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Abstract. The growth curve model with an autoregressive covariance
structure is considered. An iterative algorithm for finding the MLE’s of
the parameters in the model is presented, based on the modified likelihood
equations. Asymptotic distributions of the MLE’s are obtained when the
sample size is large. A likelihood ratio statistic for testing the auto-
regressive covariance structure is presented.
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1. Introduction

The growth curve model (Potthoff and Roy (1964)) is given by

EY)=AZB,

(1.1)
Vivec (Y N=In@ 2,

where Y = (yi,...,yn)": N X p is an observation matrix, vec (Y’) = (yi,...,
yn)', A: N x k is a known design matrix of rank k, £: k X g is a matrix of
unknown parameters, B: g X p is a known matrix of rank ¢q, 2: p x p is
positive definite and the rows of Y are independently normally distributed.
This model has been considered by many authors, including Potthoff and
Roy (1964), Rao (1965, 1967), Khatri (1966) and Grizzle and Allen (1969).
In general, p is the number of time points observed for each of the N
subjects, (¢ — 1) is the polynomial degree, and k is the number of groups.
In most applications of the model, p is small, i.e., the data consist of very
short series for each subject. Most theoretical results are for the case when
the correlation structure is arbitrary.

In this paper we consider the case when X has an autoregressive
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structure of the first order, i.e.,

(1.2) r=d(p"", ij=12,...p,
= G(p) .

This structure has been considered by Potthoff and Roy (1964). However,
it may be noted that the structure has received little attention in the theory
of the growth curve model. Sandland and McGilchrist (1979) discussed the
problem of modeling growth and considered a growth curve model with
autoregressive errors. Glasbey (1988) pointed out the need for caution in
assuming particular correlated error models. It has been noted (Sandland
and McGilchrist (1979) and Lee (1988)) that often the best initial choice of
model for repeated measurements of very short series will be to assume the
autoregressive structure of the first order for 2. Lee (1988) has considered
the prediction of future observations in the model (1.1) with the auto-
regressive covariance structure (1.2). He noted some advantages of the
restrictive covariance structure when it is appropriate, and examined its
appropriateness for three sets of real data.

This paper is concerned with inferential problems in the model (1.1)
with the autoregressive covariance structure (1.2). In Section 2 we present
an iterative algorithm for finding the MLE’s of =, p and ¢°, based on the
modified likelihood equations. Asymptotic distributions of the MLE’s are
obtained when p and k are fixed and N — oo. The asymptotic situation, in
which p and k are small and N is large in the comparison with p and k, is
important for the growth curve data given in Potthoff and Roy (1964) and
Grizzle and Allen (1969). The asymptotic results are presented in Section 3.
Hudson (1983) has discussed asymptotic theory for the growth curve model
with an autoregressive structure, but his asymptotic results are only for the
case when N is fixed and p — . In Section 4 we derive asymptotic
distribution of the likelihood ratio (LR) statistic for testing the covariance
structure (1.2). An example is presented in Section 5.

2. The MLE's

We consider the MLE’s of =, p and ¢ under the model (1.1) with the
covariance structure (1.2). Under (1.1) it is well known that
21) |Z] = (@)’ (1= p*)",
(2. B} _
=0 - P C-2Ct ),

where
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Cl = s C2 = x . 1
0 1
Therefore, we can write the log likelihood of =, p and o’ based on Y as
1
(2.2)  UE,6°G(p) =— ) [Nlog |Z| + Np log 2n
+tr 2 (Y~ AZBY(Y — AZB)]
1
==~ [Nplog o’ + N(p — 1) log (1 — p°) + Np log 2n
+{a’(1 = p"}"’
tr (pPCy = 2pCa + LYY — AZBY(Y — AZB)] .

THEOREM 2.1. The MLE’s of Z, p and ¢" in the model (1.1) with the
covariance structure (1.2) are the solutions of the following equations

()-3):
(1) E=F(p)=(A'A)"'A'YG 'B(BG 'B)",
) 6 =0%E,p) = (n/ N){p(l = p)} (aip’ — 2a:p + a3) ,
3) (p—Dap’ = (p - Dap’ — (pas + @)p + pa: =0,

where G= G(p), ai=tr C:R, i=1,2,3, C3=1,, n=N—k and R=
n (Y — AZB)(Y — AZB).

PROOF. First we consider the maximum of I(Z, 6°G(p)) with respect
to = when p and ¢° are fixed. It is seen (Khatri (1966)) that this maximum
is achieved at == 5(p). Next we consider the maximum of I(Z,d’G(p))

with respect to p and ¢° when = are fixed. Maximizing with respect to o
yields

max [(Z, a*G(p)) = KZ,°(Z, p)G(p))
N
Y [p log (Gip° — 2d:p + @)
—log (1 — p*) + p(1 + log 2rn(Np) 1,

where @ =n""tr C(Y — AZB) (Y — AZB). It is easily checked that the last
expression is maximized when p is the solution of equation (3) with a;
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replaced by ai. Consequently we obtain the fact that the MLE’s of =, p and
o’ are the solutions of (DH-(3).

It is easy to obtain the maximum /(p) of I(Z, ¢ *G(p)) with respect to =
and ¢® when p is fixed. However, it is difficult to obtam the MLE of p in an
explicit form by maximizing I(p). Lee (1988) has pointed that the maximum
of I(p) with respect to p can be numerically obtained by a one-dimensional
search. Using (2.2) it is shown that the likelihood equations are given by
(1), (2) and

(3) (p—DNn'6p —ap’ +{ar+as—(p— DNn '6*)p— a2 =0 .

It is easily checked that (1),(2),(3) < (1),(2), (3"). So, the equations (1),
(2) and (3) can be regarded as a set of modified likelihood equations. Each
of the two sets of the equations gives an iterative scheme. However, we
note that the iterative scheme based on (1), (2) and (3) is much simpler than
the one based on (1), (2) and (3’), since (3) does not involve 6°, but (3)
involves 6*. We suggest the iterative scheme based on (1), (2) and (3)
wherein from an initial estimate of p, §, one can get = from (1) and 6° from
(2), and then solve the equation (3) in j to yield the next estimate of 5. We
suggest the solution of

(2.3) (p— 1) (tr C1S)p’ — (p —2) (tr C28)p*
—(ptr CiS+tr S)p + p(tr CLS) =

as an initial estimate of p, where
(2.4) S=n'Y'(In— A(A’A)'A)Y .

It may be noted that the § in (2.3) is the MLE of p in a MANOVA model,
i.e., in the model (1.1) with E(Y) = AZB replaced by E(Y) = AO, where ©:
k x p is the matrix of unknown parameters.

3. Asymptotic distributions of the MLE's

—

We consider the asymptotic distributions of the MLE’s =, j and &
when p and k are fixed and n = N — k — . Let

U= (A'A)"?A(Y -~ AZB),

3.1) o
V=i/n(z sz~ ).

Then U and V are independent, vec (U’) ~ Nip(0, Ik ® X), and the limiting
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distribution of ¥V = (v;) is normal with mean zero and Var (vi) = 2,
Var (vy) = 1, i # j. Further the (1/2)p(p + 1) elements v; (i <) are indepen-
dent in the limiting distribution. The limiting distribution of vec (V') is
expressed (see, e.g., Muirhead (1982), p. 90) as N,2(0, ¥'), where

p
(3.2) Y=LQL+ X H;Q Hj
L,]=

and H; is the matrix whose (i,j)-th element is one and whose other
elements are zero.

LEMMA 3.1. Let £, p and 6* be the MLE’s of Z, p and o* based on
Y. Then

() (AA)™E-2)=Us"B(BZ'B) '+ 0,(n "),
(i) p=p+np+ 0,
(i) ¢*=d"+n "0+ 0pn"),
where
pr=—[1-p)/{2(p— Dp}ltr DV, d1=r"tr QV,
(3.3) D=1I—{p/re)}Q, Q=Z-p' TV C:z",
r=2p"+p(l-p%.

PROOF. We can write

(3.4) E=E+UAA) UL 'B(BE'B) !,
and
(3.5) R=S+n'W(Z),

where W(£)=1{I,— 2 'B(BX'B’Y 'BYU'U{l, - £~ 'B(BX 'B’) 'B} and
2 =6*G(p). Result (i) follows from (3.4), (i) and (iii). Substituting (3.1)
and (3.5) into equation (3) and finding the solution of § in an expanded
form, we obtain (ii). Result (iii) follows from equation (2) and result (ii).

THEOREM 3.1. When p and k are fixed and n — o, it holds that

(i) vec ({(A'4)"*(E - E)Y) + Nig(0,1c @ (BZ'B) ),
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i Vil )=o)

(i) £ and (p,6") are independent,

where r=2p" +p(1=p%), a=p(1—p'/(p—1), B=2(1+p))d* and y=
= 2p(1 = p*)a’.

PROOF. Lemma 3.1(i) implies result (i). From Lemma 3.1(ii) and (iii)
it follows that the limiting distribution of \/;(/5 — p, 6% — &%) is the same as
that of (pi1,6:1). Consider the characteristic function of (pi,d:), which is
expressed as

C(t1,12) = E{exp (itip1 + it261)}
= Efexp (tr MV)}
=exp {tr M’} + On""?),

where M = — (it)[(1 — p*)/{2(p — Dp}1D + itr ' Q. Result (i) is proven by
showing that

tr M’ = % {ain)” + 2p(in)(i) + B(i)’} .

This identity follows by noting that
tr 0= re’, tr Q2 =r(l + pYo* .

Result (iii) follows from Lemma 3.1 and the independence of U and V.

4. The LR test for an autoregressive covariance structure

It is important to examine whether X has the autoregressive structure
(1.2) or not. We consider the problem of testing

4.1 H:X=0"G(p) against K: X unrestricted .

The maximum of the log likelihood when = and X are unrestricted, which
was obtained by Khatri (1966), is given by

(4.2) max I(Z, X) = I(Z0, £o)

1
== [log [ Lol + p(1 +log 2n)],



GROWTH CURVE MODEL 539

where Zo = (A’A) 'A’YS™'B(BS™'B’) ' and NZo = (Y — AZoB)(Y — AZB).
From (2.2) it follows that

(4.3) max (&, X) = [(Z.. £.)
I ) )
== Nlplog ¢+ (p—1log(l -5
+p(1 + log 21)] ,

where 5, =2 and %, = 6°G(p). Therefore, the LR test is to reject the
hypothesis H for large values of

(4.4) T=—2n/N){I(Zs, 20) — I(Ee, £0)}
=—nlog {|fsz|/|fw|} >

where £, = (N/n)L, and £, = (N/n)Z,.
LEMMA 4.1.

() ZoZi' L =0y(n"'"),
() tr(EeZ,' = L)=0,(n""?).

PROOF. We can write
So=S+n'W(S)
and
5 =Ny A= py (B Ci = 26Ca + 1)

Result (i) follows from these expressions and Lemma 3.1. Using equation
(2) of Theorem 2.1 we obtain

@.5) tr 2.5, = plap’ — 2ap + a3} tr So(pTC1 - 25Co + 1) .

From (3.5) we have £o = R+ Oy(n *?). Substituting this result into the
right-hand side of (4.5) we obtain result (i1).

THEOREM 4.1. The asymptotic null distribution of the LR statistic T
given by (4.4) when p and k are fixed and n — « is a central chi-square
distribution with the degrees of freedom f= (1/2)p(p + 1) — 2.
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PROOF. We can expand T as
T=—nlog |+ (ZZ,' - L)

:—n[tr (fgf;l ~ 1)
1 & 51 2, 1 & = 3
_ 7 tr (Z};Ew — Ip) + ? tr (ZQZ(,) — Ip) 4+ e}

Using Lemma 4.1 we obtain the fact that the asymptotic distribution of T
is the same as that of

(4.6) 7= % tr (SaSs' = 1)

Using Lemma 3.1(ii) and (iii) it can be seen that T is asymptotically
equivalent to

_L 2 L 2 2
To= > tr V 2 (tr VY —d(tr DV)

={vec ()} Jvec (V),

where J=(1/2)I, I, — (1/2)p"" vec () {vec (1)} — d vec (D) {vec (DY}
and d=r/{4p(p — 1)p’}. Our conclusion is obtained by showing that
VYIVIV = PJ¥ and tr ¥J=(1/2)p(p + 1) — 2 (see, e.g., Rao (1973), p.
188). These are easily checked.

We note that as a competitor to the LR statistic 7, we may use the
statistic 7 given by (4.6) whose asymptotic null distribution is the same as
that of T.

As an alternative method for examining whether X has the auto-
regressive covariance structure (1.2) or not, we can use Akaike’s information
criterion (Akaike (1973)). This is equivalent to choosing the arbitrary
covariance matrix or the autoregressive covariance structure (1.2) according
to whether the value of

4.7 — Nlog {|Zel/|Zul} —p(p+ 1) +4

is positive or negative.
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5. An example

We now examine the data (see, e.g., Grizzle and Allen (1969)) of the
ramus heights, measured in mm. of 20 boys at 8, 8.5, 9 and 9.5 years of
age. For the observation matrix Y: 20 x 4, we assume the model (1.1) with

1
EY)=| : (fo,fl)(_l3 _11 } _1)

and the autoregressive covariance structure (1.2) of the first order. Then,
we obtain the MLE’s of (&, £1), p and ¢” as follows:

(o, &1) = (50.0057,0.4650), 5 =0.9526, o =6.5354.

These values are obtained in a few iterations by using the solution
p =0.9527 in (2.3) as the initial value of p. The values are also obtained in a
few iterations by using any value of p = — 0.1(0.1)1.0 as the initial value of
p. On the other hand, the MLE of (&, ¢;) when X is unknown positive
definite is (50.05, 0.4654). It may be noted that the MLE’s of (o, ¢1) in the
two models are very similar. The value of the LR statistic 7 for testing the
autoregressive covariance structure is 9.5. This value is fairly below the
critical value of a chi-square distribution with the degree of freedom f= 8.
Further, the value of (4.7) is — 6.0. Hence it does not seem unreasonable to
assume the autoregressive covariance structure of the first order in this
example.
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