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Abstract. In this paper we consider experimental settings where v
treatments are being tested in b; rows and b, columns of sizes ki; and ko,
respectively, i=1,2,..., by, j=1,2,..., bo. Some sufficient conditions
for designs to be E-optimal in these classes are derived and some
necessary and sufficient conditions for the E-optimality of some
special classes of row and column designs are presented. Examples
are also given to illustrate this theory.

Key words and phrases: E-optimality, orthogonality, balancing,
connectedness, block design, row and column design.

1. Introduction

Let us consider the row and column designs with the following model of
observations:

U

y=1,0u05 a7 P | v,
B

Y

where y is a n X 1 dimensional vector of random observations, 1, 1s the n x 1
vector of ones, D}, D5, A’ are n X by, n X b, and n X v dimensional design
matrices for rows, columns and treatments, respectively, x4 is an overall mean
parameter and fi, f. and y are by X 1, b, x 1 and v x 1 vectors of unknown
row, column and treatment parameters, respectively. The vector e contains n
uncorrelated random variables having expectation zero and variance o’
each.

For a given design let Ny = AD’ denote the v X b; treatment vs. row
incidence matrix, let N> = AD? be the v x b, treatment vs. column incidence
matrix and let N3 = D D3 be the b; X b, row vs. column incidence matrix.
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The properties of these row and column designs can be considered by
examining the patterns of the matrices

(1.1) C=C1— (N.— NiK{'N;)C;5 (N> - NiKT'NsY
where

Ci=R-NK/'Ny,
C; is a generalized inverse of

C;=K,— NiK;'N;,

and K, K, and R are the diagonal matrices with elements equal to the row
sizes, k1;, the column sizes, k»; and the treatment replications, r;, respectively,
i=12,...,b,j=12,..,b:,1=1,2,...,0. An equivalent formula for C is

(1.2) C=C;— (N1 — NoK5 'N{)Ci (N1 — N2 K5 'N3Y |
where
C;=R - N:K;'N{
and C; is a generalized inverse of
Ci=Ki - N:K;'Ny .

The matrix C and its eigenvalues indicate some important properties of
a given design, e.g., connectedness, orthogonality, balance, C-property or
optimality with respect to some criterion. The E-optimality criterion was
introduced by Ehrenfeld (1955). The design d belonging to any class of
designs is E-optimal in this class when the smallest nonzero eigenvalue of the
matrix C of dis not less than the smallest nonzero eigenvalue of the matrix C
of each other design from the class. The E-optimality of row and column
designs was considered by Eccleston and Kiefer (1981) and Jacroux (1982,
1985). Any row and column design whose row vs. column incidence matrix
is N3 = 15,15, is said to be ordinary (see e.g. Raghavarao and Federer (1975)).

2. Main results

We will consider the problem of choosing an E-optimal design in classes
of connected row and column designs without assumption of ordinarity.

Henceforth, we will denote by @ (v, k1, k,) the class of all connected row
and column designs having v treatments arranged in rows and columns
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having sizes as defined by the elements of the vectors k; and k2, respectively.
With each row and column design, we associate the two block designs di and
d, defined by the matrices Ny and N,. The class of connected block designs
having v treatments tested in blocks having sizes as defined by the elements
of the vector k;, will be denoted by @ (v, k), i = 1,2.

For de @ (v, ki, k2) let 0=4 <A <A <--<4,-1 denote the eigen-
values of the matrix C, 0 = Ao < A11 < A2 < ++- < A1,0-1) the eigenvalues of
the matrix C; and 0 = Ay <Ay <A < -+ < A -1) the eigenvalues of C.
Notice that the matrices (N2 — Ni1Ki 'N3)C5(N> — NiK{'N3) and (N: —
N2K7 'N{)Ci (N, — N> K5 'N{) are positive semidefinite. From this it follows
from equations (1.1) and (1.2) that

2.1 A< Ay
fori=1,2,7=1,2,...,0— 1 (see Seber (1984)).

LEMMA 2.1. For i=1 or i=2 let the design d; be E-optimal in
@) (v, k;) and let it be associated with the row and column design d € (v, ki, k»).
Then there does not exist any row and column design d° € @ (v, ki, k) such
that for associated with it the block design di € @ (v, kr)

(2.2) Mi>An and A=A, P#i i=12.

PROOF. From the relations (2.2) and from the E-optimality of d;, we
have A} = A% > Aa = A).. This is a contradiction with (2.1).

THEOREM 2.1. Letde @ (v, ki, k) be such that the design d; fori =1
or i =2 is E-optimal in the class @ (v, ki). If 21 = Au, then d is E-optimal in
@(D, k1, kz)

PROOF. From (2.1) and from the assumptions of this theorem, we
have fori=1ori=2, Af <A} < Ay = 4, where AT and A are the eigenvalues
of the matrices C and C; of any design d* belonging to the class @ (v, k1, k2).
It now follows from Lemma 2.1 that d is E-optimal in @ (v, k1, k>).

Some special cases of row and column designs are now considered
having row vs. column incidence matrix N; = kik3/n. These designs were
studied by Pal (1977).

COROLLARY 2.1. Letd e @ (v, ki, k>) be such that its incidence matrix
N is of the form Ns = kiky/n. If fori=1ori=2

(2.3) Ni=rki/n

and if dy (' #i, I = 1,2) is E-optimal in the class @ (v, k:), then d is E-
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optimal in & (v, ki, k).

PROOF. When fori= 1 ori=2 relation (2.3) is satisfied, then for the
row and column design with N3 = kik%/n the matrix C is of the form C = C;
(@ #1i, "=1,2). In this case 4; = 4:1. Hence from Theorem 2.1 the result
follows.

Example 2.1. Let us consider the block design described by Lee and
Jacroux (1987). This design is E-optimal in the class @J(10,[2 * 1%, 4 * 155]").
The incidence matrix of this design is N = [Nr3s, Nr10s] where Nris and Ngos
are the incidence matrices of the designs R36 and R108 given in Clatworthy
(1973). Now consider the row and column design d € @J(10,90 * 1,,[2 * 14,
4 * 155]") having matrices N, = N, N1 =9 * 1,015 and

1o 2% 15
N3—(1f10 2% 155)‘

Since the assumptions of Corollary 2.1 hold, the design d is E-optimal in the
class @(10,90 * 15,[2 * 14,4 * 155]).

Let us now consider the special case of row and column designs having
2.4) Ni=kikijn, NiN,=kikifjv and r=r*1,.

These designs are related to those which were studied by Eccleston and
Kiefer (1981). They considered ordinary row and column designs having
NiIN,=r* 11}, and r = blbz/U.

THEOREM 2.2. The row and column design d € @ (v, ki, k) satisfying
(2.4) is E-optimal in this class if for i = 1 or i = 2 the design d; is E-optimal in
the class D (v, ki) and An < n (i’ # i, 1 = 1,2).

PROOF. If N; = kiki/n, then the matrix C is of the form C = C,
+ C> — Co where Cp = r(I — 1,17/ v). Since N{N, = kk5/v the matrices C, Ci,
C: and C, have a common set of eigenvectors. The eigenvalues of these
matrices satisfy for j = 1,2,...,v — 1 the following relation:

2.5) A=A+ Ay—r.

Let us write C=Cy— (Co— Ci) —(Co— C;). The matrices Co— C; and
Co — (> are orthogonal; thus (Co— C1)(Co— C;)=0 and from (2.5), if
0<Aj<r,then Ay=rand 4 =A4; (' #1i, i,/ =1,2). So die D (v, ki) is E-
optimal and 4; < As1; it follows from Theorem 2.1 that d is E-optimal.
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Example 2.2. Consider the designd e @ (11,[11 22 227,5 * 1,;) hav-
ing

11111111111
NI=N;=122222222222
22222222222

and having N, which is the incidence matrix of the BIB design d> € & (11,
5 * 111). The above matrices satisfying the relation (2.4) and the block design
d, is E-optimal in @J(11, 5 * 1;1). Hence d is E-optimal in @ (11,[11 22 227,
S*1p).

Eccleston and Russel (1975) studied row and column designs having
incidence matrices satisfying for i = I or i = 2 the relation

(2.6) N; = N:K; 'N3;

where " # i, i = 1,2, N3s; = N7 and N3 = Ns. Let us denote the classes of
these connected designs by @i(v, ki, k»), i=1,2.

THEOREM 2.3. A row and column design d € @(v, ki, k;) where i = 1
or i =2 is E-optimal in this class if and only if dr is E-optimal in the class
D(v, k), 1" # 0,7 =1,2.

PROOF. Since @i(v, ki, k2) C @ (v, ki, k2), the sufficiency is evident
from Theorem 2.1. When d is E-optimal in the class @i(v, ki, k2), then
A= A3 where A7 is the eigenvalue of the matrix C of any design d° from
@i(v, k1, k). From (2.6) we have C = C;, hence the result follows.

Example 2.3. The block design defined by the incidence matrix

1111000000
1000111000
0100100110
N'=10010010101
0001001011
0000000010
0000000001

is the partially balanced block design E-optimal in the class @ (10,[4 * 15,
15]") (see Brzeskwiniewicz (1988)). Let N, = N,
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and

, (2222201
N3‘(2222210)

are the incidence matrices of the row and column design d € @,(10, 11 * 1,
[4 * 15,15]"). The above matrices satisfy the relation (2.6) for i = 1. Hence,
from Theorem 2.3, this design is E-optimal in the class @,(10, 11 * 1,,
[4 * 15,12]).
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