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Abstract. The problem of estimating the probability of unobserved
outcomes or, as it is sometimes called, the conditional probability of a
new species, is studied. Good’s estimator, which is essentially the same as
Robbins’ estimator, namely the number of singleton species observed
divided by the sample size, is studied from a decision theory point of
view. The results obtained are as follows: (1) When the total number of
different species is assumed bounded by some known number, Good’s
and Robbins’ estimators are inadmissible for squared error loss. (2) If the
number of different species can be infinite, Good’s and Robbins’ esti-
mators are admissible for squared error loss. (3) Whereas Robbins’
estimator is a UMVUE for the unconditional probability of a new species
obtained in one extra sample point, Robbins’ estimator is not a uniformly
minimum mean squared error unbiased estimator of the conditional
probability of a new species. This answers a question raised by Robbins.
(4) 1t is shown that for Robbins’ model and squared error loss, there are
admissible Bayes estimators which do not depend only on a minimal
sufficient statistic. A discussion of interpretations and significance of the
results is offered.

Key words and phrases: Probability of new species, Good’s estimator,
Robbins’ estimator, admissibility, uniformly minimum variance unbiased,
uniformly minimum mean squared error unbiased, sufficiency, complete-
ness.

1. Introduction

The problem of estimating the probability of the unobserved outcomes
of an experiment has been considered in a variety of forms by many
researchers. Most recently Clayton and Frees (1987) study what they call
the problem of estimating the unconditional probability of a new species
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on the (n + 1)-st trial. Clayton and Frees (1987) give a summary of the
work done on this subject. One other recent reference is Esty (1986). The
main references that relate to the results of this paper are Good (1953) and
Robbins (1968). In order to summarize our results we must distinguish
between Good’s model and Robbins’ model. Within Robbins’ model we
must also distinguish between the unconditional probability of discovering
a new species on the (n + 1)-st trial and the conditional probability of
discovering a new species on the (n + 1)-st trial.

We describe the problem formally as done in Clayton and Frees
(1987). Consider a population composed of distinct species and use M; to
represent the i-th species (i = 1, 2,...). Let k be the total number of distinct
species in the population. We will allow k = oo, We assume that the species
have no natural order and that the number of species may be countably
infinite. Suppose that n independent drawings are made from the popula-
tion, with replacement if the population is finite, and Y; =i when the j-th

draw is from M;. Let X{" = ‘21 I1(Y; = i) be the number of representatives of
I=

the species M; in n drawings, where /(A) is the indicator function of the set
A. Let

(1.1) Un=Zpd(XI'=0)=1-Zpl (X #0),

where p; = Pr {¥; =i} for all j. The quantity U, represents the probability
of the unobserved outcomes of an experiment. We note that U, is a
random variable that depends on X" = (X7, X7,...) and p = (pi1,p2,...).
Good’s problem is to estimate U,. Good’s estimator is

(1.2) GX"Y=n"' TIxr=1).

The quantity U, also represents the conditional probability of discovering a
new species in one additional search given X". Robbins also wishes to
estimate U,, but in Robbins’ model an additional drawing is made and
Robbins’ estimator is

(1.3) VX" hY=m+1" ;I(X,-"” =1).

Robbins noted that ¥ is an unbiased estimator for U, in the sense that
EV = EU, and raised the question as to whether ¥ is a uniformly minimum
mean squared error unbiased estimator (UMMSEUE) of U..

Starr (1979), in an effort to extend Robbins’ work, changed the
problem to that of estimating 6, = EU,. Starr conjectured that V is a
MVUE for 6, and Clayton and Frees (1987) proved that conjecture.

Consider a squared error loss function. The problem is to estimate U,.
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Our results are as follows:

(1) If k is bounded, say k<K, K known, Good’s estimator is
inadmissible. Also Robbins’ estimator is inadmissible. (The proof provides
a nice illustration of the use of the class of “Bayes wide sense” procedures.)

(2) 1If k = o, Good’s and Robbins’ estimators are admissible.

(3) The estimator V is not a UMMSEUE of U,. In fact no
UMMSEUE exists.

(4) The estimator ¥V is a UMVUE for 6, immediately, by virtue of
sufficiency and completeness.

(5 Robbins’ model serves as an example of a situation where admis-
sible Bayes estimators do not depend only on the minimal sufficient
statistics.

As previously mentioned there are a large number of detached refer-
ences on this problem. The purposes of this paper are to clarify the issues,
identify what we feel are the important issues, and make a theoretical
contribution to some of these issues.

Before proceeding we need to recognize a distinction between an
indexed multinomial model and an unindexed multinomial model. An
indexed multinomial model is the usual one where the classes are known
and can be identified before any observations are made. The unindexed
model is where we cannot identify the classes until observations are made.
Good’s model is of this latter type. In the unindexed model it makes sense
to base all estimators on the frequencies of frequencies, i.e., the number of
different singleton species observed, the number of doubleton species
observed, the number of times we observed exactly 3 of a species, and so
on. Clearly, Good’s estimator is of this type. The rational and formal way
to describe this requirement is through permutation invariance. In fact,
permutation invariant estimators are reasonable, desirable and even
compelling for this model. We note that the frequencies of the frequencies
are equivalent to the ordered frequencies defined through X" by X, =
X() = --- where X{i) is the largest observed frequency, X2 is the second
largest observed frequency, and so on. Of course, ties among the ordered
values are possible and permissible. The ordered frequencies represent a
maximal invariant statistic under the permutation group and all invariant
estimators are a function of the maximal invariant statistic. See, for
example, Lehmann (1986). Formally, a statistic T(X") is invariant under
the transformation g if 7(X") = T(gX").

In our development below we assume the indexed multinomial model.
However, we will indicate that nearly all our results are appropriate for the
unindexed model as well. That is, we will indicate when and why a stated
result will be true for the case where estimators are required to be
permutation invariant. For example, result (1) that Good’s estimator is
inadmissible if k£ is bounded by a known integer, will be true even if the
class of estimators is limited to permutation invariant estimators (i.e., those
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based only on frequencies of frequencies).

Section 2 contains the results pertaining to admissibility and to the
remark above concerning Bayes estimators that do not depend only on
sufficient statistics. Section 3 contains the other results. Section 4 contains
a discussion on the significance of the results and offers interpretations as
to which problem is meaningful.

2. Admissibility

First suppose k < K (known) and consider Good’s model and Good’s
estimator. Let &(p) represent a prior distribution on p. For ease of
presentation only we let n = 5. We prove

THEOREM 2.1. [f k is bounded by known K, Good’s estimator (1.2)
is inadmissible. Furthermore if k is bounded by known K, Good’s esti-
mator is inadmissible within the class of permutation invariant estimators.

PROOF. The proof is given in the Appendix.

Next we study Robbins’ model. We first observe that the joint
distribution of the observations is

(21) Hpic," I—[pl!{)'m:i} .

Whereas (X", Y™*') is seen to be a sufficient statistic, (X"*') is a minimal
sufficient statistic. Write the distribution of (X", ¥,.+1) as

!

(2.2) S, pus1;p) = I pf - T1 plt=i |
xi!

s

i=1

Notice that the expected risk of an estimator of U.(X",p) when &(p) is a
prior distribution is

2.3) [ 2 (G 30 = Ul PV (', yus1: PV ()

and so to minimize (2.8) for each (x”, y,+1) we minimize
(2.4) J@@', yuer) = U, P S s ) AE(P)

If £(p) is a prior such thatff(x",y,,ﬂ ;. p)dE(p) > 0 for a given (x", yn+1) the
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Bayes estimator is

2.5) _hMﬂmﬂﬂmMmmamﬂﬂfmmmwam.

Observe that despite the fact that f(x", y.+1) can be expressed entirely as a
function of x"*', the Bayes estimator in (2.5) depends also on x” through
U(x", p). Since a realization of the vector X"*' can arise from different X"
vectors, and these different X" vectors lead to different U, expressions, we
have a situation where the Bayes estimator does not depend only on a
minimal sufficient statistic.

Using the above definition of a Bayes estimator we can prove the
following.

THEOREM 2.2. [If k is bounded by known K, Robbins’ estimator
(1.3) is inadmissible.

PROOF. The method of proof is essentially the same as that used in
proving Theorem 2.1. We omit the details.

THEOREM 2.3. For k = o Good’s estimator and Robbins’ estimator
are admissible.

PROOF. We prove the result for Good’s estimator and remark that
the proof for Robbins’ estimator is similar. Suppose G is not admissible.
Then there exists an estimator J(X") which is better. That is,

(2.6) $(GW") — Un&", p)’f (¥ p)

2 % (6(x") — Un(x",p))’f(x; p)

where f(x";p) = ( n!/H xi! ) I1py. Since (2.6) must be true for all p our

approach is to iteratively examine (2.6) for particular choices of p. We will
show that the validity of (2.6) for each particular p implies the equality of
G and J for certain sample points. Also as we consider all our p choices we
will cover all sample points.

(i) (2.6) must be true for p; =1, pi=0, i # 1. Here (2.6) reduces to
G*(n,0,...) = 3%n,0,...). To see this note that in this case f(x";p) =0 for
all x" except x" = (n,0,...). Since G(n,0,...) =0, d(n,0,...) must equal 0.
Similarly, this can be done for all points which are permutations of
(n,0,...). Thus we may regard the summations in (2.6) to be over all x"
except (n,0,...), (0,n,0,...),....
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(i1) (2.6) must be true for py=1—1/n, p»=--- = p,+1 = 1/nr for all
r=1,2,... and also for the limit as r — co. For r — oo, examination of the
dominant terms (note that by (i) the point (n,0,...) has been eliminated
from the sums) and noting that U,(x", p) converges to 1/n for these terms,
reduces (2.6) to

2TV wp= 5 (e - W),

Since G(x") = 1/n for all x" such that x{ =n— 1 so must d(x")=1/n for
such x". Again this may be done for all permutations of (n — 1,1,0,...) and
these points may be removed from the summations in (2.6).

(iii)) (2.6) must be true for p1 + p> = 1. Now (2.6) reduces to

n-2
ygz(G(n - y’y309"' ) - O)Zf((n _yayaoa"' ):p)
=S (0= 1,9.0,..) = 0} f(1= 3,3,0,.. 1)

Since G(n—,»,0,...)=0 for 2<y<n—2 so must é(n— y,,0,...)=0.
Again this may be done for all permutations of (n —y,»,0,...) and these
points may be removed from the summations in (2.6).

(iv) Continue as indicated above. That is, the choices of p actually
occur in sets. (i) above by itself would be set 1, (ii) and (iii) together
comprise set 2. In general set k, k = 1,..., n consists of k parameter points
used in the following order:

k—1 k-1 .
(D pi=1- , D2=c=pra= with r — oo,
n nr
k-2 k-2 .
() pr+p=1- , DP3=c=Pprp=—— with r — oo,
n nr
(k-1 + o4 1 1 l with r
— cee R _ = b = Dps-1 = —»00’
pi Pk-1 . P Prok-1= "2
k) pi+o-+pe=1.

It should be noted that (depending on n) there may be more parameter
points than necessary and that some of the above mentioned parameters
might not serve to reduce the summation. However if all the parameter
points are used, in the order given, we have that 6(x") = G(x") for all x".

Remark 2.1. The fact that Good’s estimator is admissible when
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k = oo surely implies its admissibility among permutation invariant esti-
mators.

Remark 2.2. Let Z(X") be the number of coordinates of X" that are
one. Let *(X") denote any estimator which depends only on Z(X"). In
other words J* takes on the same value for every X" with the same number
of ones. Any such 6%, provided 0 <46* <1, and 6* = 0 whenever Z=0 is
admissible. The proof follows, step by step, the proof of Theorem 2.3 as
long as the parameter points are chosen judiciously. For example, the
parameter point corresponding to the sample point (n— 1,1,0,...,0) is
pi=1—A4,py=-=p,s1=A4/nrif §* = 4 for that sample point.

3. Visnota UMMSEUE

Consider Robbins’ model for k = e0. Let S = ii::l I{X{" +# 0}, which is

the number of different species observed at time n. Let p(X"*") = Pr (§" =
S D1 X" 1), Note that this probability does not depend on p. Let I=1 if
§™ = 87D and I= 0 otherwise.

THEOREM 3.1. Under Robbins’ model with kK=o, V is not a
UMMSEUE.

PROOF. For V defined in (1.3) and any integer ¢ > 2 define
(3.1 VXX = VX - (101 + (1 )pX™)
Note that
EVXX",X"")= EE(V*X", X" HIX") = EV(X""),
which means that both ¥ and V'* have expected values equal to EU, so
they are unbiased in the sense described in the introduction.

Now consider the parameter point p1=p,=:--=p, = 1/t, pi=0 for
i>t+ 1. We show that the MSE for V* is less than the MSE of V at this
point by showing that the conditional MSE of V at this point given X"*' is
less than the conditional MSE of ¥ for every X "*1 That is, consider
(2 E{(V*-U)IX""}=E{(V+(p/n)—-A/)]-U)|IX""'}.

The right side of (3.2) is
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(3.3) V+(p—Djt——-8""0’p
+(V+plt—=(@—=S""+ 1)1 - p)
=[V+(p—1—1+ 8"
=(V-(—-p)t—@-85"""p’.
On the other hand,

(3.4 E{(V-U)IX""}
=(V-0-S""N’p+(V-@—S""+1)/ty(1 - p)
=(V=0-S""0Yp+(V-1/t—@—S"") (1 -p).

Use Jensen’s inequality on the right-hand side of (3.4) to find that it is
greater than

(3.5) V=(U-p)t—@—S"")D",
which is (3.3).

Note that Theorem 3.1 is true for any unbiased estimator that depends
only on X! and furthermore the proof did not require k = oo

COROLLARY 3.1. Under Robbins’ model, no UMMSEUE of U,
exists.

PROOF. The proof follows from Theorems 2.3 and 3.1.

We remark that Theorem 3.1 and Corollary 3.1 would hold even if the
class of estimators was restricted to permutation invariant estimators. This
follows since ¥ and V* are both permutation invariant.

Clayton and Frees (1987) prove that V' is a MVUE for 8,. We remark
that this follows from the facts that V' is based on a minimal sufficient
statistic X" "' and X"*' has a distribution which is complete. This latter fact
follows from the definition of completeness and the fact that any multi-
nomial distribution with b cells, b = 1,2,...,n + 1, is complete.

4. |Interpretations and discussion

The comments in this section are to some extent subjective and reflect
the opinions of the authors. The first set of comments refer to which
problem is most meaningful and the second set of comments pertain to the
significance of the results of this paper.
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We regard Good’s model and the problem of estimating the conditional
probability of a new species as relevant, intuitive, and meaningful. Robbins
also wishes to estimate U, and we feel this is the relevant quantity of
interest. However, Robbins’ model is somewhat questionable since one is
likely to still be interested in the conditional probability of observing a new
species after (n+ 1) drawings. That is, the relevant quantity is Un+i.
Robbins’ approach is interesting as a device to come up with an “unbiased”
estimator, when none exists based on the sample of size n. This idea has
potential use in other problems where one seeks unbiased or conditionally
unbiased estimators.

We do not feel that 6, = EU,, the quantity studied in Starr (1979) and
Clayton and Frees (1987) is really the relevant quantity to study. It is not
intuitive to us as to why one would be interested in estimating the
unconditional probability of observing a new species on the (n + 1)-st trial
in this particular setting. There is one justification for studying estimators
of 6, in that 6, may be regarded as an approximation to U, and so
estimators that do well for 8, may do well for U,. However, for example,
we feel the Monte Carlo study of Clayton and Frees should consider the
MSE of the estimators with U, in place of 6, Such would provide a
meaningful comparison of their estimator and V.

The inadmissibility or admissibility of the Good-Robbins estimator
depends on whether k is bounded by a known number or not. It seems that
more often than not, in a practical problem one can find an upper bound
for k. Often n will be substantially less than k and therefore less than any
upper bound for k. The admissibility result when k = oo has some theoreti-
cal appeal. However, from Remark 2.2 we note that many estimators, even
some strange ones are admissible by the same argument.

The proofs of inadmissibility and admissibility when & is bounded and
k = oo respectively are based on Bayesian ideas and the role of estimating 0.
When k is bounded by known K, an estimator which estimates 0 as often
as the Good-Robbins estimator cannot be Bayes in the wide sense. Yet,
when k = oo, sequences of priors can be found that are more tolerant of
estimating zero so often.

The inadmissibility results above and the fact that V' is not an
MMSEUE for U, suggest that competitors to Good-Robbins estimator still
need to be found and studied. This is easier said than done and at this
point we cannot recommend any such competitors. We feel however that
our results help clarify some of the issues on this difficult problem.

Appendix

PROOF OF THEOREM 2.1. For the case where n= K, Good’s esti-
mator is trivially inadmissible. The estimator which estimates by 0 when all
K cells are occupied and estimates by G(X") otherwise is better.




632 ARTHUR COHEN AND HAROLD B. SACKROWITZ

The case n < K, surely one which often occurs, requires proof. The
proof will be done in three steps which we will designate as Lemmas A.1,
A.2 and A.3. In Lemma A.l1 we will prove that Good’s estimator is
inadmissible for a conditional problem. In Lemma A.2 we prove that
inadmissibility of an estimator for the conditional problem of Lemma A.1
implies inadmissibility of the estimator for the unconditional problem. In
Lemma A.3 we prove that inadmissibility of the estimator for the uncondi-
tional problem implies inadmissibility among the class of permutation
invariant estimators.

We proceed. Let K be the least upper bound for k. Assume K is
known in all arguments below we prove inadmissibility for k = K, which
suffices. Define the orbits

Fi={"x"=(n-1,1,0,...,0) and all its permutations} ,
F={x"x"=n-2,2,0,...,0) and all its permutations} .

Now consider the conditional problem of estimating U, given that the
sample space is F1 U F; and the parameter space is

k
(Al) Q= p:(PhPZy---aPK):pt'EO, iglpi: lapl;él :

LEMMA A.l. For k bounded by known K, Good’s estimator is
inadmissible for the conditional problem.

PROOF. For the conditional problem

(A2) P{XI'=0,...X'=n—-1,..,X'=1,., Xk=0}=p"'p;| D,

K K
where D= 2 Ip?"lpj—!- [(n—1)/2] 2 lp?'_zp,g. Note by the definition
=1#]= =i#j=
of Q, D > 0 (since p; # 1). Also

(A.3) P{X!=0,.,X'=n—2,...X"'=2,.,X¢=0}
=[(n—1)/21p! P}/ D

K
For the sample point in brackets of (A.2) or (A.3) U,= gl pv. We
VEILVE]
prove the theorem by showing that (1.2) cannot be Bayes in the wide sense
for the conditional problem. Bayes in the wide sense is defined in Wald
((1950), p. 17). Since the estimators which are Bayes in the wide sense are
an essentially complete class and the loss function is squared error (1.2) is
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inadmissible. The essentially complete class result appears in Wald ((1950),
Theorem 3.17) and also in Le Cam (1955). The fact that the estimand U, in
this problem is a random variable does not effect the Wald or Le Cam

results since for the squared error loss function the risk function of any
estimator is lower semi-continuous in the space of decisions for each fixed

p.

To show (1.2) is not Bayes in the wide sense define the sets B, = {p:p: =
1 — ¢ for some i}, 0 < & < 1. Consider any sequence of priors {&,} for which
there exists an ¢ > 0 such that

liminf Pe,(B) <1.
For such a sequence {&,} there exists a subsequence of priors {{x} such that
lim P (B)<1.

Note that P:,(B;) < 1is equivalent to
P (pisl—cali=1,.,k)>0.

For such a prior distribution &,,, the Bayes estimator is given by

J( 2, p 5t} DYz (p)

J1027p} | D1dEw(p)

(Ad)  Sm(0,.on—2,...,2,...0) =

and

V£

J1p " pi/ D1dén(p)

f( z p ) [pi™'p;/ D1dém(p)
(AS)  0m(0,...n—1,..,1,..0)=

whenever the denominators are positive (note that there may be (i, j) pairs
for which the denominators in (A.4) and (A.5) are zero. Then the Bayes
estimator can be anything. However the denominators cannot be 0 for all
(i,j) pairs). Also ,,l,lfrc}o P:.(B;) <1 is equivalent to lim P (pi<1—¢ all

i=1,...,k) >0 so that

limmax JUpi ™0}/ DYdER(p) > 0
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and
limmax [[ pi~'p;/ D1déw(p) > 0.
i#j

Thus if the terms in (A.4) were, for all pairs i, j, to converge to 0, then the
same would be true for at least one term of the form (A.5). Hence Good’s
estimator cannot be Bayes in the wide sense with respect to such sequence
of priors.

Next consider any sequence of priors for which

lim P, (B) = 1

for every € > 0. For such a sequence the (marginal) probability of the set of
sample points

A={n-1,1,0,...,0) and all its permutations}

converges to 1 and so U, converges to 0 in probability. Thus Good’s
estimator has an expected risk which converges to (1/n)” while the estimator
6*(X™) = 0 has expected risk which converges to 0. Thus §*(X") is Bayes in
the wide sense for such a sequence of priors and G(X”) cannot be Bayes in
the wide sense. This completes the proof of Lemma A.1.

LEMMA A.2. If Good’s estimator is inadmissible for the conditional
problem, it is inadmissible for the unconditional problem.

PROOF. Let T(X") be the estimator that beats G(X") for the con-
ditional problem. Then we have

(A.6) L (T(") = U f(x";p)| D

X"eFLUF

> ¥ (G(")— U f(x"p)/ D,

YeFUFR

for all p e 2, with strict inequality for some p € Q2. Since D >0 for all
p € Q, multiply both sides in (A.6) by D and add

Y (G(X") = U f(x"p)

x'e(F\U F)°

to both sides of (A.6). The resulting right-hand side is the risk function of
G(X™) while the left-hand side becomes the risk of an estimator, T*(X")
say, where
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G(X") for x"e(FLU F)",

T*(X") =
T(Xn) for x"eF1UF2,
and T* is better than G for the unconditional problem. This completes the
proof of Lemma A.2.

LEMMA A.3. For k bounded by known K, Good’s estimator is
inadmissible among the class of permutation invariant estimators.

PROOF. We use the invariance theory developed in Ferguson (1967),
Chapter 4 with one modification. We use Definition 1 of Ferguson, p. 144
which defines the notion of a family of distributions invariant under the
group G. Instead of Ferguson’s Definition 2 on page 145 we define a
decision problem to be invariant under the group G as follows: Let G be a
group with element g. Let g € G be the group induced on the parameter
space. Let & be the identity transformation action on the action space. The
decision problem is invariant under G if

(a) the family of distributions is invariant under G.

(b) L(p,a,X")=L(gp,ga,gX") .

In other words the loss function, which for our problem depends on p,
a and X", is invariant. With this definition of invariance of a decision
problem, Ferguson’s Lemma 4.2.1, Theorem 4.2.1 and Theorem 4.3.2 are
easily established for our problem. The group operating on the sample
space and parameter space is the permutation group which is finite (since K
is known) and the group operating on the action space is merely the
identity. We note U,(X", p) is invariant and so the loss function (z — Uy) is
invariant as is the entire problem.

From Lemma A.2, Good’s estimator is inadmissible. Therefore there
exists an estimator, say 7* which is better. If T* is invariant the proof is
complete. If T* is not invariant we use the proof of Theorem 2, Ferguson
((1967), p. 156) to construct an invariant estimator which is better than
G(X"). This completes the proof of Lemma A.3 and the proof of Theorem
2.1.
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