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Abstract. A modified bootstrap estimator of the asymptotic variance of
a statistical functional is studied. The modified bootstrap variance esti-
mator circumvents the problem of the original bootstrap when the
population distribution has heavy tails, and requires less stringent condi-
tions for its consistency than the ordinary bootstrap variance estimator.
The consistency of the modified bootstrap variance estimator is established
for differentiable statistical functionals.
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1. Introduction

Let § be a parameter of interest and 6, be its estimator based on n
observations. In many situations, n"/*(0, — 0) has a limit distribution with a
finite variance o’. A consistent estimator of ¢’ is needed for various
purposes in statistical inference with a large sample size n. The bootstrap
(Efron (1979)) is a widely applicable and convenient method of estimating
o°. A detailed description of the bootstrap procedure is given in the next
section. Throughout the paper we use 63 to denote the bootstrap estimator
of .

The bootstrap distribution, which approximates the distribution of
(0. — ) (see Section 2), converges to the same limit distribution as
n"*(@, — ) under reasonable conditions (see Section 3). But this need not
entail the consistency of 62, which is the variance of the bootstrap distri-
bution, since the variance functional is not weakly continuous. For some
special types of estimators 8y, such as the sample mean and sample median,
the consistency of 63 has been proved by Bickel and Freedman (1981),
Singh (1981) and Ghosh ez al. (1984) under some conditions. However, a
general theory for the consistency of the bootstrap variance estimator is
not available.
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A modified bootstrap estimator 43 is described in Section 2. The main
purpose of this paper is to study the asymptotic properties of this modified
bootstrap variance estimator for the case where # = T(F) is a functional
defined on a class of distributions F and 8, is T evaluated at F,, the
empirical distribution function of the observations. Precise definitions are
given in Section 2.

We show in Section 2 that the modified bootstrap estimator 65 has
better asymptotic properties than the original bootstrap variance estimator
6% (Theorem 2.1 and Example 2.1) and is asymptotically equivalent to &3 in
some cases (Example 2.2). In Section 3, 65 is proved to be consistent if 7’is
Fréchet differentiable (Theorem 3.1). By assuming that 7 has a stronger
version of this differential, we prove the almost sure consistency of 64
(Theorem 3.2).

2. The bootstrap and its modification

Let X1, Xs,... be independent and identically distributed (i.i.d.) real-
valued random variables with an unknown distribution F € =, where Z'is a
convex class of distribution functions containing all degenerate distribu-
tions. Often the parameter of interest is @ = T(F'), where T is a functional
from Z to the real line, and the estimator of @ is 8, = T(F,), where F, is the
empirical distribution function based on Xi,..., X,. Examples can be found
in Serfling (1980). We assume that n"*(8, — 6) has a limit distribution with
variance o” (this is ensured by the differentiability of T (see Section 3)).

Let X7*,..., X» be i.i.d. samples from the empirical distribution F, Fo,
be the empirical distribution function based on X,..., X,, and 6%, =
T(Fm). Throughout the paper Px, Ex and Vars denote the bootstrap
probability, expectation and variance (conditional on Xi,..., X,), respec-
tively. The bootstrap approximation to the distribution of n"*(8, — ) is the
conditional distribution of m"*(0%, — 8,), and the bootstrap estimator of ¢
is 63 = m Varx 0%,. Note that we allow the bootstrap sample size m to be
different from n. For the advantages of having m # n, see Swanepoel
(1986) and Rao and Wu (1988). To evaluate &, one may use the Monte
Carlo approximation

1 e Axb _ p-1 2 A kb :
.1 B'X (0¥ -B'X 9,
b=1 b=1

where 02 = T(F%!) and F% is the empirical distribution based on an i.i.d.
sample X*°,..., X¥* from F,, b= 1,..., B.

Even for differentiable T, 65 may not be consistent. Counter-examples
can be found in Ghosh et al. (1984) and Shao (1988a). We study the
following modified bootstrap estimator:
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(2.2) 62 =m Varx [4¥.(an)] ,

where a,, € (0,00] and 4}.(a~) is obtained by truncating d, — 0, at a» and
— am, 1.€.,

. if 0% — 0,> am
(23) Afm(am) = 9rjkm - én if |9r?m - 9n’ =< am
~ Qm if 0k —0.<—am.

In the special case of a» = oo, 62 reduces to 6;. The Monte Carlo approxi-
mation to & can be obtained by using (2.1) and truncating Oxr — 0, at an
and — an. The choice of an is discussed in Section 4.

Consistency of 62 in the special cases where 8, is a differentiable
function of the sample mean or sample quantile is proved in Shao (1988a).

In Theorem 2.1 we show that the consistency of &3 implies the
consistency of ¢2. Example 2.1 indicates that &; improves 6; when the
distribution F has heavy tails. Hence 3 has better asymptotic performance
than 6%. This is supported by the simulation results in Shao (19884). When
an is chosen to be large, 62 is asymptotically equivalent to 63 in some cases
(Example 2.2). The consistency of 6% is studied in Section 3.

Example 2.1. Let 0, be the sample p-quantile with 0 < p < 1 and
be the bootstrap sample p-quantile (m = n). Suppose that the derivative of
F(x) is continuous in a neighborhood of F~'(p). Let 4¥ = A¥.(an) (2.3)
with m = n and a» = 1. Then

(2.9 nVars 4¥ — o> as.

The counter-example in Ghosh er al. (1984) shows that some tail
condition is needed on F to ensure the consistency of the bootstrap
estimator 6; = n Vars 8F. Under a moment condition E|X|° < o for some
>0, 6 — 0 as. is proved in the same article. On the other hand, the
consistency of the modified bootstrap estimator n Varx 4, requires no
moment condition. The truncating in (2.3) circumvents the problems of the
bootstrap with heavy-tailed distribution.

To show (2.4), first note that from Proposition 5.1 of Bickel and
Freedman (1981),

n'*(0%, — 6,) = Z as.,

where Z is a random variable distributed as N(0,¢°) and — denotes
convergence in the conditional distribution. This implies
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n4¥ =7  as.
Then (2.4) is implied by
(2.5) 2+ O) 'Ex|n"Pak*? :f: 1P (n'? 4% > dr = O(1)  as.
for some & > 0. From | 47| < 1, the left-hand side of (2.5) is equal to
fon

The rest of the proof is the same as that in the proof of Theorem 1 of
Ghosh et al. (1984).

I

PP\ 4E > de <[] 1O Pe (010 — Ba) > 1)

Example 2.2. Let 8, be an L-estimator
(2.6) ;1 Xy ~ with  sup ;1 len| = p < oo,

where X, is the i-th order statistic of Xi,..., X,.. Note that the sample mean
and the sample p-quantile (0 < p < 1) are special cases of (2.6).

Under the condition that E|X:i|°<oo for some &> 0, if Ama(an) is
defined as in (2.3) with an = cn'*, where ¢ is a positive constant, then

P(62 = 6% for all sufficiently large n) =1,
since
100 — Ol | am < 2p(| Xim| + | X))/ en'* =0 as.

by Lemma 3 of Ghosh et al. (1984). )
A similar result can be obtained if 8, is a U- or V-statistic.

The following analog of Helly’s theorem (Serfling (1980), p. 352) will
be used in the proof of Theorem 2.1. Its proof can be found in Shao
(1988b).

LEMMA 2.1. Let Y. be random n-vectors, n=1,2,..., and Z be a
random variable. Suppose that for any fixed n and given Y, =y, Z,(y) is a

random variable and as n — oo,

(2.7) P(Z,(Y,)<t|Y,) — P(Z<1t) inprobability
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for any t at which P(Z < t) is continuous. Then as n — o,
E[NZ.(Y)| Ys] — E[R(Z)] in probability
for any real-valued bounded continuous function h.
THEOREM 2.1. Suppose that as n and m — oo,
(2.8) m"* 0%, — 0:) = Z  in probability
in the sense of (2.7) with Y,=(Xi,..., Xn) and Z.(Y»)= ml/ 2(0%, — 6,),

where Z is a random variable with mean zero and variance o*. Let A%(aly)
be defined as in (2.3) with ai? = aiy) and m"*al¥) — w0, k =1,2. Then

(2.9) m Varx [4%.(a))] = o in probability
implies
(2.10) m Vars [4%.(a2)] — ¢ in probability .

Remarks. (i) If in (2.8)-(2.10), the statement “in probability” is
replaced by “a.s.”, then the result follows immediately from Lemma 1.4B
and Theorem 1.4A of Serfling (1980).

(11) The result shows that the consistency of 63 implies the consistency
of 6% (by taking a\?) = co).

PROOF. Denote m"*4%,(a¥) by ZX k=1,2. Condition (2.8) and
m"?a® — oo imply

Z¥ = Z inprobability, k=12,

which implies (Ghosh et al. (1984), Lemma 2) that (2.9) and (2.10) are
equivalent respectively to

Ex(Z¥)* — d®  in probability
and

Ex(Z¥)" — " in probability .
By Lemma 2.1, as n and m — oo,

Q.11)  Ex[(ZEYI(ZEY < M)] - E[Z*[(Z* < M)] - 0 in probability ,
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k=12,
where I(A) is the indicator function of a set A.
If (2.10) does not hold, then there is a set Q = {n, m;, /= 1,2,... } with

infinitely many elements such that

(2.12) lim P(| Ex(Zim)' — 6°| > 6) # 0

for some J > 0. For any ¢ >0, choose an M > 0 such that E[Z°[(Z* > M)]
<eé. From (2.9) and (2.11), there is a subset {n;, m;,j=1,2,...} of Q such
that as j — oo,
Ex(Z¥) = as.,
and
Ex[(Z¥s ) H(ZX) < M) - E[Z*KZ* < M)] — as., k=12
Hence for almost all X1, Xa,..., there is an N > 0 such that when j > N,
Ex[(Zin) I(Zam)' < M)] = E[Z°K(Z" < M)] — ¢
and
Ex(Zin) <o +e,
and therefore

Ex[(Zam)' K(Zan)' > M) < Ex[(Z42) K(Z3n)' > M)]
<o’ - E[Z*(Z* < M)] + 2¢
= E[Z°KZ*> M)]+2e<3¢.

Then

| Ex(Z#n) — 0°]
< Ex[(Z3)' I(Z%5)" > M) + E[Z*KZ* > M)]
+ | Ex[(Zam) I(Z3n)' < M)] - E[Z°KZ" < M)]|

<de+ | Ex[(Zn) I(Z)* < M)] — E[Z*KZ* < M)]| .

Letting j — o0 and ¢ — oo, we have
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Ex(Z¥)' —d  as.

g

This contradicts (2.12) and thus the result. [J

3. Consistency of the modified bootstrap variance estimator

For the asymptotic validity of the bootstrap methods, we require some
smoothness conditions for the functional 7. The following two definitions
of differentiability of T can be found, respectively, in Serfling (1980) and
Parr (1985).

DEFINITION 3.1. (i) A functional T is said to be Fréchet differentiable
at F with respect to a norm || || on Z iff there exits a real-valued function ¢

depending only on 7T and F such that f ¢(x)dF(x) = 0 and

3.1) T(G) ~ T(F) - [ $(x)d[G ~ F1(x)

/HG—Fu~0

as ||G— F|| =0, for Ge =.

(ii) A functional T is said to be strongly Fréchet differentiable at F
with respect to || || iff (3.1) holds with F replaced by Gi as |G — F|| +
G, — F|| =0, for G, G, € E.

The function ¢ is the usual influence function of T (Hampel (1974)).
Obviously, strong Fréchet differentiability implies Fréchet differentiability.
Examples of Fréchet differentiable or strongly Fréchet differentiable 7,
including certain types of V-statistics and M- and L-estimators, can be
found in Serfling (1980) and Parr (1985). We prove the consistency of é:
for Fréchet differentiable and strongly Fréchet differentiable 7 in Theorems
3.1 and 3.2, respectively.

We will assume in the sequel that the influence function ¢ satisfies

0 <[ ¢ (X)dF(x) = * < oo .
If Tis Fréchet differentiable, then
Bo=0+n" 3 $(X)+ Ri,
(3.2)

0% =0+ m ﬁl S(X*) + R,

and
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(3.3) Ok —b,=m" 21 HXH) —n! _:Z1 (X)) + Uk,

where R., Rt and U.n = Ri.— R, are the remainders. From Serfling
((1980), p. 218), R, = 0,(n”"/?), which implies

(3.4) 0, -0)— Z,

where Z is distributed as N(0, o). Finding the orders of R¥, and U%, is
crucial for the asymptotic analysis based on the bootstrap method. It is
shown in Proposition 3.2 that if 7 is Fréchet differentiable (or strongly
Fréchet differentiable), then Uz, = o,(m” /%) in probability (or a.s.), which
implies

(3.5) m"*(0%, — 0,) = Z in probability  (or a.s.) .
a*

That is, the bootstrap approximation to the distribution of n"*(8, — ) is
consistent. (3.4) and (3.5) still hold if 7 has weak versions of differential
(see Gill (1989)).

For simplicity, from now on we use || || to denote the sup norm of a
bounded real-valued function A4, i.e., ||A]| = 1§IL(1p [A(1)].

THEOREM 3.1. Let 65 be defined as in (2.2) with am satisfying

3.6) mPa,—o0 and an<ée

for some 0 < p < 1. Assume that T is Fréchet differentiable with respect to
| || and (log (n))! < m < An, where . >0 is a constant and q = 1/p. Then as
nand m — o,

(3.7) 62— a*  in probability .

THEOREM 3.2. Let 6% be defined as in (2.2) with an satisfying (3.6).
Assume that T is strongly Fréchet differentiable with respect to || || and
m? > log (n). Then as n and m — o,

(3.8) é2—ad  as.

We first prove the following results.

PROPOSITION 3.1. (i) Let ¢ >0 be given. Then there is a constant
p > 0 such that for all n and m,




BOOTSTRAP VARIANCE ESTIMATION 745
- 2
(3.9) Ps(||F — Fol| > &) <pe ™™ .

(1) If m = m(n) satisfies
(3.10) z e e < oo

for any ¢ > 0, then as n — oo, for almost all X1, Xa,...,
|Fon— F|| =0 as. Px.
(iii) Let A%y = Akn(am) (2.3) with an < €™ for some 0 <p < 1 and
(3.11) Bun = {|| Fom — F 1l > 1}
for a constant n > 0. Then for any a =1, as n and m — oo,
Ex|m" 4% 1(Bum)|* — 0 a.s.
Remark. A consequence of (3.9) is that for any ¢ > 0,
(3.12) P«(||Fay — F|| >€) — 0  in probability ,
which is equivalent to the result in Corollary 4.1 of Bickel and Freedman
(1981). The result in (ii) is stronger than (3.12) but m needs to be a function
of n and satisfies (3.10). Note that (3.10) holds if m(#n) = k, log (n) with any
sequence k, satisfying k, — o0 as n — oo,
PROOF. Equation (3.9) follows from the inequality of Dvoretzky,
Kiefer and Wolfowitz (see Serfling (1980), pp. 59-60). The result in (ii) is a
direct consequence of (3.9) and (3.10), the Borel-Cantelli Lemma, and

|| Fn — F|| — 0 a.s. The result in (iii) follows from (3.9) and || F», — F|| — 0
as. [

PROPOSITION 3.2. (i) Suppose that T is Fréchet differentiable. As-
sume also m < An for a constant 1> 0. Let Ruy be defined as in (3.2). Then
as n and m — oo,

m"R¥. = 0 in probability.

(i) Suppose that T is strongly Fréchet differentiable. Let Unn be
defined as in (3.3). Then for any t >0, as n and m — oo,

P«(|lm"?U%| >7) -0 as.
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PROOF. (i) Let 7> 0 be given. By the Fréchet differentiability of 7,
for any ¢ > 0, there is a d. > 0 such that

| R | < &l| Fan — F ||
whenever || Fay, — F|| < .. Then

(3.13)  Px(m"*|R%| > 1)
< Px(m'*||Ek — F|| > 1/€) + Px(|| ¥, — F|| > 6,) .

Let
An={(An)"*||F, — F|| < 7/2¢}

and A, and I(A,) be the complement and the indicator function of 4.,
respectively. From m'?||F% — F|| < m"?|| F¥, — Fl| + (An)"?|| F. — F||, we
have

E[Px(m"*||F, — F|l > t/¢)]
< E[I(A)Px(m"”||F, — F|| > t/e)] + P(Ay)
< E[P«(m'"*|| F¥, — F.|| > t/26)] + P(A5)

- 2 - -1 2,
Sp[e (172)(</e) +e (1/2)A (T/€)] ,

by (3.9) and applying the Dvoretzky-Kiefer-Wolfowitz inequality to P(A;).
From (3.12) and (3.13), the result in (i) follows since ¢ is arbitrary.

(i) By the strong Fréchet differentiability of T, U, satisfies the
following property: for any ¢ > 0, there is a &, > 0 such that

I Unfn! < Slan’fn - Fn“

whenever || Fon — F|| + || F. — F|| < 6.. For almost all w = (X1, X,...), there
is an N(w) >0 such that ||F, — F|| <J./4 for n> N(w). Then for this w
and g given t > 0,

Px(|m"?Usk| > 1) < Pe(m'"|| Fot, — Full > t/€) + Pe(|| ¥, — Full > 6:/2)
< p[e—z(r/g)z + e—(l/z)maf] )

(1/2)ma?

The result in (ii) follows since e~ —0asm—co.

PROOF OF THEOREM 3.1. From Theorem 2.1, we need only to show
(3.7) for 62 with @, = €™ Let A%, = A},(¢™). By the Fréchet differentiability
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of T, there is an # > 0 such that | R}, < || Fam — F|| whenever || Fob — Fl|
< 5. From Proposition 3.1(iii), (3.7) is implied by

(3.14) m Vars [4%.1(Bim)] — &> in probability ,

where By is the complement of B, defined in (3.11). Let
Dun ={ max |$(X)| < 2™ -1

and
Gn={|Rs| >1}.

From E¢*(X)) < oo, max | (X)) /n'? — 0 a.s. (Ghosh et al. (1984), Lemma
3), which implies max |<;I)(X,»)|/e’"p — 0 a.s. since m” = log (n) is assumed.

Then P(Dum) + P(Gx) — 0 as n and m — oo. Let (Xi,..., Xn) € Dan () Gy If
|| Fab — F|| <n, then

10— 0ul = 7 218X + 07" Z (S| + RS+ R
<2 max lp(X)| +2<e™,
and therefore
m Vars [4%5.0(Bin)] = m Vars [(0: — 0.)1(Bin)] -
Then (3.14) is equivalent to
m Vars [(0%, — 0.)I(Biv)] — o in probability .

From (3.3), it suffices to show that
(3.15) m Vars [( m S o(x*)—n! 3 $(X) ) 1(BSy) ] ~d  as

and
(3.16) Ex[m(R%, — R.)*I(Bin)] — 0 in probability .

By the strong law of large numbers,
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m Varx [ m! é H(X*) —n! :il d(X) ]

NOte that if (Xl,..., Xn) € Dnm,

from Proposition 3.1(iii),

m' én‘.l HX*)—n! gnll d(X) ‘ <™. Hence

m Varx [( m' ii HX¥)—n! é (X)) ) 1(Bm) ] -0 as.

Thus (3.15) holds. Note that mR; < AnR. = 0,(1). Hence (3.16) is implied
by '

(3.17) Ex[(m"’R¥%)' I(Bi»)] — 0  in probability .
For an arbitrary ¢ > 0, there is an M > 0 such that
P(A)<e

for all n, where 4, = {n"?||F, — F|| > M}. Let 6 > 0 be fixed. For any fixed
n, m and (Xi,..., X,) € Ax,

Ex[|m" Ria)> " I(Bym)]
=@ +8) [ (" Pu(Im  REI(BSn)| > 1)
<@+8) [ (M Pu(m | F — FIl > nd
<@+0) [ 1P F — Foll + )| F — F| > )t
<@+8) [ (" Pe(m" || s — Fall >t~ 2 M)d
—(2+90) [ [ Py B~ Full > 1 — A Mt
+ ;M ' Pe(m'? ||l — Fall > 1 ~ A"ZM)dt]
< @MY+ p@+8) [, 1N Mgy

which is equal to some finite constant (independent of n and m), say C(M),
where the last inequality follows from (3.9). This shows that
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As C{E«[|m"’ R 1> I(Bim)] < C(M)}
and therefore
(3.18) P(Ex[|m'"* R}, °I(Bim)] > C(M)) < P(An) < ¢ .
Let 7 > 0 be given. Choose an « > t such that
(3.19) (M) < ad"z/4.
Let (F, = (m"*R%)*I(Bs»). From

ExlE, < 1)2 4 Ex[GEI(CE > 1/2)]
< 1/2 4 aPs((M P RE) > 1/2) + Ex[{d(Lon > )]
< 1/2 + aPe((mPRE) > 1/2) + o PP Ex[|m"* Ri:|*  I(Bim)]

and (3.18)—(3.19), we have
P(Ex[(m'"*R%) I(Bin)] > 1) < P[Px((m"*RE) > 1/2) > t/4a] + ¢ .

By Proposition 3.2()), lim P[P+((m"*Rim)" > t/2) > t/4a] = 0. Hence
limsup P(Ex[(m"*Ri)’ I(Bin)] > 1) <e¢.

(3.17) follows since ¢ is arbitrary. []

PROOF OF THEOREM 3.2. It suffices to show (3.8) for &; with
Ak, = A%.(€™). By the strong Fréchet differentiability of 7, there exists an
>0 such that when || F¥, — F|| + || F.— F|| <#, | Umi| < || Fam — Fal|. Let
Bum = {|| Fatw — F|| > #n/2}. Then from Proposition 3.1(iii), we need only to
show that

m Vars [4%51(Bin)] = ¢ a.s.

Note that || F, — F|| — 0 and max |$(X)| /€™ — 0 a.s. Then for almost all

o = (X1, X»,...), there is an N(w)>0 such that for all n> Mw) and
m > N(w),

max |$(X)| < 27l — 1

and
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(3.20) 1 Fn— Fll <n/2.

For this w, using the same argument as in the proof of Theorem 3.1, one
can show that

m Vars [47%,.1(Br)] = m Vars [0, — 0,)1(Bin)] .
Hence by (3.15), what remains to be shown is that
Ex[((m" U I(Bim)] — 0 a.s.
Let 4 >0, and ¢ > 0, a > 0 be arbitrary. From

Ex[(m"” Uiy’ I(Bim)] < & + aPx((m"* Upt)" > )
+a B Im U KB

it suffices to show that
(3.21) Ex[|m"P Uk " I(Bin)] < ¢ < o0

for all n, m > N(w), since from Proposition 3.2(ii), P«((m'*U)* >¢) — 0
a.s., and ¢ and a are arbitrary. From (3.20), | UmI(Bin)| < || Fr — Fal|.
Hence (3.21) follows from

Ex[|m" Uk 1Bl = 2+ 8) [, 1" Pe(Im > Ubd(Bin)| > 1)t
<@ +8) [ (M Pe(m P Fh — Fill > it
<p2+ 5)[0oo ey

where the last inequality follows from (3.9). This proves the theorem. [

4. Discussions

(i) The choice of am. The sequence an in (2.3) can be chosen to be a
function of Xi,..., Xi». Apparently, all the results in Section 3 still hold as
long as (3.6) is satisfied for almost all Xi, X>,.... A reasonable choice is
an = max (p|0.|, c), where p and ¢ are positive constants. With this choice,
|0%. — B,| is truncated if it exceeds 100p%]0,].

(i) Comparison to variance estimators based on bootstrap quantiles.
From (3.5), another consistent estimator for o is 6; = (g% — ¢)*/(z1-,
— z,)°, where g and z are the t-quantiles of the bootstrap distribution and
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the standard normal distribution, respectively. However, the modified
bootstrap estimator 62 is much easier and cheaper to compute than é; (note
that the bootstrap estimators usually require Monte Carlo approximations).
According to Efron (1987), the Monte Carlo approximation of 62 usually
requires B = 100 ~ 200 bootstrap replications (see (2.1)), whereas the Monte
Carlo approximation of the bootstrap quantile g;* is more costly, requiring
1000 ~ 2000 bootstrap replications.

(iii)  The differentiability assumption. In Section 3, consistency of éa
was proved under the assumption that 7T is Fréchet differentiable. There
are some statistical functionals that are not Fréchet differentiable (or the
Fréchet differentiability is not known). In fact, results (3.4) and (3.5) (the
weak consistency of the bootstrap distribution) may hold under weaker
assumptions on T (e.g., Gill (1989)). However, the consistency of the
bootstrap variance estimators 6 and & for general functionals is still an
unresolved problem.

(iv) Extension to the multivariate case. Let T = (T,..., Tx), where Ti’s
are functionals from Z to the real line. Definition 3.1 in Section 3 can be
extended to 7 and 62 (2.2) has the obvious extension with 8, = T(F,).
Proofs of the consistency of 62 are the same as before.
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