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Abstract. In a recent article Mallows and Nair (1989, Ann. Inst. Statist.
Math., 41, 1-8) determined the probability of intersection P{X(¢) = az for
some ¢ =0} between a compound Poisson process {X(1),t=0} and a
straight line through the origin. Using four different approaches (direct
probabilistic, via differential equations and via Laplace transforms) we
extend their results to obtain the probability of intersection between
{X(¢),t =0} and arbitrary lines. Also, we display a relationship with the
theory of Galton-Watson processes. Additional results concern the inter-
sections with two (or more) parallel lines.
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1. Introduction

This paper was inspired by a recent article by Mallows and Nair
(1989). Mallows and Nair considered the probability 6 := P{X(¢) =1t for
some 7,0 < t < oo} where {X(), = 0} is a compound Poisson process allow-
ing positive jumps only. Let 4 be the intensity of the Poisson process and H
be the common distribution function of the jump sizes. Further let g(u)

:f: exp (— ux)dH(x), A ::f: xdH(x) and ¢(u) = A[1 — p(v)]. Mallows

and Nair (1987) show that 6 = ¢'(w) where w is the largest nonnegative
root of the equation ¢(u) = u.

*Work done in part while these authors were visiting professors at the Indian Statistical Institute,
Delhi Centre, New Delhi, 110016, India.
**This author’s investigation was supported in part by the U. S. National Science Foundation
Grant No. DMS-8504319.
'Our coauthor and friend Prem Singh Puri died on August 12, 1989. We dedicate our
contribution to this paper to his memory.
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Remark. Zero is always a root of ¢(u) =u and ¢'(0) =p where
p = EX(1). (Here and in the sequel we use the notation “ := ” for a defining
equation.) If p <1, then it is the only nonnegative root and 6 = p, a well
known result (see Takacs (1967)). In the case p > 1 there is an additional
positive root @ and 6 = ¢'(w) < 1.

Consider the case with integer jumps only. Then the quantity g = e * is
the smallest fixed point in [0, 1] of the probability generating function
S(s) =exp{—@(—logs)}. Thus g can be viewed as the probability of
extinction of a Galton-Watson process governed by the probability generat-
ing function f. This interpretation led us to the search for a method of
proof displaying and using a relationship with the theory of Galton-
Watson processes. This search led us to investigate three different ap-
proaches to the problem, one probabilistic, one using differential equalities
and finally a method using Laplace transforms. All of these approaches
embed the problem in the more general setting of considering the inter-
section with lines not necessarily passing through the origin, and in fact
they are useful in extending Mallows and Nair’s (1989) result to this case.
However, neither of these methods solves the original problem nor displays
a connection with Galton-Watson processes. What we consider the final
success of our attempts is contained in Sections 5 and 6. It uses generating
functions to solve the original problem together with its extension to lines
not passing through the origin. We originally found it via the Galton-
Watson processes displayed in Section 7. It should be pointed out that this
approach is not restricted to compound Poisson processes but proves the
result for processes with stationary increments whose paths are nondecreas-
ing step functions starting at 0. Mallows and Nair had conjectured the
result to be true for this more general class of stochastic processes. We
shall find it convenient to change the time scale in such a way that the
Poisson intensity changes from A to 1. Thus a line of slope a in our setup
would have slope a4 in the Mallows and Nair version. Since their result is
stated only for intersections with the diagonal, we should note that a
different rescaling would show that their result remains true for the line
y=at if in the definition of w and € the function ¢ is replaced by
Y(u) = ¢p(u)/ ad. We should thus keep in mind that for a given process the
value of 0 in our case also depends on a.

The form of our results and some of the techniques needed to obtain
them will depend on the particular lines considered, the most important
distinction being between “steep” lines y = ar + f with a > A4 and “flat”
lines, 0 < @ < A; this is not surprising since it corresponds to the difference
between the above mentioned cases p < 1 having an elegant probabilistic
proof and p > 1 where Mallows and Nair had to use analytical methods. In
terms of Galton-Watson processes this is the distinction between subcriti-
cality and supercriticality.
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Consider a as fixed and let A(f) = P(X(?) = at + f for some ¢ > 0). In
Section 2 we shall use probabilistic methods to determine h(f) explicitely
for # <0 and for a> 1, #>0. In the following section we shall establish
that A satisfies a differential equation with retarded argument and give its
solution. In these two sections, for the sake of clarity of exposition
attention is restricted to the simple Poisson process without compounding.

In Section 4 we find the Laplace transform fz(s):f: e h(p)dp for a

Poisson process with compounding. Section 5 studies a discrete time
version of our problem. Its solution is then applied to the continuous time
case in the following section. This final solution was originally found via
the interpretation in terms of Galton-Watson processes presented in Section
7. Finally, we investigated the intersections of the process with two parallel
lines. The main idea of our approaches is to use the renewal property of the
process under study. In parts of the paper we consider integer valued
processes only. The extension to the nonlattice case is possible, as in the
last section of Mallows and Nair (1989).

Remark. Mallows and Nair’s result has an alternative elegant proba-
bilistic proof valid for the general lattice case using a random walk
associated with the process (cf. Remark 3 of Mallows and Nair (1989)).

2. A probabilistic approach

We are presenting this approach only for a Poisson process {N(7), t = 0}
without compounding, i.e. with P.(¢) := P(N(t) = n) = ({"/ n!)e ".

Excluding trivial cases consider first the probability 4(f) of intersection
with the line y = ar + f with a <0 and £ > 0. This line is intersected at the
level n if and only if #,:=(n—f)/a>0 and N(z,) = n. Since the values
at, + B are decreasing and N(1,) nondecreasing the events {N(t,) = n} for
different n are disjoint and

(21) h(ﬁ) = r%]() Pn([n) = ,Eé]o[(n—:éﬂ e*(n‘lf)/a )

Next consider the cases with ¢ >0 and f <0. Taking two values
B2 < 1 <0 we see that line 2 can only be intersected after line 1. The
renewal property of the process then yields A(f2) = A(S1)h(B2 — p1) allowing
h(f) = exp (bfB) as the only measurable solutions. As /4 is a probability we
must have b = 0. Conditioning on N( — f/a) leads to

oo

h(p)=X %eﬂ'“h( -7).
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For f = — 1, using A( — r) = (A( — 1))’, we obtain the equation
=h(~ D) =exp (= 1/a) 3 (h(~ 1)ja)/r = exp[(c— 1)/a].

Thus A(f) = exp [(1 — ¢)f/a]. The equation for ¢ has the solution 1 and for
a # 1 an additional solution. In the case 0 < @ < 1 it is clear that A(f) < 1
for # <0 and thus that ¢ must be the only solution less than unity. In the
cases @ = 1, it is clear from the strong law of large numbers that A(fS) = 1;
also in these cases 1 is the only solution thatis < 1.

The measurability of & on ] — o, 0] which was needed to establish its
exponential form follows from Lemma 2.1 which will again be used in the
following section.

LEMMA 2.1. Except possibly for a jump at =0 the function h is
continuous.

PROOF. Let0<f<f+4or f<fi+4<0. Then the event of inter-
secting one of the two lines (corresponding to f and to f# + 4 resp.) but not
the other can only occur when for some »n the process has its n-th jump in
the interval 1, — 4/ a, ¢,] (jumping into the space between the two lines) or
if it has its (n + 1)-th jump in this time interval (jumping out of that space).
As 4 — 0 the events A, just described shrink to the event A := {the n-th or
(n + 1)-th jump occurs at time #, for some n}. This latter event has
probability zero and thus |A(f + 4) — h(f)| < P(44) — 0 as 4 — 0. Conti-
nuity from the left is established in the same manner.

In order to determine A(f) for a>1 and f > 0 we note that the line
y=at+ f will be intersected if and only if N(¢z) ever reaches the level
at + 5. Therefore, the event of no intersection can be described by the
validity of the inequalities:

N(ty) <j, foralljfor which ¢:=(—-f)/a>0.
Define in general for any 0 <y, <y, < -+~
iy, ¥2,..) = P(N(y)) = j, My2) =j + 1,..) .

Then conditioning on N(y;) and using the independence and stationarity of
increments of the process

j
&y, y2,...) = I.ZZO P(N(y1) = Dj-is1(y2 — yi,¥3 = Y1,...) .
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Denoting the generating function of the sequence ¢, j =0, L,... by H

H(Slyl,yZ"") :j:ZO de’j(yl,ﬂ,---)

=]

= Pi(yl)Sijgi Gi-ir1(y2 = V1,93 — Y1see )8’

Il
DM

=5}

Pi()’1)si Eb di(y2 — yi, ¥ — y1,...)sl

Ms

i=0

il

—do(y2— y1,¥3 = Yi,..)

Colh—-

1 .
= — & MH(s| 2 = 1y = yines)

— ¢o(y2 — y1,¥3 — V1,.-)} -

We know ¢o(l/a,2/a,...) to be equal to the probability 1 — 6 of never
intersecting the line y = az. Thus for the above sequence of t-values
denoting the fractional part of § by (f> :=  — [ ] we obtain

H(S| 1-={B) 2-<XB )
R SR
z%exp(i%/”(s—1)){H(s|%,%,...)—(1—0)}-

In particular for integer f this reduces to an equation for H(s|1/a,2/a,...)
with solution H(s|1/a,2/a,...) = (1 = 0){1 —sexp ((1 — s)/ o))", Consequently,

(=B 2-¢8 |\ (-0 exp{—(1—B)I-s)a}
H(S' a ° a )‘ expl—(l-saj-s

The following result is established by evaluating

_ 1-(B) 2B
1—h(/3)—¢>[m( o )
&[ﬂ] 1_<ﬂ>
=27 H(sl . ,) o

THEOREM 2.1. Fora>1wehave h(f)=1iff<0andif f >0
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Wy B-H YV
120 i [aexp(l/a)}'

(2.2) h(B)=1-(1— )"

Unfortunately for 0 <a <1 the opportunity for the process to never
intersect the line at + f by jumping above it and staying above forever
seems to introduce sufficient complications to make it intractible by
probabilistic methods similar to the above.

3. Using differential equations

In this section we still restrict our attention to the simple Poisson
process. The reader may convince himself that at least the extension to
integer valued compound Poisson processes is an easy exercise.

We condition on the time of the first jump and thus obtain for
arbitrary @ >0 and f # 0

I ¢ hat + B - D for f>0
G HE) = .
el +f0 e 'h(at+ - Ddr  for B<0.
By substituting af + f — | = u this equation is transformed into
L w1y
— [ e h(u)du for >0
(3.2) h(p) =

L= cwpriva Bia
;fﬁ_le h(w)du + e for £<0.

Lemma 2.1 allows us to differentiate (3.2) with respect to the limits of
integration for all # # 0 which after some manipulation leads to

(.3 W(B) =~ (h(F)~ B~ 1)}, for f#0.,

Let us first consider (3.3) on ] — oo, 0[. From this equation it is immediately
clear that g(f) := h(f — 1) also defines a solution if 4 is a solution. For
a < 1 it is easy to verify that i4(f) has to vanish at — oo and that except for
a multiplicative constant (3.3) allows at most one solution with this
property. Hence A(f — 1) = g(fB) = ch(f) which changes (3.3) into A'(f) =
(I =c¢)/a-h(B) for <0 whose solution with A(0 —)=1 is h(f) =
exp {(1 — ¢)/a-f}. The relation A(f — 1) = ch(f) yields for B / 0 the value
of ¢ as the solution less than one of ¢ =exp {(c —1)/a}. For a> 1, of
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course, ¢ = 1 is the only solution and A(f) = 1 for f < 0. This confirms the
corresponding solution found in Section 2 by probabilistic methods.

For positive f we can now solve (3.3) recursively through intervals of
length one. Using that for n<f<n+ 1 the function g(f)=h(f 1) is
already known and that we know the initial value h(n) (for n =0 it is the
value 6 and for n=1,2,... it is determined in the previous step) we have
thus shown.

THEOREM 3.1.  For negative  we have h(f)=1if a> 1 and h(f) =
exp {(c — DB/a} if 0 <a< 1. Furthermore for all a+# 1, h(0) =0 and for
0sn=f=sn+1

(3.4) h(p) = exp (B/ @) [ h(n) exp (— n/a)
- (l/a)f:exp (—x/a)h(x — Ddx ¢ .

For a > 1 solving this recursion reproves Theorem 2.1. For 0 <a <1
the expressions for A(f) can also be explicitly calculated from (3.4), but
even for small values of n the calculations become rather involved. There-
fore we postpone presenting the explicit forms.

4. An approach via Laplace transforms

In this section we allow a general positive jump size distribution for a
compound Poisson process {X(#), = 0} with finite expectation A. Denote
the distribution function of jump sizes by H and keep the time scale
adjusted such that the underlying Poisson process has intensity 1 and
therefore £X(1) = A. The equations (3.1) then are modified into

foc exp (— t)fooO h(at + f — x)dH(x)dt for >0

4.1) h(p)=\exp(f/a) +f0 e exp (— t)jooo h(at +  — x)dH(x)dt
for f<0.

Proceeding as in Section 3 we are led to the equations
7, 1 *
(4.2) W) = | 1) =) 1~ ar |

valid for all § # 0.
Again, the argumentation of Section 3, appropriately modified, shows
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that for § < 0 the solution is given by A(8) = exp ((1 — ¢)f/ a), where
(4.3) c=[" exp {(c ~ )x/ a}dH(x)

with ¢ =1 in the case a > A4 and ¢ <1 for a < A. Denoting the Laplace
transform of a function f on ]0,o¢[ by f(a):fo exp (— af)f(B)df with
Re (0) = 0 we obtain from (4.2).

(4.4) — 0 + oh(0) = — h(0 + ) + ch(c) = H'(0)
1 N o o0
_ ;[ o)~ [, ¢"do [ h(p - x)dH(x) ] .

After interchanging the order of integration in the last expression we
can make use of our knowledge of /4 for negative values of its argument.

More precisely, recalling that g(o) = f: exp ( — ox)dH(x) we can write

f: exp (— Bo)dp f: h(B — x)dH(x)
= dHw) {fj exp (— Bo)h(f — x)dp
+f:° exp ( — po)a(f — x)dp }
=[7 dH) [ exp (~ fo) exp {(1 ~ (B — x)/ a}dB
+f. dH) exp (— ox) [ exp (~ cwh(w)du
= [ dH)fexp (o) — exp (— (1 — x/ (1 — )/a— o} !
+ p(o)h(o)
= {f: exp { — (1 — o)x/ a}dH(x) — (o) } a/(ac — 1+ ¢)

+ 9(a)h(a) .

Combining this with (4.4) and using the defining equation for ¢ we
have shown:

THEOREM 4.1. The probability h(f) that the sample path of a
compound Poisson process with jump size distribution H and with EX(1)
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= A intersects the line y = at + f is given by h(f)=exp {(1 — ¢)B/a} for
B <0, h(0) = 6, and its restriction to 10,0 has the Laplace transform

(4.5) hi(o) = ¢ {9— ¢~ 9(0) }

oca— 1+ g(o) go—1+¢

where c¢ is the smallest solution in [0, 1] of ¢ = ¢((1 — ¢)/ @).

In the Poisson case H is concentrated at 1, i.e. ¢(0) = e 7 and thus

Ao a #c—exp(—a)}
(4.52) h(a)_aa—l+exp(—a)[0 ca—1+c¢
which for a > 1 further simplifies to
(4.5b) h(o) ={0a— (1 — e %)/ o}/(ca—1+e 7).

This last expression can be expanded and manipulated into the form

(4.6) ﬁ(a)=%~(1—0)§0(1)’(L)'§( )(—l)f(e'j"/a).

r
a o) i=0\ j

COROLLARY 4.1. In the Poisson case without compounding, when
a>1, h is given by (2.1). To prove this we have to identify ¢ " as the
Laplace transform of f,(B) == """ /(r — 1)! and e”7°| o as that of the indi-
cator function of the half line [j,[. The convolution of f. with this
indicator function shifts the argument from f to f—jas long as f—j>0
and lets those terms vanish in which j > . Thus interchanging the order of
summation the factor of (1 — ) in (4.6) is the Laplace transform of

[g(—1)"g(ﬂ—j)"f(i)rf(u)f:[g(—l)feﬁ/a( boi Y,

S S R a =0 jt aexp (1/a)

as asserted.

5. A random walk version

Implicitely we have already used in the previous sections that the
behaviour of X(¢) only matters at the discrete time points #i,¢,... when
at, + [ is integer. This fact is behind the development of the present section
and its application to the original problem.

Let now {X», n € No} be a random walk with X, = 0 and independent

nonnegative integer increments Y; = X; — Xj-1. Further let f(s) = Z‘b pis' be
i
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the common probability generating function of the Y; and m = E(Y))
= ;0 ip; the common expected value. We shall be interested in the proba-

bilities

rni=P(—n+ X;=[forsomeleN), n=012,....
As an intermediate step we determine first

U, = Pln+ X;=Ilforsome/leNy), n=0,1,2,....

LEMMA 5.1. If q ist the smallest nonnegative root of f(s)=s then
u, = ¢ for all n € No.

PROOF. As the paths of X, are integer valued and nondecreasing, the
event £, =“n+ X;=1[ for some /e Ny” can only occur when first E; has

occurred and the strong Markov property implies P(E,|E1) = PE,-1. This
shows u, = uf, n=1,2,.... On the other hand,

u = kgo P(E1| Y = k)pk
:I;OP(k—i- Yo+ -+ Y;=1—1for some [/ € N)py
= X wpi = X hipi = f(w) .

Thus u; is a fixed point of f. If m <1, then g = 1 is the only fixed point.
Otherwise (Xi//) — 1 £ m — 1=0. Hence for n large enough we see that
1 —w= P(n+ Xi>1for all /€ Ng) >0 which shows that u, = uj < 1. This
identifies v as the unique nonnegative fixed point g which is less than 1.

LEMMA 5.2, re:= li}g ra=0if m<l1.

PROOF. As above: (Xi/l) — 1 £ m — 1 <0 and hence
I—r=P(—n+Xi<lforall/leNo) = I.

The following theorem is the discrete time version of the Mallows and
Nair (1989) result.

THEOREM 5.1. ro=f"(q). In particular o=m if g=1and ro=p, if
qg=0.
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PROOF. We first derive a recursion formula for the 7, and then use it
to determine their generating function R(s) = ZO ras" from which ro can be
e

read off.
r,,:kZ::OP(—n+Xz=lforsomele N| Y, = k)p«

:kgoP(—n+k—l+Y2+-~-+lel—lforsomeleN)pk

n o n o
k-n-1

=2 ra- + X Uken-1pk= X In- + X )

o k+1Dk p== k-n-1Pk o k+1Pk k== q Pk

The cases g =0, 0 < g < 1 and g = | have to be treated separately. Let first
g = 0. In this case the last sum in the recursion for r, reduces to pu-1, in
particular ro = r1po + p1 = p1 = f(q). For g > 0 use the recursion to see that

Rt n

1 n+k- . < k-n—
R(s) = " ngo kZ:lo Pies g™ TS k:§+1 g !

n=0

oo el k-1
Ps’ 2z Fakers” < p g n:20 (s/q"

M8

_1
B s

k=0

1l

k-1 (S/Q)k —1
(s/q)—1

e
S
S(s)

== (R(s) —ro)
s

(R()~ 1) + %, pig

, 1if s#gq.

O 1)
s—q

In the limit for s — g we have R(q) = R(q) — ro + f’(g) which implies the
desired result for 0 < g < 1. If g =1 we conclude from the above equation
that

ro:(f(—s)—l)(R(s)—ro)+————-l —J1)
s -5
IVOETINN U S e R
l1—s s l1—s

The rest of Theorem 5.1 follows now by taking the limit for s — 1, as

s=1

1imL(ls—)_—'S—S=1—f'(1)=1—m:0 for m=1, and

lim (1 — )

§—00

R(s) — ro L& j -
R —ro =nlim X (r—rps)s’=rn—X (n—rx)=r==0
s s—1 j=1 Jj=1
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for m < 1 by Abel’s lemma and by Lemma 5.2.

The generating function R contains the information about all proba-
bilities r». These can in fact be explicitly determined. While we do not want
to actually give the somewhat involved expressions we want to point out
that for g > 0 it is not hard to derive them by first using the above equation
for R to determine the generating function Pof p,:=rn—q ", n=0,1,2,...,
ie. P(s)= R(s) — q/(q —s). We obtain P(s) = po(1 + s/(f(s) — 5)) for 0 <
s<q if g>0. Both for the case ¢ #0 and for ¢ =0 where we use R
directly, the expressions for r, can then be found by expanding 1/( f(s) — s).

6. Application to the continuous time case

In this section we extend the results of the previous section to the case
of an integer valued stochastic process {X(#), t > 0} with stationary indepen-
dent increments for which almost all sample paths are nondecreasing step
functions vanishing at 0. The question whether X(¢) = at + f for some ¢ >0
can be reformulated as “X((s — )/ a) = s for some s?” Let therefore Y;:=
X(s/ o). We are thus interested in the probabilities

Fnvp = P(—(n+ )+ Ys=s for some s > 0)
=P(—n+ Y p=jforsomeje N),
Un+p = P(n + B + Y; = s for some 5 = 0)
= P(n+ Yj+p=jfor someje Ny),
for n=0,1,2,..., 0<f <1, the second equalities being true since Y; is

integer valued. In particular we want to know A(n + ) = ry+5.
Obviously { Y., n € No} is one of the processes of the previous section.

The distribution of Y; has a p.g.f. of the form f,(s) = kgﬁ Pu(t)s* =exp { — A
-tp(— log s)}. Here ¢(s) = f(:(l — ¢ *)dN(x) where N(x) is nondecreasing
on R" with lim N(x) = oo and [/ xdN(x) < oo. Let f(s) = fi(s) and g be the
smallest nonnegative root of f(s) = s. Then clearly fi(q) = ( f(g))' for t > 0.

LEMMA 6.1. unp=q" ", neNg,0<p<1.

PROOF. As in the previous section
Un+p = kZ::O P(n+ k+ (Yj+p— Yp) =jfor some j e No| Xz = k)pi(f)

= X unnp(B) = d'fo(q) = 4" .
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Let now P(s) be as in the previous section. Obviously po > 0, thus the

case ¢ =0 does not occur and we have P(s) = pof(s)/(f(s) —s) for 0=<s
< g with po=ro— 1. Define generally pn+p= ra+s— g ""P and Pu+s(s)

:ngopn+,;s”,0§s<q,0§ﬁ< 1.
THEOREM 6.1. Ps(s) = f5(s)P(s),0<s<q,0<p < 1.
COROLLARY 6.1. ro=f"(q).

COROLLARY 6.2. In the Poisson case

no(—= 1Y o
h(n + ﬂ) = Fpap = q“(nﬂf) _ (1 _ ro) j;) L_J'l_) el(n+/3){(n _ /)) _j)ew}J )

Up to a rescaling this is the expression given in earlier sections.
PROOF OF THE THEOREM 6.1.
r,,+/;:kZO Pl—n+k—-1+Xp— Xi-p=j—1

for some j € N| X5 = k)pr(1 — B)

2 ol = B+ T pu(1 = B)g

Z Pl = Plpnrsi+ g """ Z pi1 = B)g’

2, (1= Poprosrr + g "

~(n+p) _

Thus, pn+g = rasp — 2 pr(1 = B)pn-k+1. Using this recursion we see
q k=0

that
sPy(s) = T 2 pe(l = B)'pu-sers”™ "
= E 1= proind™

= - =J1- 0 — |- 0
6 = p0 = Fiat9) | 0 1+ 7= ) = o
= Fies($)pos| (f15) = 9) = fi-(5) - PSS (5) = fy(IPCS)
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The Corollaries 6.1 and 6.2 are seen immediately by expansion of P in
a power series, the expression for P taken from the previous section
specializing to P(s) = po(1 — se’' )",

7. A Galton-Watson process

We return to the situation of Section 5. Remember that {X,,n>0}is a
random walk with Xo =0 and i.i.d. nonnegative increments Y; = X; — X;-1,

having probability generating function f(s) = ;) pis'. Let m = EY; and denote

by g the smallest nonnegative root of f(s) = s and ro = f(q).
Let now Zo be a positive random variable. Define V := Zo, Vo1 := Zo
+ Xv,, Zn+1:= Vas1 — Vi for n = 0. Then,

LEMMA 7.1. The sequence {Z,,n =0} constitutes a Galton-Watson
process with offspring probability generating function f.

PROOF. Use the definition of the variables V; and Z; to write Z,+:
(conditioned on Zo, Zi,..., Zs) as Yy, «1+ Yy, 42+ -+ + Yy, +z, where the
variables Yy, are 1.1.d. with probability generating function f and indepen-
dent of Zo,..., Z,.

LEMMA 7.2. Zo+ Xi>Iforalll<V,

>Vn l_f Zn+1>0
Vier = Zo + X,
- Vn ij‘ Zn+1:0.

PROOF. The second assertion follows immediately from V.« — V,
= Zn+1. We show that Zy + X; > I even for [ < V, if Z, > 0 by induction. As
Z,>0 implies Z,-; >0 we assume Zo+ X;>/ for /< V,-1. Now, if V,-,
<I=sVy=Vui-1+ Z, we write I=V,-1+j with 1 <j< Z,. Thus, Z + X,
>Z2o+ Xy, = Va=Vur+Zy> Vo1 +j=11f Z,=0, then there is a k <n
with Z; > 0, Zviv=2Zyir=-=2,=0.Butthen Zo + X;>Ilforl< Vi=V,.

COROLLARY 7.1. If Zo+ Xi>lforl<k and Zo + X = k, then
(@) thereisannwith Z,>0, Z,+1 =0,
(b) Va=k.

PROOF. k < V; would imply Zo + Xk > k. Therefore, V; < k for all j.
This is only possible when the nonnegative differences Zj«1 = Vj«1 — V;
become 0 at a certain j = n, i.e. when (a) is true. But then Z, + X; > [ for all
1< Vyand Zy + Xy, = V, which displays V, as having the value k.
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Lemma 5.1 is an immediate consequence: Let Zo = k, then
(7.1)  w= P(Zo + X;=Ifor some [ =0) = P(Z, =0 for some n<0) =g .
We now want to determine ro = P(X; = I for some /> 0). The increasing
sequence Xo, X1,... can cross the diagonal from below only. Define the
stopping time 7 = inf {n > 0, X, = n}. Then,

D ={X;=[for some [ >0}

———{X1=lforsomel>0,T<00}=UI{YT:]'}QD
=

ZUI{Y1:j,X1+1= 1 + [ for some /= 0}
=

=)

U {T:Z;Xz—lzt“l_k,

t=k+1

J

U

Cs

I}
—_

j=1k

Y, =j, X;+1=1t+ I for some / =0} .

If we define

At(k’]) = {Xl’l =t—1- k, Y, :ja T= t} »
B.(j) :=={j+ Xi+1— X, = [for some [ =0},

this decomposition of D can be written as

[

D= _U{(Al(O,j)ﬂBl(j~ mulU U (k)N BG -k~ 1))].

Jj=1 k=1 t=k+1

From Lemma 7.1 we see that Bi(j) is the extinction of a Galton-

Watson process with Zo = ji.e. PB,(j) = ¢’. Using the independence between
A, and B, events we calculate

n=Pp= 5[ a0+ Z ¢ B AAGD) |

=2

o j-1
j=

g’ *'P(A(k,k)), where

1

x

=0
o

A(k,]) = LkJ Al(kaj) for k> 13 A(Oa]) = AI(O,]) .

t=k+1

- -1
Next we remark that X;:== X Yi=Xi-1— X1, [=0,...,t—11s

=t-

stochastically the same as X;, /=0, 1,...,¢ — 1.
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LEMMA 7.3. Auk,j)=tk+Xi>1 for 1<I<t-2k+X-1=1—1,
Y.=Y, =/}

PROOF. Aik,j)={Xi<lforl<I<t—-2,X,.1=t—1—-k,Y,=j}.On
A:(k,j) we have therefore

X1 = Xy
@ X=t—1-k and X <! for 1</<t-2
S Xi=X-1— Xeoi-1
St-1-k)-@—-I1-1)=I1-k for I<l<i-2
Sk+Xi>1 for 1<l<:-2.

Now Y, is independent of X;, 0 </<¢— 1. Thus {X,0</<t— 1} has
on A;(k,j) the same distribution as {X,0</<r—1} has on C(k):=
tk+Xi>0L1<i<t-2,k+ Xi-i=1—1}.

The Ai(k,j), t=k+ 1,k +2,... being disjoint we conclude that {X,
0</=<T- 1} is defined on A(k,j) and has the same finite dimensional

distributions as {X,0</< L} on Ci(k) = {k + X, for some /> 0} where

t=k+1
L=min {{|k+ X;=1}.
Using the Galton-Watson process Z, corresponding to X; with Z, = k
we see that A(k,j) = {extinction of Z,} N {¥Yr=j}. As Yris independent of
{X,,0 <1< T— 1} and thus of {Z,, n = 0} we have

P(A(k,j))=q‘-p; for k=1 and PA0,j)=P(Y,=j)=p;.

This leads to
e I k1 k v . j-1 ,
ro=PD=2X % ¢ " qp=Xjq pi=1"1q)-

Remark 7.1. The above derivation of r, allows the following inter-
pretation. When at time 7 the process jumps from & below the diagonal to
j—k—1 above the diagonal k=1,2,...,j— 1 then two Galton-Watson
processes bound for extinction are triggered, namely {Z,,n > 0} with Z, =
j—k—1on B(j—k—1) and {Z,,n=0} with Zo=k on A(k,j). These
processes are independent of Yr. Hence the probability of D being realized
with Yr=j and Zo =k is pig’ *'¢* = pig’~'. Since j different values of k
are possible

PD=Z jpig"" =/ "q) .
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8. The case of two parallel lines

In this section we consider a compound Poisson process, again with
EX(1) = A, and determine its intersection behaviour with two parallel lines
y=oat+p (line 1) and y=ar + B+ y (line 2). Assume y >0 and a>0,
a# A. Our aim is to determine the probabilities defined below:

o: is the probability that the process (starting with X(0) = 0) intersects
line i without intersecting the other line first (i = 1, 2),

& is the probability that the process, given its path intersects line 7,
returns to line i without first intersecting the other line (i = 1, 2),

di is the probability that the process, given its path intersects line 7, at
some later time intersects the other line without an intermediate return to
linei(i=1,2).

Finally, po=1—01— 02, pi=1—& -3 and p,=1— & — 9, are the
probabilities of not intersecting either of the lines, starting from 0, from
line 1, or from line 2, respectively.

THEOREM 8.1. If {X(t),t =0} is a compound Poisson process with
positive jumps such that EX(1) = A then

WP —hBrph(=y B+ )) = HBRG)
L=h(Mh(=» L=h(h(=y)

_ 0 h(ph(=7y)
1= h(ph(—7y)’

1

po=1-— 01— 0y, &1 =&

s = (I —h(+y)d — 6)
' 1= h(y)h( =)

s 5,‘:1—8,‘—/)1'.

The proof proceeds by determining the joint probability generating
functions (p.g.f.) of the numbers of visits to the two lines. Denote these
p.g.f. by go if we start the process at 0 and by g if the process is started on
line i. Then conditioning on the first visit after time 0 to either of the lines
(if any), it is easy to establish the equations

go(s1,82) = po + 0185181(51, 82) + 025:82(51, 52) ,
8.1) gi(s1,52) = p1 + e15121(51, 82) + O15282(51, 52)

g2(s1, 82) = p2 + 02518151, 52) + €25282(51, 82) .
It is an easy exercise to solve the last two of these equations for the p.g.f.’s
g1 and g, and to compare the expressions thus obtained for the marginals

gi1(s, 1), g1(1,5), g2(s, 1) and g»(1,s) with what we know them to be namely
gi(s, 1) = (1 - 0)/(1 - 0s) = ga(1,5), g1(1,5) = 1 = h(y) + h(y)(1 — 0)s/(1 — bs)
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and g:(s,1)=1—h(—y)+ h( — y)(1 — 8)s/(1 — Bs). This comparison yields
the values of ¢;, d; and p; (i = 1,2) as given in Theorem 8.1. Turning to the
first one of the equations (8.1) and again evaluating the marginals completes
the proof.

9. Concluding remarks

Remark 9.1. For a Poisson process without compounding and the
line y = ar + f with a < 1, Nair er al. (1986) have determined the asymptotic
value for A(f) as f — oo.

The explicit form of the Laplace transform 4 determined in Section 4
now allows us to generalize their Lemma 4.5 to the general case of a
compound Poisson process whose jump sizes are positive and have an
expectation 4. In fact, applying a Tauberian theorem (e.g., Widder (1941))
and keeping in mind that ¢'(0) = — 4 one obtains

1-0
b O

for the case a < 4. Naturally, if a > A4, then A(f) — 0, as f — co.

Remark 9.2. The most remarkable feature of Theorem 8.1 is the fact
that &, = &;. The proof implies even the following slightly stronger state-
ment.

COROLLARY 9.1 TO THEOREM 8.1. Consider a time homogeneous
Markov chain in discrete time with three states 1, 2 and o, say. Let « be
absorbing. Then the probabilities of never returning to state i given the
process starts in i (i=1,2) are the same if and only if the one step
transition probabilities Pi for i =1 and 2 are equal.

Remark 9.3. In Section 8 if a> A then A(—y)=1 and p.=0. We
could have used this in our analysis there. It would not, however, have led
to much simplification. On the other hand, we should note that the
expressions given in Theorem 8.1 simplify if we put A( — y) = 1.

Remark 9.4. The probabilities determined in Theorem 8.1 could in
principle also be obtained by the methods presented in the previous
sections. In this connection we wish to point out that the probability g(y)
of reaching line 2 (the upper line) without first touching the lower line if
the process is started from X(0) = § + y satisfies the equation
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©2 q0) =~ {g) ~ gl + D)}

for y # y, which can be considered dual to (3.3).

The probability g(y) can be read off Theorem 8.1 as o, if we put
f=—y, thatis

9.3) q(y) = [A(y = ») = h(= NhWMY/1 = h(DA( = )] .

Remark 9.5. Further insight could be gained by considering inter-
sections with more than two lines. It can be left as an exercise for the
reader to pursue the approach of Section 5 further in this direction. The
problems connected with two or more non-parallel lines appear far more
difficult and additional research in this direction is needed.
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