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Abstract. We obtain Bahadur-type representations for one-step L-
estimators, M- and one-step M-estimators in the linear model. The order
of the remainder terms in these representations depends on the smooth-
ness of the weight function for L-estimators and on the smoothness of the
w-function for M- and one-step M-estimators. We use the representations
to investigate the asymptotic relations between these estimators. In
particular, we show that asymptotically equivalent /- and M-estimators
of the slope parameter exist even when the underlying distribution is
asymmetric. It is important to consider the asymmetric case for both
practical and robustness reasons: first, there is no compelling argument
which precludes asymmetric distributions from arising in practice, and,
secondly, even if a symmetric model can be posited, it is important to
allow for the possibility of mild (and therefore difficult to detect) depar-
tures from the symmetric model.

Key words and phrases: Bahadur representations, multiple regression,
robust estimators, uniform asymptotic linearity.

1. Introduction

Consider the usual linear model in which we observe Yi,..., Y,, where
(1.1 Yi=xi6o+7Z, 1<j<n,

with {x/ = (1, xj2,..., xp)} a sequence of known p-vectors (p=1), 6=
(0, Oo2,...,00p) an unknown slope parameter to be estimated and {Z;} a
sequence of independent and identically distributed random variables with
common distribution function F. Since we will not assume that F is
symmetric about some point, the model will not have a unique identifiable
intercept. Instead, we define an “intercept” for each estimator of 8, € R”
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which is a function of the estimator and F. Since we can center each
component of x; about its sample mean, there is no loss of generality in

taking 21 Xk =0, 2 < k < p. We suppress the consequent dependence of {x;}
=

on n for notational simplicity.

While there is an extensive literature on the relationships between
classes of location estimators, there is little beyond Jure¢kova (1977) on the
relationships between classes of regression estimators. The regression prob-
lem has content beyond that contained in the location problem in that the
slope parameters are identifiable when F is asymmetric. Thus the regression
problem can and should be treated separately from the location problem.
Recently, Welsh (1987a, 1987b) introduced a general class of one-step L-
estimators of the regression parameter , in the model (1.1). In the
discussion to Welsh (19874), Koenker raised important questions about the
relationship between these estimators and M-estimators (Relles (1968),
Huber (1973)) or one-step M-estimators (Bickel (1975)). In this paper, we
investigate the asymptotic relationship between these classes of estimators
and clarify some of the issues raised by Koenker’s discussion.

Let

Hew) =] hdi, 0<u<1,

be a fixed, bounded, signed measure on (0,1) with a weight function A
which is the sum of an absolutely continuous function and a step function.
Also let wy,...,wn be constant weights and 0 < g1 < - < g, < 1 for some
m < co. It is convenient to normalise so that

HO)+ 5 wi=1.

Then for any distribution function G define an L-functional
1 m

(12) Ti(G) =, G 'wdHw) + X wiG™\(g) .

where G~'(7) = inf {s: G(s) = 1}. Let rj= Y; — x/6,, | <j < n, denote the resid-
uals from 6; = (0, t72) € R?, where 7, = (7u1, 772) € R? is an initial estimator,
and set

Gi(y)=n" ZIr=y), yeR.

Following Welsh (19875), a one-step L-estimator of & is defined by
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(1.3) An = 0n + Te(Gr)a:
-0t 5[ =9 - GGy
+ B bl ulali = 61 @) - 0 ]
where ai = (1,0,...,0) € R?,

2 XX} [ W Gn(rp) + rgn‘.l w; } for a type I estimator

J

D, =
n
X'X = ZI XX} for a type II estimator
=

and ¢a(q) & d(q), 1 <i<m, with ¢(q)"' = IF '(q)/dq. It makes sense to
replace 7.1 by 0 after fitting (1.1) with an intercept and to adopt the
convention that G.(G.'(q)) = g because then A, = T(G,), the usual L-
estimator in the location problem ( p = 1). We discuss possible choices of 6,
and ¢, in Section 2. Alternative formulations of A, are given in Welsh
(1987b).

Let y:R — R be a fixed real function of the form

W = V/a + V/C + WS >
where y, is absolutely continuous with absolutely continuous derivative
wi(2) = dya(2)/dz, . is a continuous, piecewise linear function which is

constant in a neighbourhood of + « and ; is a monotone step function.
Then we define an M-estimator u, of o to be a p-vector satisfying

O,(n""*  ify,=0

(1.4) n % (Y — xjpn) o) =
AR O,(n""*)  otherwise

and
n'(pn — o — Tu(F)a)) = Op(1), as n—oo,
where o0, is a translation invariant and scale equivariant scale statistic

satisfying n'/*(6, — ¢) = Op(1) as n — oo, for some positive functional
o=0d(F)>0, Tu(F) is a real M-functional defined by

(L3) I vz~ Tu(F)) 0)dFz) = 0

and ai = (1,0,...,0) e R”. If y;=0, we obtain an estimator u, satisfying
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(1.4) by solving the system of equations
(1.6) ]21 xy((Y; — xjt)/ 0.) = 0 .

If w;+#0, then (1.6) may have no solution. In this case, if p is a real
function such that p’ = y is monotone increasing and skew symmetric, we
can use the argument from the appendix to Ruppert and Carroll (1980) to

show that the minimum of _21 p((Y; — xjt)/ a,) satisfies (1.4). Of course,
=

other criteria can be used to find estimators satisfying (1.4) in this case. The
requirement that  be decomposable into smooth functions and a step
function is not unduly restrictive and defines the class of M-estimators
which can be related to L-estimators.

A one-step M-estimator is the result of a single iteration from an
initial estimator 7, of a Newton-Raphson procedure for solving (1.4). We
define a one-step M-estimator to be

n
fn=Tn + An1j§1 x5y ((r; — )/ On)

where r;, 1 <j < n, are the residuals from 8, = (0, 772) € R”, 0, is a translation
invariant and scale equivariant scale statistic satisfying n"*(a, — ¢) = O,(1)
as n — oo, for some positive functional ¢ = ¢(F) > 0 and 4, is a generalised
inverse of

Z.l X% {wi((r; — t!)/ On)/ 0n + E1n} for a type I estimator
A, =1
(Yin + ) X'X for a type II estimator ,

where ¢, estimates ¢, defined in (2.4) and
I _,, & _ _
yin=n " 2 (= T+ 0 ) 0n) =yl = T = 1) on)}

The type I estimator is less appealing to work with because the analysis of
4, requires conditions on w; which are not required for M-estimators or
type Il one-step M-estimators. Consequently, in the sequel we will restrict
attention to type II one-step M-estimation.

In this paper, we investigate the behaviour of the vector differences
An— Un and A, — .. We are particularly interested in obtaining conditions
under which these vectors converge in probability to zero, in which case we
need to relate A and {(g;, wi): 1 <i<m} to w. In addition, we are interested
in the rate of this convergence.
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In the location problem (p = 1), the relationship between L- and M-
estimators has been studied by Jaeckel (1971), Rivest (1982), van Eeden
(1983) and Jureckova (1986) (see Jureckova (1986) for a review of the
earlier work). Essentially, these papers differ in the nature of the conditions
and the strength of the results. For example, Jaeckel (1971) and van Eeden
(1983) treat the scale as known whereas Rivest (1982) and Jure¢kova (1986)
treat the scale as unknown and Rivest (1982) and van Eeden (1983)
establish conditions for the asymptotic equivalence of A, and u, but do not
obtain a rate of convergence whereas Jaeckel (1971) and Jure¢kova (1986)
do obtain rates of convergence. The present results for the more general
regression problem are most closely related to those of JureCkova (1986).
The present conditions are of course slightly different but the nature and
type of result is similar to those in Jure¢kova (1986).

We approach the problem of relating L- and M-estimators by deriving
asymptotic Bahadur-type representations for these estimators and examin-
ing the order of the remainder terms in the representations. Of course,
these representations are of independent interest. The representation for 4,
is derived by extending the arguments of Welsh (1987b) using arguments
from Jureckova (1986). Representations for u, have been obtained by a
number of authors including Huber (1973), Jure¢kova (1977), Yohai and
Maronna (1979) and Jureckova and Sen (1984). These representations are
obtained under various conditions, usually without examining the order of
the remainder term (see Jurec¢kova and Sen (1984)). Representations for /i,
have been obtained by Bickel (1975) and Jureckova and Portnoy (1987).
We will derive new representations (including the order of the remainder
term) for M-estimators and one-step M-estimators which are particularly
useful for relating these estimators to L-estimators. The main technical tool
is the recent result on multiparameter stochastic processes established in
Jureckova and Sen (1989).

Finally, the regression quantiles of Koenker and Bassett (1978) can be
used to construct alternative L-estimators of 8y. General alternatives to 4,
have been considered by Koenker and Bassett (1978) and Koenker and
Portnoy (1987) while trimmed and Winsorised means have been considered
by Ruppert and Carroll (1980) and Jureckova (1983a, 19835, 1983¢, 1984).
We will not consider these estimators in this paper beyond noting that the
representations for these estimators can be applied to obtain results which
are analogous to those we present.

We introduce the notation and conditions we require in Section 2
before deriving asymptotic representations for L-, M- and one-step M-
estimators in Sections 3-5 respectively. Finally, in Section 6 we examine
the relations between these estimators.
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2. Notation and conditions

We assume throughout that the basic linear model (1.1) holds and that
the design sequence {x;} satisfies the following basic conditions:

CONDITION. (i) x;; =1 and 21 xxk=0,2<k<p;
=

() » " max | x| = O(1) and
<j<n
(i) n»' 2 |x|*=0(1) and lim "' 2 xxj =T
j= n—oo J=

for some non-singular matrix 7.

These are standard design conditions; Condition (ii) and the first part
of Condition (iii) are needed to obtain the order of the remainder term in
the asymptotic representations.

To obtain an asymptotic representation for 4,, we require conditions
on the initial estimator 6, and on F and A. It is convenient to treat L-
functionals and I-estimators as the sum of a smooth term depending on
h = ha + hs, where h, is absolutely continuous and A; is a step function, and
a quantile term depending on {(wi, g,): 1 <i < m}. If the support of A is a
proper subset of (0,1), we describe /& (and A,) as trimmed, otherwise we
describe A (and A,) as untrimmed. The conditions on F depend on whether
h is trimmed or not.

We will impose the following conditions:

CONDITION. (L1) There is an estimator t, € R”, satisfying n"/*(t, —
B0 — Toa1) = Op(1) for some fixed 7o € R, where @i = (1,0,...,0) € R?;
(L2) f(y) = dF(y)/dy is uniformly continuous, positive and bounded;

(L3) A, is bounded and satisfies f:’o { |51|1% |ha(z + w)| g dF(z) < oo, for
all0 <0 <do. If ho(u) #0 foru< @ oru > f, for some 0 < a < f < 1, then

[ IRy +otl— Fy - o} Pdy <, £>0,

holds;

(L4) h(uy=0foru<aoru>p,0<a<pf<I1,and A is a bounded
step function with a finite number of steps at a <s; < -+ < s. < ff; and

(L5) (i) there is a ¢n(gi) such that n'*{¢.(g) — &(g)} = O,(1), 1 <
i < m and (ii) f(y) = d*F(y)/ dy’ is bounded in a neighbourhood of F~ (g,

1<i<m.

Finally, the asymptotic representations for 4, involve the function
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@1 wi(@) =— [ Koz < y) — FO)(Fy)dy
~ £ twi/ d(g)}iloz = F'(g)) — a3

In Condition (L1) we permit 7, = (tx1, Tr2) € R to estimate an arbitrary
intercept 7o which may depend both on 7, and F. Although for one-step
L-estimators we discard the intercept component 7, and use 6 = (0,752)
€ R” as the initial estimator, the form of Condition (L1) emphasises that F
can be asymmetric and that using 6, does not entail that the regression
surface in (1.1) is constrained to pass through the origin. Under mild
conditions, Condition (L1) is satisfied by a rich class of estimators including
M-estimators (see Section 4). Condition (L2) is stronger than the smooth-
ness conditions required on F in the location problem but is required for
the weak convergence of the empirical process based on regression resid-
uals. The second part of Condition (L3) is a tail condition which is close to
requiring EZ* < oo. Under Condition (L5)(ii), it is straightforward to show
that the simple histogram estimator discussed by Welsh (1987b) satisfies
Condition (L5)(i). An alternative kernel estimator which also satisfies
Condition (L5)(i) under mild conditions is considered by Welsh (1987¢).

As noted in the introduction, we will restrict attention to M-estimators
and one-step M-estimators based on bounded y-functions of the form

Y=Yat WYt ¥s,

where y, is absolutely continuous with absolutely continuous derivative
wa(z) = dwa(2)/dz, w. is a continuous, piecewise linear function which is
constant in a neighbourhood of + oo and y, is a monotone step function.
Let 7 € R be a fixed number; we will take 7 = Ty (F) in Section 4 and 7 = 7o
in Section 5. Then we impose the following conditions:

CONDITION. (M1) There is a location invariant and scale equivariant
statistic o, > 0 satisfying n'*(c. — ¢) = 0,(1);

M2) | p((z-)/0)dFz) = 0and [ y((z — 1)/ 0 dF(z) <o,
(M3) For some k> 1 and do >0,

I { |21 sup sup |yi(e "z ~ 7 + )] 0) ] dF(z) < o0
and

[ {121 sup 1w - 2+ o) ' ar <o,
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for all 0 < 6 < dq;

(M4) . is a continuous, piecewise linear function with knots at
=00 =8y <81 <+ <8< Se+1 =00 which is constant in a neighbourhood
of + oo (so that ! is a step function with jump discontinuities at — oo =
So <81 < - <8 < 8cs1 =00 which equals zero in a neighbourhood of
+ o) and f(y) = dF(y)/dy is bounded in neighbourhoods of the disconti-
nuities of y¢;

(MS5) ws(2) = 2 dil(Qi1 <z =< Qu1), where —oco= Qo< Q1 < -+ < Qi+
=0 and do < dy < -+ < di and f() = dF(y)/dy and f'(y) = sz(y)/dy are
bounded in a neighbourhood of 00, 0</<k.

The asymptotic representations for u, involve
22 =o' Wi~ 10) + iz - D/ R)
23 p=o'[_ - OG-0+ vilz - D] IdR)
(2.4) &= Z (di— di-)f(c Qi + 7)

and
Q25 &= Ii (d— di-)oQ + Df(eQi + 7).

We will assume that the integrals y; and y; are finite and that y; + &; > 0.

Condition (M1) is the usual condition imposed when the scale is
unknown. Two possible choices of o, are investigated by Welsh (1986).
Condition (M3) is essentially a moment condition which holds if w/ is
bounded and either

(@ wi(z)=0 for z<a or z>b —-w<a<b<cw

or
() [1z1*“dRz) <, forsome &> 0

holds. We will not prove that (a) or (b) imply Condition (M3) because the
proofs are straightforward. Conditions (M4) and (M5) show explicitly the
tradeoff between the smoothness of i and the smoothness of F. The above
conditions are chosen for the ease with which they can be reconciled with
Conditions (1.3) and (L4).

If o is known or can be factored out of the estimating equations (1.4),
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we can omit Condition (M1) and replace (M3) by
(M3")  For some k > 1 and do >0,

[~ {sup 1vie— e+ o) [ dra) <o».

for all 0 < < do.
For one-step M-estimators, we will impose Conditions (L1), (M1)-
(M5) with t = 7o and the additional condition

CONDITION. (S1) There is an estimator ¢;, satisfying n4(Em— &) =
Op(1).

This condition is related to Condition (L5)(i) since it involves estimat-
ing the density at a finite number of fixed points.

3. Representations for one-step L-estimators

The representations will be derived from the asymptotic linearity
results of Jure¢kova and Sen (1989). The following result is extracted from
Theorems 2.1, 3.1 and 4.1 of Jure€kova and Sen (1989).

LEMMA 3.1. (Jured¢kova and Sen (1989)) Ler y be a bounded
function of the form

V=Yt Wet s,

where w., is absolutely continuous with absolutely continuous derivative
wa(2) = dwa(2)/dz, y. is a continuous, piecewise linear function which is
constant in a neighbourhood of + o and y; is a monotone step function.
Suppose that Conditions (i)-(iii) hold and ai =(1,0,...,0) € R?. Then if
Conditions (M3’) and (M4) hold with t =0 and ys =0,

sup
|t|=B

73 ow(Z =0 ] o) — pZ )+ X X | = O™

for each fixed B < o, where y: is defined in (2.2) with t = 0. If Condition
(M5) holds witht=0and y.= y.= 0,

sup
|tl<B

n' 3 uiu(@ - xi0]0) - Wz o)}

+n PaX Xt | = 0p(n ),
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Jfor each fixed B < oo, where &, is defined in (2.4) with t = 0.

It is convenient and instructive to consider separately the cases m = 0
and % = 0 before considering the general class of one-step L-estimators. For
the case m = 0, we will require the following preliminary lemma which is an
extension of Lemma 2 of Welsh (19874);

LEMMA 3.2. Suppose that Conditions (i)-(iii) and (L2)-(L4) hold.
Then if m =0,

sup | ™! £ 3 [ (RO + 10~ ()~ nxif )
HE)d | = 0™,
and
sup | ' JZI [ UZi<y+n 0 — Fy + n”xr)
- 122 )+ FOWMEO)dy | = 0,7
for any fixed B> 0,

PROOF. The proof of the lemma depends on whether 4 is trimmed or
not; we give the proof in the trimmed case and note that the proof in the
untrimmed case is slightly simpler. Without loss of generality, suppose that
h has a single discontinuity at so. Let So = F~'(s0). Then fix 7 € R” and let

n=n 1/2xft. Ify >0,

SR+ 1) = FO) =~ RO |
<|[2 L 00+ 0 - somrodoay |
= | J2 L e = oy - meropsavar |
<[5 [ I - o) - WF) | dvd )

So+n'/? 7
+fso‘nf~z I IEG — 0) = RO dod ()

oL IREY — ) — W) dod Fy) .
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Now for K, K> < oo,
—_pli2

So-n nj
L7 7 I - o) — hEG) | dod ()

So-n'? nj
:f_w fo |ha(F(y — v)) — ha( F(y))| dvd F(y)

fso—n '“2fr,,
=J . .

F(y-v)-Fl

IRy -0 > FOR S h(F) + udu

+ I{F(y — v) < F(»)}

ST hR) + wdu | dod ()
So—rf”z 1
<k [T 1Ry - v~ F)ldodF()
=< Kzf_i:_ foﬂj vdvdF(y)

<n 27K\ x| 1) .

Similarly,

Jo S IRy = o) = hE|dodF(y) < 72 Kall Pl

Also, since A is bounded, for K < ec,

So+n 2 nj =
S T IRy = o) ~ RF)|dvdR) < 7' Kl

Combining these bounds, we have that for K < o,

f: {F(y + ) — F) — nf O(F)dy | < Kn”'(1x1%111 + |1 11]) -

We obtain the same bound if 7 <0 so

sup
|t|<B

nt 2o [ (R +n ) — FO) = i ) (RO dy
<n 'K 3 (51" B + %1 B)
= o’

by Condition (iii).
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Now let y. be defined by (2.1) with m =0 and o = 1. Then y; is an
absolutely continuous function which satisfies Conditions (M3’) and (M4)

with 7 = 0. Also,

I wi@dra) = [ hFR2)dFe) = HQ)

so by Lemma 3.1 and the first part of the present Lemma,

su “12x)
[t|<B

n' Zl xjf{I(Zij+ n'xity— F(y +n
~

~ 2= )+ FOMMEO) |

n' 3 x5 [z =y + ) - 2= Oy

< sup
HESY
+n P H(DX Xt ’
+sup | 2 [ (R + n7Px0) = FOIACFO)dy
—nPH()X'Xt '
<sup | 77" & 5 tpa(z - 0 — @)+ m PHOX K |
+sup | nt 2 xJ (Fy + nPxg6) - Fy)
H= J=
— n xitf () h(F(y))dy
=0,(n"). O

The following theorem generalises Theorem 1 of Welsh (19875) and
Theorem 2.1 of Jure€kova (1986). The proof extends that of Theorem 1 of

Welsh (1987b) using the technique of Jureékova (1986).

THEOREM 3.1. Suppose that Conditions (1)-(iii) and (L1)-(L4) hold.
Let a; = (1,0,...,0) € R?. Then if m = 0 in (1.3),

b= 0= Tu(F)ar = (X'X)" & xpu(Z/0) + 0,07,
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where T.(F) is defined in (1.2) and y is defined in (2.1).

PROOF. We prove the result for type II estimators; the proof for type
I estimators is similar. Write

WX X~ 00~ To(F)a) ~ 1 %, xw1(Z)/0)
:wé%hmf@+mmynw)
~[ 11 = ) ~ GG ()dy
+J e =)~ FOWREOy |
Let d; be any fixed component of x;, 1 <j < n, and, writing d; = d - d if

necessary, take d;=0, 1 <j<n, without loss of generality. For d =
n' 21 d;> 0, put
=

0 =0nd)" E ditr=y),  P.0)=(d)" X AHZ=)
and
Po(3) = (nd)" %, diF(y + 3(6n— 60)

Arguing as in Welsh (19875), we see that the result will hold if we can show
that Ri= Oy(n’"), i = 1,...,4, where

Ri=[_ We,r(3)(Gn(y) - F)}dy ,
with

{H(F(y)) — HG»)}/{G(y) — F(»)} — h(F(y))
We.r(y) = if G(y) # F(y)

0 otherwise
R = [ {0:(3) = Pa(y) = Pu(y) + FOMM(Ga(y))dy ,

&=I3Euw4uw—nummm@»400mw
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and

Ro=n"' & x| (F(y+ x(6, - 00) - Fy)
= X{(0n — 60)f(Y)}H(F(y))dy .

Suppose first that Conditions (L3) and (L4) hold so 4 is trimmed.
Then there exists — oo <a<b <o such that for sup |G(y) — F(»)| <
y

min (a, 1 — f), we have W r(y) = h(G(»)) = h(F(y)) =0 for y < a or y>b.

That is, for n large enough, the range of integration of the integrals in

Ri-R4 can be restricted to [a, b]. Without loss of generality, suppose that 4

has a single jump discontinuity at a < so < f. Let So = F~'(s0) s0 a < So < b.
For n sufficiently large,

IR =[] | Wa, s(0Gr(2) — Fo)lldy

T We (G () ~ F»)}Idy
I Wer r(HGH() ~ FO)}dy

So

L We, s Ga(3) — Flldy

Now with K a generic positive constant,

-2

So—n"
[ 1We, r(Guy) — Fpllay

= 16n0r > Fon [ 1) + ) - HEGY

F G < FON S, THCE) + ) — W)l du ] dy

-Fly)

<[ [ 1G> Fo) [ | [ mF) + vy | du
0 0
FHGA) < FON gy g |1 HED) + 0 | |
k[ [ KGu(») > FON [, udu

G <FO) [ (- u)du] dy

Guly)- Fly)
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2 -12
= Ksup [Gn(y) = FY)I"[So—n ™ = al
-1
= OP(n ) s

by a result of Koul (1969) and Bickel (1973) (see (3.4) of Welsh (19875)).
Similarly,

b -
[\ e 1 We sONGA(y) — F)}dy = Op(n™).
Also, We r(+) is bounded so

[ WG ) ~ Flldy

_12
0~ n

< Kn''? sup | Ga(y) = F»)| = Op(n’"),

s0
|Ril = Op(n ).

Similarly,

Rl = 0,17 [ 1H(Ga(3) — HE)\dy
< 0, [ " 1Ga(y) - F)ldy + 0,7
Y0, [] 2 1Ga(y) ~ FO)ldy
=0,(n’").

Finally, R, = O,(n ') and Rs = Op(n" ') by Lemma 3.1.
Now suppose that the second part of Condition (L3) holds. Then

|Ri| = sup | Wa.r()| [ 1Ga(3) — FO»)ldy
< sup | Ga(y) = FD)| Op(n” ")
= Op(n—l)

by Lemma 1 of Welsh (19875). Similarly, R; is O,(n""). As before, R, and
R are O,(n" ') by Lemma 3.2 and Theorem 3.1 is obtained. [J

The quantile component of the one-step L-estimator may now be
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treated in a straightforward manner. We have the following result.

THEOREM 3.2. Suppose that Conditions (i)-(iii), (L1), (L2) and (L5)
hold. Let a1 = (1,0,...,0) € R”. Then if h =0 in (1.3),

b= o= Tu(F)ar = (X'X)™" 2 xpu(3/0) + Op(n™)

where TL(F) is defined in (1.2) and . is defined in (2.1).

PROOF. The result will follow if we can show that for a fixed g,
0<g<«<l,

G 7 2 5lGi (9~ F @) + 6. — )
— (7= Gi'(9) — g}/ dn(q) ~ {I(Zi =< F™'(9)) — g}/ $(q)]
=—n"' £ x5l = Gi\(@) - 12 = F™'(g)
- $(@)(Gr (@)~ F™'(@ + %0 — 00)1)] $(a)
@~ dul@) I T wlI( = 6 (@) - g}
= 0,(n".

Now, by Theorem 1 of Welsh (1986) and a result of Koul (1969) and
Bickel (1973), we have that

n 5l = Gi'@) - 4} = O0p(r )

so the second term in (3.1) is O,(n **). To complete the proof of Theorem

3.2, we need to show that the first term in (3.1) is O,(n **) and this will
follow if we can show that for any fixed y € R,

sup | 7' X x{HZ <y +n i — (Z= ) - n PRy} | = 0,07,

lti1<B

for any fixed B> 0. For fixed y € R, let w(z) = (z<y). Then Condition
(M5) holds and &, = f(y) so the result follows from Lemma 3.1. O

Combining Theorems 3.1 and 3.2, we immediately obtain the following
result for the general class of one-step L-estimators.
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THEOREM 3.3. Suppose that Conditions (1)-(iii) and (L1)~(L5) hold.
Let ay =(1,0,...,0) € R?. Then

In= 00— Tu(F)ar = (X'X)" £ xa(3/0) + Op(n”)

with
1 ifm=0
- 3/4 else,

where Ti(F) is defined in (1.2) and w1 is defined in (2.1).

4. Representations for M-estimators

It is again convenient to consider the cases in which y;=0 and
w.= w.=0 before considering the general case ¥ = w,+ y.+ ys. The
representations will be derived from the asymptotic linearity results of
Jureékova and Sen (1989). The following result is extracted from Theorems
2.2, 3.2 and 4.2 of Jurec¢kova and Sen (1989).

LEMMA 4.1. (Jure¢kova and Sen (1989)) Suppose that Conditions

(\)—(iil) hold, Tm(F) is defined in (1.5) and ai = (1,0,...,0) € R”. Then if
Conditions (M2)-(M4) hold with t = Tu(F) and y; =0,

sup sup | n' T xly(e™ (2~ Tu(F) = n "xjt)/ o)

[11=B) |u|=B,
—w((Z— Tu(F))[0)} + " ("' X "Xt + oyauar) | = Op(n)
for each fixed Bi, B, < oo, where y: and y, are defined in (2.2) and (2.3),
respectively, with ©t = Ty(F). If Condition (M5) holds with t = Tu(F) and
!//a = V/C = O’

sup sup | n' 2 ox{p(e” (2= Tu(F) = " xjn)/ o)

|[1|<By |ul=B,
— w((Zi - Tu(F))| o)} + 1" (0 & X "Xt + o&ua) | = Op(n ),

for each fixed B\, B, <, where &, and &, are defined in (2.4) and (2.5),
respectively, with t = Ty (F).

We are able to prove the following theorem for M-estimators.
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THEOREM 4.1. Suppose that Conditions (1)-(iii) and (M1)-(M4) hold
with © = Tu(F) defined in (1.5). Let ai = (1,0,...,0) € R”. Then if y;=0,
there exists a solution u, of (1.6) satisfying

@.1) 1\t — 0o — Tra(Far| = 0,(1) .

Moreover, for any solution of (1.6) satisfying (4.1),

4D b= Tu(F)a =3 (X'X)" £ xp((Z— Tu(F)/0)
= 910010 = 0) + Op(n ),
where y1 and y: are defined in (2.2) and (2.3), respectively, with t = Tu(F).

PROOF. Let % = {r e R”: || = B} for some fixed B> 0 and define
E(t,0)=n"""? % xw((Z— Tu(F)—n xi)e), teR?, o>0.
=
Notice that

(43) B (= 00— Tu(F)a), o) = ™" &, (Y, — i) )

so that n'*(u, — 6o — Tw(F)ay) is a solution of KE(t,0,) = 0 if and only if u,

is a solution of (1.4). The result (4.1) will follow from result 6.3.4 of Ortega
and Rheinboldt ((1973), p.163) if we can show that #'E,(z, 0,) < 0 for t € &
in probability.
Now for K > 0,
P{t'E,.(t,0,) <O for all t € FB}
> P{t'Eq(t,0n) < — K/2 for all 1 € A}
> P{t'Eq(0,0) — p1t'Tut — y2n"*(0, — 0)t'a1 < — K for all t € B}
— P{'E.(t,04) — V'E(0,0) + y:1' Tt + y2n'*(0, — 0)'a1 > K2
forallte A},
where I, =n 'X’X. Let £¢>0 be given. Then if Amax(I) 1s the largest
eigenvalue of [,
P{U'Ex(0,0) — y1t'Tnt — y2n"* (0 — 0)t'ar < — K for all t € B}
> P{t'E,(0,0) — y:n"* (0, — 0)'a1 < y1B*Amax(I) — K for all t € B}
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> P{B| E.(0, 6) — y2n"*(0n — 0)'a1| < p1B*Amax(I) — K}
> P{| E.(0,0)| < (71BAmax(I) — K/ B)/2}

— P{|y:n"*(6x — 0)| > (1 BAmax(I') — K/ B)/2}
> 1 — 4E| Ex(0, 0)’(1 Bluax(I) — K| B’

— P{|y:n"* (00 — 0)| > (y1Bhmax(I) — K| B)/ 2}
=>1—-¢/2

for K large enough, and

P{'Ex(t,0,) — V' En(0,6) + p1t'Tnt + pan"*(6, — 0)'ar > K/ 2 for all t € B}
< P{| Ex(t, 6n) — Ex(0, 6) + p1Tnt + y2n"*(0n — 0)a1| > K/ 2
forallre %}

<P ﬁ}lsg | Ex(2, 6n) — En(0,0) + y1lnt + yznl/z(o*,, —o)a1| > K/2B
<el2
by Lemma 4.1, so
P{YE,(t,0,)<0forallte B}=>1—¢
and (4.1) obtains.
To complete the proof of Theorem 4.1, replace ¢t by n'“(un — 6o —

Twm(F)a:) and u by n'* log (0,/0) in Lemma 4.1, apply (4.3) and rearrange
the remaining terms. [J

1/2

Now consider M-estimators based on y;. We are able to prove the
following analogue of Theorem 4.1 for the case that w, and w. vanish.
Since y; is not continuous, the proof uses an argument of Jure¢kova (1977)
which exploits the monotonicity of ;.

THEOREM 4.2. Suppose that Conditions (1)-(iii), (M1), (M2) and
(M5) hold with © = Tu(F) defined in (1.5). Let ai = (1,0,...,0) € R”. Then
if wa=w.=0, it follows that for u, satisfying (1.4),

(4.4) n"*(ptn — 0o — Tra(F)ar) = O,(1) .

Moreover, for any u, satisfying (1.4) and (4.4),
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(45 == Tu(Far= &' X'X)" 3 xp(Z - Tu(F))/0)
~ &' &a(on— o) + Op(n Y,
where 1 and &> and defined in (2.4) and (2.5), respectively, with t = Ty(F).

PROOF. As in the proof of Theorem 4.1, define
E(t,0)=n""* 2 xy(Zi— Tu(F) - n ’xin))o), teR?, ¢>0.
=

Then it follows from (1.4) that for any ¢, K > 0, there is an 1o > 0 such that
for n > ny,

P{| Ex(n"*(ptn — 6o — Taa(F)ar), 00)| = K} <e
and hence for B, K > 0 that,
P{n'*|pn — 60 — Tsa(F)a1| = B}

< P{ Iilng | En(2, 0n)| < K]
+ P{ n"*|ptn — 6 — Taa(F)ai| = B, lilng | Eit,00)| = K
= P{ lilni; | En(t, on)| < K] +e.

If |¢| = B, put v = Bt/ |¢] so that |[v] = Band ¢t = tvo with 7 = |¢|/ B> 1. Then

| En(t, 0n)| = — t'En(t, 61)/ | 1]
= — U’En(TU, Jn)/ B
>—-Vv'E,(v,0.)/ B

as — v’ E,(tv, 0,) is non-decreasing in 7. Consequently, with I, = n” ' XX,
P{ |iz|n>f3 | E(t, 00)| < K}

< P{ |i1n=t;9 —V'E\(v,0,) < KB }
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< P{ |.i);n:f3 — VEA(0,0) + EwTw + En'(0, — o)'a1 < 2KB }
+ P[ |li,¢nif3 -V E,(v,04) < KB,
inf — vE(0,0) + EwTw + En'* (o, — o)v'a; > 2KB } )
If Amin(Z7) is the smallest eigenvalue of I,

P{ inf | Ex(t,0n)] < K}
< P{ — B|En(0,0) — &0 (0n — 0)ar| < 2KB — E1B Amin(T)}

+ P{ sup V'Ex(v, a,) — V'E,(0, 0)

ol =B
+ EWw — En' (o, — o)v'ay > KB }
< P{| Ex(0, 0) — &an" (0w — 0)a1] > BEiAmin(I') — 2K}
+ P{ sup | Ex(v, 0) — En(0,0) + EwTw + En' (00 — 0)ar] > K
<e

for B large enough, for any ¢ >0, by Chebychev’s inequality and Lemma
4.1.
The representation (4.5) follows from (4.4), (4.3) and Lemma 4.1. (]

Combining the above results, we immediately obtain the following
result for the general class of M-estimators.

THEOREM 4.3. Suppose that Conditions (i)-(iii) and (M1)-(MS5) hold
with ©= Tu(F) defined in (1.5). Let ai=(1,0,...,0) € R”. Then if v is
either continuous or monotone, it follows that for u. satisfying (1.4)

(4.6) n"*(tn — o — Tra(F)ay) = 0,(1) .

Moreover, for any u, satisfying (1.4) and (4.6),

= bo = Tu(F)ar = (1 + &' (X'X)" £ 59(Z~ Tl F)/0)

— (1 + &) 2+ Eai(on — 0) + Op(n™°)
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with
1 ifys=0
s —_—
3/4 else,

where y1, v2, &1 and & are defined in (2.2)-(2.5), respectively, with 1=
Tu(F).

5. Representations for one-step M-estimators

Asymptotic representations for one-step M-estimators can be derived
from the asymptotic linearity results of the previous section. For the
reasons noted in the introduction, we will restrict attention to type II
estimators and obtain analogues of Theorems 4.1-4.3 for these estimators.

THEOREM 5.1.  Suppose that Conditions (1)-(iii), (L1) and (M1)-(M4)

hold with T =10. Let ai = (1,0,...,0) € R”. Then if ji, is a type 11 one-step
M-estimator and ys =0,

fn = B0 — {70 + y1' EY((Z — ©0)/ 0)}a
=50 £ 50 (Z— w)]0) - Bu(Z~ )/ 0))
~ 91'92(0n — Qa1 = Y1 EY((Z — )/ 0)y1n — p1)as + Op(n')
where v\ and y, are defined by (2.2) and (2.3), respectively, with T = 7.
PROOF. Notice that

fin— 00 — {10 + 1 Ey((Z — 10)/ 0)}an

= T, — 6o — Toa
FTCX) ! E 5w~ ) o) — Bu(Z— )] o)}
+ G = 7 Ep(Z - w)/ o)

=) [ X X 00— ) + £ ol - 7))o

— Ey((Z — )/ 0) — Ey((Z — 1)/ 0)} ]

+ Y1a(y1n — y1)(Tn — B0 — Toar)
— G191 (710 — Y@ Ew((Z — 10)/ 0) .
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Now
' 2 (5= t)/ 0n) = Ey((Z = 1)/ )} + 1 1 X X(Tn — b0 — oar)
=n"' 2 5{((Z - w)/0) ~ EW(Z ~)/0)}
— 12(0n — 0)as + Op(n ),
by Lemma 4.1, so the result will follow if we can show that
Yin— 1= Op(n ).

But

1 _,,x _
ym—yi=—n 72 j§1 (5=t + 1 )/ 0n)

—w((rj =t — 1 D)) on)} — 1

:%WWQWWﬁuﬁnmmm—w@—mm»
+ % 21X (tn — 6o — Toar — 1 2a1) + y2(0n — 0)}
ﬂ%pggwﬁ_m+ﬁmmm—w@—mm»
- % X (tn — 6o — Toar — 1 ar) + y2(0n — 0)}

= Op(n ")

by Lemma 4.1, so the result obtains. [

Condition (S1) ensures that we can estimate &; so by a very similar
argument to that used to prove Theorem 5.1, we immediately obtain the
following two theorems.

THEOREM 5.2. Suppose that conditions (1)-(ii1), (L1), (M1), (M2),
(M5) and (S1) hold with ©=1o. Let at=(1,0,...,0) € R”. Then if ji, is a
type II one-step M-estimator and y.= y.=0,
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fin = 60 — {0 + &' Ey((z — 1)/ 0)}an
=& XX 3 52 - w)0) - (2 - w)/0))
= &8 (00— o)1 — ETEY((Z — 10)[ 0)(E1n — ED)ar + Op(n ™),
where &, and &, are defined in (2.4) and (2.5), respectively, with T = 0.
THEOREM 5.3. Suppose that Conditions (i)-(iii), (L1), (M1)-(M5)

and (S1) hold with t = t,. Let ai = (1,0,...,0) € R”. Then if jl, is a type 11
one-step M-estimator,

= 00— {0+ (1 + €0 Ep(Z - w)]
=01+ &)X E 5@ - w)/0) - By((Z - 7))}

— (1 + &) (g2 + E)on — o)y
— (1 + &) PEW((Z — 1)/ 0)(yin + Ein = 31 — Ear + Op(n”°)

with

1 fys=0
3/4  else,

S =

where 1, y2, &1 and &, are defined in (2.2)-(2.5), respectively, with t = 0.

6. Asymptotic relations

In this section, we examine the asymptotic relationship between L-,
M- and one-step M-estimators and, in particular, give conditions under
which they are asymptotically equivalent. However, it is worth keeping in
mind that there are important differences between the classes of estimators.
In L-estimation, observations are weighted according to their position in
the sample while in M-estimation, observations are weighted according to
their magnitude. A consequence of this distinction is that while L-estimators
are naturally scale equivariant, M-estimators usually require a concomittant
scale estimate to achieve scale equivariance.

It follows immediately from the results of Sections 4 and 5 that M-
and one-step M-estimators will be asymptotically equivalent under the
conditions of Section 5 provided 7o = Tx(F) defined in (1.5). Except in the
case that F is symmetric, this condition will usually only be satisfied if
7, = un! Notice that this is true for the slope as well as the intercept.

Now consider the relationship between L- and M-estimators. It is
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apparent from the results of Sections 3 and 4 that asymptotically equivalent
L- and M-estimators will be related through A, {(wi,q): 1 <i<m} and w.,
{(d, Q)): 1 <1< k}. In fact, it follows that given an L-estimator 4, based on
h, {(wi, g:)): 1 < i< m} we can construct a related M-estimator u, by taking

we(z) = — [ loz < y) — FO)W(F()dy ,

& wWiqi u wi
——- X ——, 0<lsm-1
=1 plq) = (g
di=
% Wiqi B l:m
=1 d(qi)

and
O=Flq)o 1<I<m.

Conversely, given an M-estimator u, based on w., {(d, Q): 1 <[<k}, we
can construct a related L-estimator A, by taking

h(w) = o 'wi(F W)/ o),
wi=(di—di-)f(6Q), 1=i<k

and
gi = F(aQy), 1<i<k.

For simplicity, we will restrict attention to the case that h, {(w;, g:):
1 < i< m} is given. The results below give conditions under which the slope
components of related estimators are asymptotically equivalent. For the
intercept components of related estimators to be asymptotically equivalent,
we will additionally require that ¢ is known or that y» = £, = 0, where y,
and &, are defined in (2.3) and (2.5), respectively. The first condition is
often unrealistic and the second is satisfied when F is symmetric, . is
antisymmetric and {(d;, Qi): 1 < /< k} are appropriately chosen.

It is interesting that the tail conditions for M-estimators are different
from those for L-estimators. For untrimmed L-estimators, we require
Condition (L3), that is

[~ | sup stz + wl | amt) <o
uj=o

and
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[ [Fo+ofl - Fy— o} dy <o for >0,

However, for related M-estimators, we require
(E) | wi(z/6)dF(z) < o, and for some v > | and do > 0,

[} 12 sup sup e e + ) | o) <o

[0]<d |ul<

and
f: [ 7 |s1’1% |ha(z + u)| } dF(z) <o, forall 0<d=<do.

As noted in the introduction, these conditions hold if 4 is bounded and
trimmed or bounded and ffoo |z|2”dF(z) < oo, for some & >0, holds. This

moment condition and the tail condition for L-estimators are closely
related (compare them when F'is regularly varying) but are not in general
identical.

The following result is for the case that m = 0.

THEOREM 6.1.  Suppose that Conditions (i)-(iii), (L1)-(L3), (M1)
and (E) hold. Let a; = (1,0,...,0) € R”. Then if m = 0 in (1.3), there exists a
related M-estimator u, such that

An = tin — Te(F)ar = y1'y2a1(6, — 6) + Op(n V),

where TL(F) is defined in (1.2) and y, and y, are defined in (2.2) and (2.3),
respectively.

PROOF. The representation for A, obtained in Theorem 3.1 holds so
the result will follow if we can show that the conditions of Theorem 4.1
hold with y = w;. Now
Eyi(Z]o)=0

so Tm(F) = 0. It is straightforward to show that these conditions do in fact
hold. J

For the case that & vanishes, we have the following result.

THEOREM 6.2. Suppose that Conditions (i)-(iii), (L1), (L2), (L5) and
(M1) hold. Then if y.=0 in (1.3), it follows that for the related M-
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estimator u, satisfying (1.4),
I = 1 Te(Fay = &' Ear(on — 0) + Op(n”)

where T.(F) is defined in (1.2), &1 and & are defined in (2.4) and (2.5) with
=0, respectively, and ai = (1,0,...,0) € R”.

PROOF. The result will follow from Theorems 3.2 and 4.2 if we can
show that Conditions (M2) and (M5) hold with 7 = 0. It is straightforward
to show that these conditions do in fact hold. O

Finally, we note that we can combine Theorems 6.1 and 6.2 to obtain
asymptotic equivalence results for L- and M-estimators with both a discrete
and a continuous component and that results in which ¢ is treated as
known can be derived from the present results in a straightforward
manner.
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