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Abstract. The empirical Bayes approach to multiple decision problems
with a sequential decision problem as the component is studied. An
empirical Bayes m-truncated sequential decision procedure is exhibited for
general multiple decision problems. With a sequential component, an
empirical Bayes sequential decision procedure selects both a stopping rule
function and a terminal decision rule function for use in the component.
Asymptotic results are presented for the convergence of the Bayes risk of
the empirical Bayes sequential decision procedure.
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1. Introduction

Empirical Bayes theory as introduced by Robbins (1956) and later
developed by Robbins (1964) and others (see Maritz (1970), Suzuki (1975)
and Susarla (1982)) deals with a sequence of independent repetitions of a
given statistical decision problem, called the component problem, where for
each problem in the sequence the prior distribution is the same. The
components to which the empirical Bayes approach for multiple decision
problems have been applied, apart from the fixed sample size case, are
varying non-random (see O’Bryan (1972)) and varying random (see Laippala
(1985)) sample size cases. A notable work on the fixed sample size two-
action with linear loss component is given by Johns and Van Ryzin (1971,
1972), which was generalized by Gilliland and Hannan (1977) and Van
Ryzin and Susarla (1977) for general multiple decision problems. In this
paper, we consider the empirical Bayes theory with a sequential statistical
decision problem as the component. The idea of empirical Bayes problems
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with sequential components was investigated by Gilliland and Karunamuni
(1988), where a finite parameter space case was considered. Furthermore,
Karunamuni (1988, 1989) studied empirical Bayes linear loss two-action and
squared error loss estimation problems in the context of sequential compo-
nents. Here we will exhibit an empirical Bayes sequential decision (EBSD)
procedure for general multiple decision problems, generalizing the work of
Karunamuni (1988).

With the sequential component, an EBSD procedure selects both a
stopping rule and a terminal decision rule for each problem. Therefore, the
sample size for each problem in the sequence of repetitions is determined by
a sequential decision procedure. The EBSD procedure, which operates with
a fixed but unknown prior, utilizes the information accumulated from
earlier experiences of the same decision problem in order to determine the
terminal decision rule and the terminal sample size in the current decision
problem.

The treatment in this article can be thought of as a generalization of the
following important practical situation in which testing of two hypotheses is
relevant.

Consider lots, each containing N items. In order to decide whether a lot
should be accepted or not, it is customary to sample r items from it and to
accept it when the number of defectives in the sample does not exceed some
specified constant ko. Let & be the proportion of defectives in the lot. Assume
that # is a random variable which varies from lot to lot, and distributed
according to a distribution function G. Let ¢ be the constant cost for
sampling an item. Let X, i=> 1 be the observations, where X,=1 for a
defective item, and X; = 0 for a non-defective item. We shall assume that
sample size r is small as compared to the lot size N, and thus assume that,
conditional on 6, X,, Xz,..., are ii.d. Bernoulli random variables with
parameter 6 (this assumption is natural in sampling inspection; see e.g.,
Wetherill (1975)). Let ao denote the action of accepting the lot and a; the
action of rejecting it. Let the loss functions be L(ao,8) = a8, a >0 and
L(a,0)=5b(1—0), b>0. Then the action would be to accept if 6 < b/
(a + b), reject it if @ > b/(a + b) and take either action when § = b/(a + b). It
seems rather reasonable here to use a sequential plan (which selects items
one by one) to sample items from the lot and use an EBSD procedure in
order to accept or reject a particular lot when G is unknown.

In Section 2 we introduce notation to define the sequential decision
procedure to be studied in this paper, and in Section 3 we discuss the
sequential component for multiple decision problems. In Section 4, an
EBSD procedure is constructed. Asymptotic results and examples are given
in Section 5. Most of the proofs are deferred to the Appendix and final
remarks are in Section 6.
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2. Notation

Let the parameter space be the measurable space (£2,.27) and denote the
class of all prior probability distributions on Q by ¢¢. Conditional on 6, the
observable random variables X1, Xs,... are i.i.d. Ps, where Py is a probability
distribution on (y, &), x is the real line and & is the Borel o-field. For
k=1,..,m, (m>1), x=(x1,...,x) € x*, X* ~ Pf = Pyx -+ x Py (k terms)
conditional on 6, and 8" denotes the Borel o-field in ¥*. Let A be the action
space in the component problem, and let L be a non-negative loss function
defined on Q x A. Let ¢ ( = 0) denote the cost per observation.

Fork = 1,...,m, let @* denote a set of mappings é from y” into A that
are constant with respect to the last m — k coordinates and are such that
L(0,6) is .97 x ZB™ measurable. @° consists of constant functions. We will
regard the domain of 6 € @* as y* when it is convenient to do so,
k=1,2,....,m. Fork=1,2,...,m, let G« denote the posterior distribution of
0 given Xr= xk, where 8 ~ G, G € €. Assume such Gk exists for each
x* e y*, k=1,...,m and suppose that

@.1) r(G) = inf [[Q L(6,a)G(dO): ae A }

is attained at each G. We suppose that a Bayes decision function d relative
to Gy attains the infimum posterior Bayes risk, 1.e.,

(2.2)  r(Gy)=inf { |, L(6,0)Gu(db): a € 4 } =] L(8,6) Gu(db)

for all x*e Xk, k=1,...,m. The situations where r(Gx) =0 will not be
considered.

A sequential decision procedure consists of two factors, namely a
stopping rule r and a terminal decision rule & (relative to G). The sequential
decision procedure we consider in this paper is the following m-truncated
sequential decision procedure relative to G. The stopping rule (G) is the
finite sequence of functions (7o, T1,..., Tm) Where 7o is a constant function
representing the probability of making a decision without sampling, and, for
k=1,2,....m, t:x" —1{0,1} is an x*-measurable function representing the
conditional probability of stopping at stage k given that sampling did not
stop at stages 0,1,...,k— 1, and given the observation x*. We define
7(G) = (10, T1,..., Tm) as follows: 10 =0, Tm =1, and for k =1,....m — 1

1 if Exr(Gis1)) +¢c—r(Ge) =0

(2.3) () = _
0 if Exr(Gre) +c—r(Gy)<0
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with Ex denoting the conditional expectation on X+ given X * = x*. Notice
that for m = 3, the above stopping rule is not the optimal stopping rule
among the m-truncated procedures, but rather, a particularly tractable
sequential stopping rule. However, (2.3) defines an optimal stopping rule for
m = 2 (the stopping rule (2.3) in literature is called the l-step look ahead
stopping rule; see, e.g., the works of Laippala (1979, 1985) and Berger
(1985)). A terminal decision rule 6(G) is defined by the finite sequence

(2.4) (80, 01y Om)

such that ox € @* k=0,1,...,m and 6k, k = 0,1,...,m, is a Bayes decision
rule for the fixed sample size k& problem (2, 4, L) relative to G. If N denotes
the stopping time associated with the above sequential decision procedure
(t(G), 6(G)), then Jx is used on the set {N =k}, k =0, 1,..., m, where {N = k}
denotes the set of all x* € %" for which 7x(x*) = 1 and 7;(x’) = 0 (j < k). Since
7o = 0, we may drop the first coordinate function and take t(G) = (11,..., Tm)
and o(G) = (d1,..., Om).

For convenience, the notations )(k, k =1, and Q under the integral signs
that follow are suppressed in all future discussions. Also let Xrl and ; denote

summations over kin {1,...,r}, r =1, and overjin {0, 1,...,/}. Throughout,
we let [V'] denote the indicator function of set V' and the arguments of
functions will not be exhibited whenever they are clear from the context.

3. Multiple decision problems

Assume that the action space A4 ={ao,ai,...,a} consists of a finite
number of distinct actions, and let L(f,a) = 0 on 2 x A be the loss function
associated with the problem. Assume that the parameter space Q2 is a subset
of x. Let fo = 0 be a density function of the probability distribution P, with
respect to a given o-finite measure x on (y, &4). Let f(;(xk) denote the product
of fo(x1),..., fa(xi) for x* € y*, k= 1.

We now define our sequential component consisting of a terminal
decision rule 6(G) and a stopping rule t(G) relative to G, G € <7, for these
multiple decision problems (€2, 4, L), as follows: Let 6(G) be the terminal
decision rule consisting of a finite sequence of functions

3.1) (0155 0m) ,

where J is a Bayes decision function with respect to G for the fixed sample
size k decision problem based on the sample (Xi,..., Xx), k=1,...,m. We
define J; as follows (see Van Ryzin and Susarla (1977) or Chapter 6 of
Ferguson (1967)). Let &x(x*) = (5(0|x%),...,5(/|x*)), where 6(j|x*) =
Pr {choosing action 4;| X *} and gd(jlxk) = 1. Then, forj=0,1,..., 1/,
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. k
I if x €f;

3.2 o |x") =
(3.2) (J1x%) 0 if #Fes

with
S; = {x"|j = min {£: 4(1, ¥) = min 4(;, x)}} ,

and
(3.3) 4G, %) =[(LO,a) — LO,a0)) fo(x*)G(dh), i=0,1,..1.

Routine calculations yield that the minimum posterior Bayes risk with
respect to Gy 1s given by

(3.4 r(Gy = (filx)" { 2601840, %) + [ L6, a0) fo(*) G(dB) | ,

provided fi(x*) > 0 (note that r(Gx) = 0 if fi(x*) = 0), where

(3.5) ) = [/ G@0), k=1,
Hence with
(3.6) By = S [0 16 AG, ¥ (i) + cfilx")

- 2o(j1x¥)4(, %),

the stopping rule (see (2.3)) 7(G) is defined by a finite sequence (z1,..., Tm)
which stops sampling at the first k(k = 1,..., m) for which w(x*) = 1, where

1 if B(x)=0
3.7 Ky —
G “OZN 0 i gy <0

fork=1,...,m—1and 7, = 1. Let N be the stopping time of the sequential
procedure with the stopping rule (3.7). Then

(3.8) NX™ =min {k: (X" =1} .

Since 7., = 1, sampling will be stopped after X, has been observed if it had
not been stopped earlier. The Bayes risk of the sequential component with
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d = (1(G), 6(Q)), relative to G, is

(3.9) R(G.d) = [ R(6,(x(G), (G))) G(db) ,

where R(0,(:(G),8(G)) = | [N = KI{L (6, 5) + ck}PF'(dx™). From (3.2)
and the equality %[N =j]=1, we can write R(G, d) as:

310  RGDH=Zf[IN=k { 21X )LO, ) — L(0, a0))
+ ck } P(dx™) G(df)
+ff L(8, ao) Pi"(dx™) G(db) .

We define

Ac=[p1<0] - [Be-1<O][fr>0], for k=1,..,m—1
GA1) Be=[B<0] - [Beos <O Bc=0], for k=1, .m—1
An=[B1<0] - [Bm-1<0].

Then observe that (3.7), (3.8) and (3.11) give
(3.12) [N=k]l=Ax+ B, k=1,...m—1, [N=m]= A
and

(3.13) mZ_II (Ax+ By)+An=1.
Now use (3.12) and (3.13) to write (3.10) in the following form:
(.14 RG.d)=X[[4 { Z5(j1x* )L, @) — L(8, o))
+ ck } P'(dx™) G(dB)
+ 2[5 300120.0)

— L6, a0)) + ck } P{(dx™) G(df)
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+JJ L(8,a0) Pi"(dx™) G(db) .

The main feature of the sequential component is that the observations
are taken one at a time, with the statistician having the option of stopping
the sampling and making a decision at any time. The idea 1s that at every
stage of the procedure statisticians should compare the posterior Bayes risk
of making an immediate decision with the expected posterior Bayes risk that
will be obtained if one more observation is taken.

4. Empirical Bayes sequential decision procedure

Suppose that we are experiencing independent repetitions of the same
component as described in Section 3. Then, at the n-th problem of the
repetitions, random vectors X M., XM are available to the statistician
from the past (n — 1) repetitions of the component, where Ni,..., Np-1 are the
respective stopping times of the past (n — 1) repetitions. Let d" = (¢", 8")
denote an empirical Bayes sequential decision procedure for the multiple
decision problem (2, A, L) when the prior distribution G is unknown, where
t" is an empirical Bayes stopping rule and 8" is an empirical Bayes terminal
decision rule. Applying the empirical Bayes approach introduced by Robbins
(1956, 1964), we shall construct d” based on the past data XM, X and
the present data vector X at the n-th problem of the sequence. We assume
that the functions fi'(x*) = fi"(x*, X{™,..., X."1"), k=1 and 4"(j,x*) =
4", xk,XlN’,...,X,,'!”i'), k=1,j=0,1,...,] can be determined such that a.e.
W)x k=1,

4.1 YL fi(x¥)  as n—oo
and
(4.2) A", )2 4(,x")  as n—oo,

Whereﬁ((xk) and 4(j, x*) are given by (3.5) and (3.3), respectively, and -
denotes convergence in probability with respect to the sequence of random
vectors {X1",..., X/“1",... }. Assumptions similar to (4.1) and (4.2) have been
used by Van Ryzin and Susarla (1977) and Gilliland and Hannan (1977) for
the standard empirical Bayes multiple decision problems. Examples will be
given to describe the functions fi* and 4"(j, -) at the end of Section 5.

We use the superscript n to indicate an empirical Bayes quantity in what
follows. Let 8" be the terminal decision rule consisting of a finite sequence of
functions

4.3) (01,..., 0m) ,
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where

(4.4) (X)) = (67(0]x),...,8"(1]1x"))
such that ;5"(.jlxk) =1 forall k, and forj=0,1,...,/,

1 if xes”

4.5 3"(j1x") =
(4.5) (J1x%) {0 s

where S = { x*|j = min { 1: 41, x*) = min 4", x*) ”, and 4"(j, x*) satisfies
(4.2) for j=0,1,...,[. The stopping rule ¢" is defined by a finite sequence of
functions

4.6) (tyeeey Tm)

which stops sampling for the procedure d” at the first & (k= 1,..., m) for
which 77(x*) = 1, where 7, = 1 and, fork=1,...,m — 1,

1 if BixH=0

4.7 f(x*) =
@7 RAaR N B <0

where the function ff is defined by

(4.8) Br) = Z [ 871 A" G (i) + ofi ()

— Z3"(1x) 4", xY)

and fi' and 4"(}, xk), j=0,1,...,1, satisfy (4.1) and (4.2), respectively. We
define

4.9)  Cl=[Bl<0]-[Bii1<O[BF=0] for k=1,..,m—1

and

(4.10) Ca=[BI<0] - [fmn-1<0].

Then note that [N" = k] = C¢’ for k = 1,..., m, where N" is the stopping time
of the EBSD procedure d" = (t", 6") defined above for multiple decision

problems, and given by

4.11) N'(X™) = min {k|T5(X ") =1} .
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Let R(G,d") denote the Bayes risk of the EBSD procedure d” = (7", 6")
with respect to G. Then it is easy to show that
@ RGd) - 28INLO.0) - L6.a)
+ck } PI(dx™) G(db)
+ [[ L6, a0) P'(dx"™) G(db) .

The difference ER(G,d") — R(G,d) is used as a measure of optimality
of the sequence of EBSD procedures d" = (", 6"), with respect to d = (<, 8)
where E(-) stands for expectation operation with respect to the random
vectors X|",..., X»w1". (This notation will be used in the rest of the paper
without further comment.) We say d"=(7",8") is asymptotically risk
equivalent (optimal) relative to (an optimal) sequential procedure d = (7, 8)
if ’lzirg ER(G,d) = R(G,d), and asymptotically superior (a.sr.) relative to

d=(7,0)if lix;ln_so}’lp ER(G,d") < R(G,d).

5. Asymptotic behaviour of ER(G, (1", 6"))

In this section we state the main results of this paper regarding the
asymptotic optimality and the asymptotic superiority of the EBSD proce-
dure d" defined in the previous section. We first state and prove a lemma
which is useful in proving the main theorems of this paper.

LEMMA 5.1. Let G be such that
.1) [L6,a)G(dO) <, j=0,1,...,1,

and let f{(x*) and 4"(j, x*) be defined by (4.1) and (4.2), respectively, k > 1,
j=0,1,..., 1L If 4"(j, x") satisfies

(5.2) fé”(j|x"”)A"(j, X Yu(dxie)
2. [5015) AG, %) udxis)

asn—oo,j=0,1,....L, k=1, then

(5.3) Pr-LB as n—oo, k=1.
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PROOF. For fixed x*, the definitions of 5"(jI1x*) and (j|x"), j=
0,1,...,/, and (4.2) give

TGN AGoA) TG IK) 4G, ¥ as n—eo.
Now the proof is completed by (4.1) and (5.2).

The next theorem and its corollaries discuss the asymptotic behaviour
of the unconditional Bayes risk ER(G, d") of the EBSD procedure d”. The
proofs of Theorem 5.1 and its corollaries below are given in the Appendix.

THEOREM 5.1. Let d" = (1", 8") be defined by (4.2), (4.4), (4.5), (4.6)
and (4.7). Let fi'(x*) and A"(j, x*) satisfy (4.1) and (4.2), respectively, k > 1,
J=0,1,..., 1, and further assume that (5.2) holds. Let G satisfy (5.1). Then

limsup ER(G,d") < R(G.d) ,

that is, the EBSD procedure d" is a.sr. relative to d.
COROLLARY 5.1.  Under the same assumptions as in Theorem 5.1, let

(5.4) limunf E[pI<0] - [B1<0]=[B1<0] - [Bi-1<0], i=2,
then }zi}n ER(G,d") = R(G,d).
COROLLARY 5.2.  Under the same assumptions as in Theorem 5.1, let

(.5 [[1B1< 01+ [Bi-1 =018 =0 Bi 1 < 0] P (dX") G(dB) = 0,
fori=j+2,...m,j=1,..m—1, then '11112 ER(G,d") = R(G, d).

COROLLARY 5.3. Ifm=2,thend = (t,0d)defined by (3.7) and (3.2) is
optimal, and under the same assumptions as in Theorem 5.1, lizn ER(G,d")

= R(G,d), that is, the EBSD procedure d" = (1",8") is asymptotically
optimal relative to d.

Since the definitions of N" and N give [N" = i]=[B7 < 0] -+ [B:~1 < 0]
and [N=i]=[pf1<0] - [Bi-1<0], i=2, condition (5.4) is equivalent to
saying that liminf E[N"=i]=[N=i],i=2. Roughly speaking, this means

that asymptotically the sample size N” of the EBSD will be no more than the
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sample size N of the component. The next theorem compares the asymptotic
behaviour of EB stopping time N” with N, and shows that liminf E[N" > i] >

n—oc
[N = i] always, i = 2.

THEOREM 5.2. Let N" and N be the stopping times associated with
the EBSD procedure and the sequential component, respectively. Then, (2)

liminf E[N"=i]=[N=i],i>2, and

n—oo

(b) liminf [[EIN" = i1P"(ax™) G (d6)
> [[[N = i1PF'(dx™)G(d), i=2.

PROOF. For i =2, by the definitions of N" and N, we have
(5.6) [B1<0]-[Bi-1 < 0] <liminf E[N" = i] < limsup E[N" = i]
<[Bi<0]:[Bi-1=0].

Part (a) of Theorem 5.2 is the first inequality of (5.6), and part (b)
follows from (5.6) and Fatou’s lemma.

The EBSD procedure used in Theorem 5.1 is based on the functions
f(x*) and 4"(j,x"), j=0,1,...,1, k> 1. We now find sequences of functions
{fk"(xk)},,;l and {4"(j, x)}n=1, j=0,1,...,1, k > 1 for two examples.

Example 1. (A monotone multiple decision problem) Let m=2.
Let the conditional density be fo(x) = 8 '(1 — ), x=1,2,...,and 0 <6 < 1.
Let 0 = 0.y <8< - <81 <6 =1be known. Let the action g; correspond
to deciding “the value of @ is in the interval [6;-1,6;},” j= 0, 1,..., /. Let the
loss function on (0, 1) X A be defined by

if <6

L(8,a0) =
(6, a0 $O-0-) i 6-1<0=6

and L(0,a+1) — L(0,a) = (6,— 0),j=0,1,...,]— 1. First, notice the follow-
ing expressions for fi(x1) and f2(x*) with x' = x; and ¥* = (x1, x2).

(5.7) Ffix) :fol 71 - 0)G(dD), xi1=1,2,...

and
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(5.8) L) =fila+ x20— 1) = fi(x1 + x2) .

i—-1
With the above loss functions, observe that L(#, a;) — L(6, ao) = 'ZO (6, - 0),
=
i=1,2,...,1 and thus, 4(a, xk) is given by

i—-1
(5.9 dax)=fi(x) T O~ igx"), =121 k=12,
=
where
k ! k
(5.10) gr(x )=f0 0f(x)G(dh), k=1,2.
Routine calculations yield
(5.11) a(x)=fita+ 1), xi=12,...
and
(5.12) () =filx1 +x2) — filrr + x2— 1) .

Notice that the first observations Xi1, Xa1,..., Xu1 from the past and present
1

repetitions are i.1.d. with a common marginal density f;(x) :fo 05 '(1 - 0)

- G(d0). Thus, we define our EB estimator of fi(x) by

[ =n" S Xn=x], x=12..,

and now EB estimators of f>(x°) and 4 (a,, x), k = 1, 2 are obtained by (5.8),
(5.9), (5.10), (5.11) and (5.12). It is easy to verify that the above estimators
A"(i, x*) satisfy condition (5.2).

Example 2. Letfy(x) = 2nt’) P exp[ - (x — 0)*/27%], — 0 < x < o0,
where 7 is known and the parameter 6 is normally distributed with mean U
and variance ¢”. Assume that u and o are fixed but unknown. Then it is
clear that the functions j}c(xk) and 4(a;, xk),j =1,2,...,, k=1, depend on
the unknown quantities # and ¢, and therefore it is enough to estimate u
and ¢’ consistently in the EB context using the past and present data
XM,..., X, where the random sample sequence {N;}i> 1s defined by (4.11).
We define
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N
(5.13)  o"=max{| X Ni—
= ;1 va i

M=

N(Xi— X)' - 1°,0

1

i

and
(5.14)  u'=2% NiX(t* + o"N) ! / 2 Ni(z* + "Ny ",

— N — n _ n
where X;= N;' 2 Xy i=1and X = 2 NiXi / 2 Ni. Monte Carlo study
j= i= i=

shows as n — oo, 0" and u" approach ¢ and u respectively, and thus, may be
useful in applications.

6. Final Remarks

In empirical Bayes decision theory, researchers have dealt only with
procedures involving non-sequential components, namely, the fixed sample
size and varying sample size decision problems. The present paper examines
the sequential nature of the empirical Bayes procedure and introduces the
stopping rule concept to empirical Bayes problems, in particular for multiple
decision problems. From this paper one can see the flexibility of empirical
Bayes ideas in sequential decision theory, a case which is one of the most
natural to apply empirical Bayes methods. The sequential procedure used as
the component in this paper is called a one-step look ahead procedure. The
one-step look ahead stopping rule is much simpler than the Bayes stopping
rule. The latter can be defined by backward induction argument (i.c., the
decision to stop is based on a comparison of the conditional on x*, Bayes
risk of stopping and making a decision with that of not stopping and playing
an optimal sequential strategy from that point). Observe that when m = 2,
the one-step look ahead stopping rule used in this article is a Bayes stopping
rule. For m > 2, the construction of empirical Bayes procedures for the
Bayes stopping rule defined by backward induction can be made with
laborious calculations.

The results here naturally lead to corresponding results in other possible
multiple decision component problems as well. Details of these results will
be reported in a separate paper.
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Appendix

The outline of the proofs of Theorem 5.1 and its corollaries are given in
this Appendix. Detailed proofs can be found in Karunamuni (1986). The
intuitive idea of the proof of Theorem 5.1 is to treat the cases N" = N,
N"> N and N"<3N, sepa3rately. We write the difference ER(G,d") —

R(G,d) as a sum :Z,l J"+ _;} K", where the terms J3' and K7 refer to the

difference on [N" = N1], JI" and K[ refer to the difference on [N" > N] and
finally, /> and K3 represent the difference on [N" < N]. The terms J;’s and
K"’s are defined below. We will show that 1i4m J'=0,i=1,2,3 and

rlzi_rg K"=0,i=1,21in Lemmas A.l and A.2, respectively, below. The proof
of Theorem 5.1 is completed by proving limsup K3 <0. Specifically, K7

represents the difference ER(G,d") — R(G,d) on[N"< N]B,j=1,....m—
1, that is, when N" < N and the sampling of the sequential component is
stopped as soon as f, reaches the boundary at zero, j=1,...,m — 1.

LEMMA A.l. Let
m j-1 ! X ! .
Jst=2 % [[Ecra { 2 " (klx)gu(0) — X 5(K]x)gu(0)
+c(i—J) } P (dx™)G(d0) ,
n m-1 m 1 " i ! .
sn=% 3 [[Ecra { 2 5"k )g(0) - 3, 6(k1x))gu(0)
+ (i — ) } PI(dX™) G(dO)

and

m 1 . ! .
st = & [ ECra £ 8'010)00) -  6¢2)6.0)
« PIdx")G(df) .

If Gis such that [ L(6,a) G(d0) < »0,j =0, 1,...,1, then lim J/' = 0, i = 1,2, 3,

n-—o0
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where gi(0) = L(6,a) — L(0,a0),j=0,1,..., 1

PROOF. Observe that
m j-1 I
|JT| Sjgz i; ffEC,-"Aj{ 2 kZ:ZO lge(0)| + cli—j| { Pi"(dx™)G(d0) ,

and by the definitions of C/" and A;, C"A4; <[B{" = 0][B: < 0] for i <. But,
from Lemma 5.1, [B = 0][f: < 0] = 0 as n — o. Now use the dominated
convergence theorem (DCT) and the assumptions on G to conclude that
lim J1' = 0. The proof that ,l,hg J¥ = 0is similar. Notice that J5' can be written

n—o

in the following form:

I = ﬁ [ECr 4, { ki [6"(k|x') — 5(k|x')14 (k, x') }u"(dx") :

! . . ! . . .
Now use kgoé"(klxl)d(ak,x’) £, kgoé(k|x’)d(k, x') as n — oo, flA(j, x|
U (dx') <0, j=0,1,...,1, i= 1, and the DCT to conclude that lim J5' = 0.

n—oo

LEMMA A.2. Let

m-1j-1

! . ! .
ki =55 [[ECrs | 2 50100 - 2, 5015)5:00)

i

+c(i—7J) } Py'(dx™)G(dB)
and
) m-1 ] i i
ke =S [[ECr | B1001¥) - ski¥Nend) | PP 6(a0).
then under the same assumptions as in Lemma A.1, lifn K'=0,i=1,2.

PROOF. The proofs of K{' and K3 are similar to the proofs of Ji' and
J3', respectively.

PROOF OF THEOREM 5.1. Use Fubini theorem and f L(6,a)G(dO) <
o, i=0,1,...,1 to write the difference ER(G,d") — R(G, d) in the following
form:
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3 3
(A1) ER(G,d")~ R(G,d)= 2 J/'+ L K/",

where Ji',J7',J3' and K[, K7 are as defined in Lemmas A.l and A.2,
respectively, and

(A2) K= :2: i:,gﬂ [[Ec'B [ kéo 5"(k| %) gk(0) — kéoa(mxf)gk(e)
+c(i—J) } Pg'(dx™)G(db) .

. ! .
We will show that limsup K3’ =< 0. First we define L(x', ) = kgo o(k|x")
_ ! . ‘ ! . _
-ge(0), L"(x',0) = kgoé”(klx')gk(ﬂ), and M(x') = kgoé(klx’)d(k, x') and

) ! . . m
M'(x') = /E'o O (k|x)A(k,x'),i= 1. Also, let D} = Ek C'k=j+1,..,mand

j=1,...,m—1 Then C'"=D{— Dy, i=1,....m~1 and Dy = Cp. Now
observe that K3’ can be simplified into the following form:

m-1 m m-1

(A3 K=321 3 TG~ % S"G)) -] EB D M) p/(dx')

£ 2 UG,
where
T'(i,j) = [ EDIBM"(x)(dx’),
S"G,j) = [ EDIBM"(x')ii(dx’)  and

UG, j) = ¢ | ED!B fi-s (¢ ) (dx' ™) .

Now combining the (j+ 1)-th terms and writing the rest of the terms
together, we get

m—1

K'= X { T'(j+1,)) = | EDf B MG p/(d’) + U"(j + 1, j)
=

+ 2 TG = S"6= 1)+ UG )]
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The sum of T'(j+1,j) and — [ ED[\\B M) )u/(dx’) + U(j + 1,)) is
equal to

(A4 JEDRB ([ Yt = MG + ) | e’y

But, from the definition of f; (see (3.6)), we have — M(x’) + cfi(x’) =
- f M(x’ " u(dx;+1) on {f;=0}, and 0 < B; <[p; = 0]. Therefore, the abso-

lute value of the expression (A.4) is less than or equal tofE[ﬁj = 0| M"(x'")
— M"Y’ T (dx’ ") which goes to zero as n — oo, by an application of the
DCT. Now fori=j+2,....,m, T"(i,j) — S"(i — 1, j) + U"(i, ) is equal to

(A.3) fED"”Bf{fM”(xi)ﬂ(dxi) - Mn(xi_l) + ¢ i,l(xi‘l) },uil(dxil) .

Adding and subtracting the term M(x'Y +fM(xi)/1(dxi) into the integrand
of the integral (A.5), we get fori=j+2,...m,j=1,...m—1,

(A6) JEDIB{M(™") ~ M"(x' )}~ \(dx' ™)
+ [ EDIB{M () — M(x')} i (dx')
+[ED!B {fM(x’),u(dx,-) S ME Y o) L Y.

Again the first and the second integral terms in (A.6) go to zero as n — oo, by
an application of the DCT and from the definition of f;. The third term is
equal to

(A7) [EDIBBi-ii '(dX™") for i=j+2..m j=l..,m—1.

Expression (A.7) can be rewritten as a sum of two terms as follows:

(A3) JED!@x ) BLBi-1 = 01p- 14~
+fEDinBj[ﬁi—1 > 0] " (dx' ).

The second term in (A.8) goes to zero as n — oo, by an application of the
DCT, since 0 < D{[fi-1 > 0] < [B1 > 0][fi-1 > 0]. The first term in (A.8) is
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non-positive for all values of n. Thus, 1im~suprD,~"Bj[ﬂ,~_1 < 0]Bi-14 !

-(dx'"') <0, and now from (A.4)—(A.8), it follows that limsup K3 < 0. This

n—oo

completes the proof of Theorem 5.1.

PROOF OF COROLLARY 5.1. First, notice that | ED{'[fi-1 < 0]B;fi-1]

< |Bi-1l, for all n, and [|Bi-1|u(dx)<oo, i=j+2,...m, j=1,..m— 1.
Now applying Fatou’s lemma to ED/[f:-1 < 0]B;f:-1 + |Bi-1], we obtain

linrrlinffED;l[ﬁi-l <O1B B4 '(dx'")
Zflirr_linf ED![Bi-1 < O01B; fi-1pd " (dx' "),

i=j+2,..,m, j=1..,m—1. But liminf ED/B;=0, for i=j+2,..,m,
j=1,...,m—1, when (5.4) holds. Thus, linlinffEDi"[ﬁiq <0]Bfi-1

i-1 -1 . . . .
¢ (dx ) is equal to zero, i=j+2,....om, j=1,....m—1. Now
liminf ER(G,d") = R(G, d) follows from (A.4)—(A.8), and Lemmas A.l and

n-—oo

A.2. Also, by Theorem 5.1, we obtain lim ER(G,d") = R(G, d).

n—oo

PROOF OF COROLLARY 5.2. When (5.5) holds, observe that [ B[ fi-1
<0)4 Ndx'"")=0,i=j+2,..,m,j=1,..,m— 1. Therefore, the first term
in (A.8) is equal to zero by (5.5).

PROOF OF COROLLARY 5.3. When m = 2, by the definition of the
sequential component d is optimal, and by the construction of the EBSD
procedure d”, we have R(G,d")= R(G,d) for all n and G. Therefore,
lignglf ER(G,d")= R(G,d). Hence, },HE ER(G,d") = R(G,d) now follows

from Theorem 5.1.
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