expansion of order o(n /*), with the leading term as
&@(x) and the coefficients in the second term (which is O(n %)) being
smooth functions of &, u and ¢° and of moments of Y;, ¥, Y,-1 and Y2, of
order less or equal to three. fo can be explicitly calculated and depends on
a, 4 and moments of ¢;. The empirical distribution is computed as before,
the only difference is that Y/’s are now replaced by Y; — u,. As in the case
u=0, 6" = 1, an asymptotic expansion is valid for the bootstrapped version
of (3.3), which yields an expansion of order o(n ") for the distribution of
n"?B.(a¥ — a,) where 8, is the bootstrap equivalent of fo. The leading term
in this expansion is also @(x) and the polynomial involved in the second
term is of the same form as that in the expansion of n'*fo(a, — a). By the
ergodic theorem, the empirical moments of Y, ¥,Y;-; and Y/ converge to
the true moments a.s. and hence a., #» and o, are strongly consistent
estimates of @, # and o, respectively. Thus the difference between the two
expansions is o(n" %) a.s.
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4. Simulations

It is interesting to see how the bootstrap performs in small samples.
The accuracy is expected to decrease as the parameter values move towards
the boundary (for /=1, as |a| — 1). A small simulation study for the
moving average model with /=1 was done. We also simulated the autore-
gressive process

Y. =0Y,1+¢&, |0]<]1
when @ is estimated by the least squares method. The rate of o(n '2) is also
valid for this situation as was shown in Bose (1988a). See Bose (1988a) for
the details of bootstrapping the distribution of the least squares estimates.

For both the MA and AR models, we generated &’s from N(0, 1) and
centered exp (1) densities. The parameter values were set at a = 0.9 and
0 =10.9 and a series of size n = 100 was generated. The distribution of the
estimator, standardized by its true mean and true limiting variance, was
approximated by using 1000 replications of the series. The first set of
n = 100 observations was used to estimate the residuals and generate the
bootstrap distribution. The bootstrap distribution was approximated by
using 5000 repetitions for the AR case and 10,000 repetitions for the MA
case.

The true (approximate) distribution, the bootstrap distribution and
the standard normal distribution have been shown in each case in Figs.
I(a)-(d). It is evident that the bootstrap works very well in the AR case and
reasonably well in the M A case. Similar results were seen to hold for other
parameter values. In fact the bootstrap does better as we move away from
the boundary values of + I. In the AR case, the sampling distribution for
the normal and the exponential are close. This robustness is absent in the
MA model. The bootstrap captures this deviation to some extent. However,
it is not clear why the bootstrap performs better for the exponential than
the normal. This is an interesting topic for further research. Apparently the
skewness of the underlying distribution together with the structure of the
model is affecting the performance of the bootstrap in some way.

See Chatterjee (1985) for some more simulation studies. The study of
the behavior of the bootstrap in other complicated time series models is
still open. The author is currently working on the bootstrap in the class of
nonlinear autoregressive models.
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(a) Normal AR model; 8 =0.90, N = 100.
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(b) Exponential AR model; § = 0.90, N = 100.

Fig. 1. Histogram of estimator in Bootstrap study.
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(¢) Normal MA model; a = 0.90, N = 100.
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(d) Exponential MA model; a = 0.90, N = 100.

Fig. 1. (continued).
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