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Abstract. A somewhat more general class of nonparametric estimators
for estimating an unknown regression function g from noisy data is
proposed. The regressor is assumed to be defined on the closed interval
[0, 1]. This class of estimators is shown to be pointwisely consistent in the
mean square sense and with probability one. Further, it turns out that
these estimators can be applied to a wide class of noises.
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1. Introduction

Recently, there have been many papers on the problem of non-
parametric estimation of a regression function g under a situation where a
random variable Y is recorded which depends on a design parameter
x € R? (“fixed design regression”). In this paper, for p = 1 we consider the
problem of estimating the following nonparametric regression function g
which is a completely unknown bounded real-valued function on the closed
interval [0, 1]. Let (x1, Y1), (x2, Y2),..., (X, Y») be observations according to
the nonparametric regression model

Yi=gx)+Z i=1,.,n,

where the errors Z; are independently and identically distributed (i.i.d.)
random variables such that

(1.1 EZi=0 and E|Z|°<w forsomea>1.

Without loss of generality, we assume that the design points x; satisfy
0=x0<x1<x2<-<Xn<xn+1 = 1, where all x; are known without error.
For these measurements a somewhat more general class of nonparametric
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estimators by delta sequences {g.m(x)} is proposed. We show that these
gwm(x) are pointwisely consistent in the mean square sense and with
probability one.

For fixed design regression with p = 1, many classes of estimators have
been proposed, including the kernel method (Priestley and Chao (1972),
Chen and Lin (1981), Gasser and Miiller (1984), Georgiev (1984a, 1985),
etc.), the nearest neighbor method (Georgiev (19845), etc.), the orthogonal
series method (Rutkowski and Rafajlowicz (1989), etc.) and the spline
method (Rice and Rosenblatt (1983), Eubank (1988), etc.). Georgiev and
Greblicki (1986) proposed the general family of estimators including the
estimators given by Priestley and Chao (1972), Gasser and Miiller (1979),
Chen and Lin (1981) and Georgiev (1984b). Ahmad and Lin (1984),
Galkowski and Rutkowski (1986) and Georgiev (1988) discussed the fixed
design regression with p > 1. Our method by delta sequences is a somewhat
more general method which includes the kernel method, the polynomial
approximation method and the characteristic function approach.

Stone (1977) has discussed the same class of nonparametric regression
estimators as that of Georgiev (1988) for the stochastic design model with
p > 11n which it is assumed that the Xi,..., X, are random variables.

The paper consists of four sections. In Section 2 we shall define a class
of estimators by delta sequences. Section 3 contains the results about weak
and strong pointwise consistency. In Section 4 examples of delta sequences
are given,

2. Estimators by delta sequences

In this section we propose a general class of estimators by delta
sequences.

DEFINITION 2.1. Let J be an interval of the real line R. A sequence
of bounded measurable functions {d»,m = 1,2,...} on J x J is said to be a
delta sequence on Jif each ¢ € Co°(J) and x € J

[ onx, ¢(Mdy — d(x) as  m—oo,

where J° is the interior of J, Cy (J) denotes the space of continuous
functions on J which are infinitely differentiable on J° and have compact
support in J, and all integrals are taken with respect to Lebesgue measure
throughout the paper.

We consider the closed interval J = [0, 1] throughout the paper. Set
Ai= (xi-1,xi] for i=1,...,n + 1. Our estimators of g are proposed by
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n
grm(X) = '21 KfA Om(x,u)du nand m=>1
= i

for each x e J, where {6, m =1} is a delta sequence on J satisfying the
following Condition A.

CONDITION A. ForeachxelJ
() supJ,16n(x.»)ldy <o,
(i1) fjém(x,y)dy — 1 as m — oo,
(i) [, 16n(x,»)|I(1x = y| > n)dy — 0 as m — oo for each > 0 and
(iv) sup |0m(x, ¥)| = O(m) as m — oo,

where / (Bj denotes the indicator function of B.

3. Consistency

In this section we shall show that the estimator g.m(x) is pointwisely
consistent in the mean square sense and with probability one (w.p.1). Let

3.0 y(n) =max {xi— xi-1|1 <i<n+1}

and m(n) be a positive integer depending on n. Throughout the remainder
of this paper Ci, C»,... denote appropriate positive constants.

LEMMA 3.1. (Asymptotic unbiasedness) Suppose g(x) is bounded
on[0,1]. If

3.2) y(n)—0, mn) - and m(n)y(n)—0 as n—oo,
then

Egumm(x) — g(x) a5 n—oo
at every continuity point x € [0, 1] of the function g.

PROOF. Fix any continuity point x €[0,1] of g. For notational
simplicity let m = m(n). It is easy to see that
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(3.3) Egnn(x) — g(x)

= 2 (g(x) — g()) [, Inx, )

+ ( 21 fA. Om(x, u)du— 1 ) g(x)
=1, + 1}, say.

By (3.1), (3.2) and Condition A(iv) we get

[, bn(x,u)du

=Cmyn)—0 as n—oo,
which, together with Condition A(ii), yields that

(3.4) L= [( S, 6mtoe, wydu — 1 ) ~f, n(x,u)du ] g(x) =0
as n— oo,

Fix any ¢ > 0. Since g is continuous at x there exists a positive constant
¢ = &(¢, x) such that

Ix—u|<&. and wed imply |g(x)—g(w)| <e.
Hence
(5 1K= 5 15— g I(x~ x| <&) [, 10n(x, 1) du
+ 3 Ig(e) — g H(Ixi— x| = &) [, [6n(x, )| d
<ef [onCeldu+ G 3 I(lxi— x1 2O [ 10n(xwldu,

where C, =2 sup |g(»)|. By (3.2) there exists a positive integer N = N(&)

such that y(n) < 6/2 for all n = N. Fix any n > N. Assume that |x; — x| = ¢
and u € A; for eachi=1,...,n. Then we get

é

[x —ul = |x—xi| — lu—xi| =& —y(n)>

which yields that
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¢

I(x — x| = é)f/a. |Om(x, 1) | dut ngl [ Om(x, u)ll( |x — ul >7) du .

Thus
(3.6) él I(Jxi— x| = é)fAl | Om(x, 1) | du Sfj|5m(x, u)| 1( |x — u| > %) du

for all n= N. Hence it follows from (3.5), (3.6), Conditions A(i) and A(iii)
that

limsup |1, | < Cse,
n—o

which yields that
(3.7) Il -0 a n—oo.

Therefore, the relations (3.3), (3.4) and (3.7) conclude Lemma 3.1. This
completes the proof.

THEOREM 3.1. (Mean square convergence) Suppose g(x) is bounded
on [0,1]. Assume the condition (1.1) holds for a=2. Then, under the
conditions of Lemma 3.1

E(@mn(x) —g(x))' =0 as n—oo
at every continuity point x € [0, 1] of the function g.
PROOF. Fix any continuity point x € [0, 1] of g. Since
E(Zumim (x) = g(x))" = Var (gumm (%) + (Egnmen(x) = 8(x))" ,
by Lemma 3.1 it is sufficient to show that

(3.8) Var (gumm(x)) =0 as n—oo.

It is easy to show that
n
(3.9 Var (gumn (x)) = Var (Z1) Z Amin) 5

where
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Amin)i :fA Ommy(x,)du  for i=1,...n.
By Conditions A(i) and A(iv) we get that
|@mimyil < Cim(m)y(n) for i=1,...,n

and

n
_21 |Gmenyi| = Ca for n=>1
i=

b

which implies that
(3.10) 2 aumi = Csm(n)y(n) .

Thus, from (3.2), (3.9) and (3.10) we obtain (3.8). This completes the proof.

To obtain the result about strong pointwise consistency we need the
following lemma due to Teicher (1985).

LEMMA 3.2. Let {X, Xn, n=>1] be i.i.d. random variables and
{an, ] <i<k,<oo, kyt oo, n= 1} an array of constants satisfying

max |auld = O(1/log n)
where 0 < d, 1, d, = O(n"*) for some a in (0,2] and
nglP{|X| > dn} <oo.

If1<a<2,d,/nl, EX=0and

M

kn
awd! "= o(1/log n), 2 anid? ™" = O(1/log k») ,

i=1

then
ks
_ZlaniX,- -0 wpl. a n—oo.
P

THEOREM 3.2. (Strong consistency) Suppose g(x) is bounded on
[0, 1]. Assume
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(3.11) y(n)y=0m") and m(n)=[n"]
for each fixed q € (0, min (1 — a', 27y,

where [a] denotes the largest integer not greater than a and a is as defined
in (1.1). Then

Gumm(x) — g(x) w.p.l. as n—-oo
at every continuity point x € [0, 1] of the function g.

PROOF. Fix any continuity point x € [0, 1] of g. Let m = m(n). (3.11)
implies (3.2). Since

gm(X) = 8(x) = (gum(X) — Egum(X)) + (Egnm(x) — (X)) ,

by Lemma 3.1 it suffices to show that
3.12)  gum(x) — Egum(x) = él anZi—0 w.p.l. as n—oo,
where

am:fA‘ém(x, wdu for i=1,..,n.

First we consider the case 1 <a<?2. Set k,=n and d, = n"". It follows
from Conditions A(i) and A(iv) and (3.11) that

(3.13) lani| < Cin?™' for i=1,..,n
and
(3.14) 2 laul < C for n=1,

i=1
which yields that
g-1+1/a

max |an|di < Cin

lsisn
Hence, by g < 1 — o' we get

max |ani|di = O(1/log n) .
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Let Z be a random variable whose distribution is identical with that of Z;.
It is easy to see that

3 PUZI > d = T diPIdS < 2" < di} < E| Z])" < oo
By (3.13) and (3.14) we get
S aid < Cont ' B Jaul = Gt
which, together with g < 2(1 — 1/a), implies that
él ahdi = o(1/log n) .

Thus, since all the conditions of Lemma 3.2 are fulfilled, Lemma 3.2
concludes (3.12). When a > 2, by Holder’s inequality we have that E|Z;|*
< oo. Hence Theorem 3.2 holds by the previous result with a=2. This
completes the proof.

Remark. By the use of the kernel method, Georgiev (1985) obtained
the strong consistency under the condition (1.1) with some a> 2. Thus
Theorem 3.2 includes the result of Georgiev (1985).

4. Examples

In this section we give several methods of estimating the regression
function g by the use of delta sequences {0m, m =1} on J with J=[0, 1]
satisfying Condition A.

(1) The kernel method: Let Ki(x), i=0, 1,2, be bounded integrable
Borel measurable functions on R satisfying

" Kdx=1 for i=0,1,2,
Ko(x)=0 on (0,00) and Ki(x)=0 on (—o0,0).

Let {Am, m = 1} is a sequence of positive numbers satisfying that A,, — 0 as
m — oo and A, = O(m). An is so-called smoothing parameter. Set

Im Ko(Ani(x —y))  for (x,y)eJ®xJ,
Om(x, ) ={ W Ko('(x—y)) for x=0 and yelJ,
M Ki(n(x—y) for x=1 and yelJ.
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Then {J., m = 1} is a delta sequence on J satisfying Condition A.
(2) The Histogram method: Let

Lix)=I((j—1D)/m<x<j/m) for j=1,..,m—1
and
In(x)=I((m—-1)/m<x<1),

where I(B) denotes the indicator function of B. Set
om(x,y) =m X [(x)[(y) for (x,y)exJ.
I=

This is a delta sequence on J with Condition A.
(3) The polynomial approximation method: Let

— 1
5m(x,y)={1‘(y—x)2}m/fl(l-tz)'"dt for (x,y)eJxJ.
Set

Om(x,y)  for (x,y)eJ° xJ

5m(x,y)={ =
20m(x,y) for x=0,1 and yeJ.

This {dm, m = 1} becomes a delta sequence on J satisfying Condition A.

(4) The characteristic function approach: Let
Om(x,y) = sin® m(x — y)/{nm(x — y)’} for (x,y)eJxJ.
Put

Om(x,y)  for (x,y)eJ° xJ

5m(x7y): =
20m(x,y) for x=0,1 and yelJ.

Then {d., m = 1} is a delta sequence on J with Condition A.
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Remark. Jm(x,y) in (2), and dm(x,y) in (3) and (4) are found in

Walter and Blum (1979).
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