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Abstract. A collection of random variables {X(6),0 € @} is said to be
parametrically stochastically increasing and convex (concave) in § € @ if
X(#) is stochastically increasing in 6, and if for any increasing convex
(concave) function ¢, E¢(X(H)) is increasing and convex (concave) in
0 € ©® whenever these expectations exist. In this paper a notion of
directional convexity (concavity) is introduced and its stochastic analog is
studied. Using the notion of stochastic directional convexity (concavity),
a sufficient condition, on the transition matrix of a discrete time Markov
process {X.(0), n=0,1,2,... }, which implies the stochastic monotonicity
and convexity of {X.(0),0 € ®}, for any n, is found. Through uniform-
ization these kinds of results extend to the continuous time case. Some
illustrative applications in queueing theory, reliability theory and branch-
ing processes are given.

Key words and phrases: Sample path convexity and concavity, Markov
processes, directional convexity and concavity, single stage queues, super-
modular and submodular functions, L-superadditive functions, reliability
theory, branching processes, shock models, total positivity.

1. Introduction and summary

Shaked and Shanthikumar (19884) introduced a notion of stochastic
convexity and concavity and illustrated (in Shaked and Shanthikumar
(19884, 1988b and 1990)) its prevalence in numerous applications. In using
the approach developed there, it is often required to establish a sample
path convexity, with respect to some parameter, for various collections of
random variables. There is no single formal way of doing this. Therefore in
Shaked and Shanthikumar (1990) we attempted to develop a general
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approach to identify sample path convexity and concavity. In the present
paper we develop another general approach which can be used to obtain
parametric sample path convexity and concavity for some Markov proc-
esses.

Some preliminaries regarding directional convexity and sample path
convexity are given in Sections 2 and 3. A new notion of sample path
stochastic directional convexity and concavity is introduced in Section 4.
This new notion can be used to obtain parametric sample path stochastic
convexity and concavity of some Markov processes. The main results
describing this idea are given in Section 5. Some applications of the main
results, in the areas of queueing theory, reliability theory and branching
processes, are described in Section 6.

In this paper we tacitly assume that whenever we talk about an
expectation, this expectation is well defined. Also, “increasing” means
“nondecreasing” and “decreasing” means “nonincreasing”.

2. Directional convexity

Suppose g is a real-valued function on §= S X $2 X -+ X Sy (m = 2)
where each S is a convex subset of the real line or of {..., — 1,0, 1,... }. In
most of the applications which follow each S; is either R = ( — o0, o) or
R.=[0,0) or N={0,1,2,...} or N: ={1,2,3,...}.

DEFINITION 2.1. The function g is said to be supermodular
(submodular) if

2.1) gx A\ y)+g(xVy)=(=)g(x)+g(y)
for all x = (x1,..., xm) and y = (y1,..., ym) in S.

Here, x A y stands for (min (x1, y1),..., min (xm, ym)) and x V y stands
for (max (xi, y1),..., max (Xm, yYm)).

Functions which satisfy (2.1) are described by a variety of names.
Here, we have adapted the terminology of Topkis (1978). For further
information regarding these functions see, e.g., Block et al. (1987) and
references therein.

A function g is supermodular (submodular) if and only if e® is
multivariate TP; (RR;) as defined in Karlin and Rinott (19804, 19805) for
example. It follows from Kemperman (1977) that g is supermodular
(submodular) if and only if ® is TP, (RR>) in pairs, that is,

g(xl,...,xm,xi, Xi+1,...,xj'—1,xj‘,xj'+1,...,xm)

+ g8(X15e ey Xio1, X Xit 15005 Xjm1, X, Xjt1yeees Xm)
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= ( = ) g(xl,---,xi-l,x;,XHI,---, xj‘la Xj,Xj+l,.--,Xm)

F @(X1yeney Xio1, Xiy Xit1yeers Xj— 1y XJy Xjt 1yee - Xm)
whenever x; < xi, x; < xj for i # j.

DEFINITION 2.2. A real-valued function g on S is said to be direc-
tionally convex (concave) if for every choice of x; € S, i = 1,2, 3,4, such that
X1 < x< x4, x1 <x3=< x4 and x; + x4 = x; + x3, one has

g(x1) + g(xa) = (=) g(x2) + g(x3)

Such functions were mentioned in Ruschendorf (1983).
The following characterizations of directional convexity and concavity
will be useful.

PROPOSITION 2.1.  The following statements are equivalent:
(i) The function g is directionally convex (concave).
(i) Forany x;€ S,i=1,2,andy =0 such that x; <x;and x;+y € S,
i=1,2, one has

glx1+y)—glx) =(=) glx2 +y) —g(x2) .

(i) The function g is supermodular (submodular) and is convex
(concave) in each coordinate when the other m — 1 coordinates are held
fixed.

PROOF. The equivalence of (i) and (ii) is immediate. Suppose (iii)
holds for the convexity case. Let x1 = (x11,..., X1m), X2 =(X21,...,X2m) and
y=(1,...,Yym) = 0 where x; < x,. Then

8(X115eees X1,j-15, X1 + Vs X1j+ 1505 X1m) — g(X1)
< 8(X2150 w0y X2,j-1, X1 F Pjy X2, 151+, X2m)
— 8(X2150 w0y X2, =15 X1jy X2, j4 15 w05 X2m)
= 8(X21,, X2,j-1, X35 + Yjy X2, 4 15040, X2m) — 8(X2) ,
where the first inequality follows from (2.1) and the second inequality

follows from the componentwise convexity of g. That is, denoting
e =(0,...,0,1,0,...,0) where 1 appears in the j-th coordinate, we have

g(x2 + yie) — g(x1 + yje) = g(x2) — g(x1) .
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Continuing these inequalities for all j=1,2,...,m, one gets g(x; +y) —
g(x1 +y) = g(x2) — g(x1). That is, (iii) implies (ii) in the convexity case. The
proof of the concave analog is similar.
Now suppose (ii) holds for the convex case. Let
X1 = (X1yeeey Xjm 1y Xjy Xjt 1yeny Xm)
X2 = (xl,...,xj-l,x,’-, xj+1,...,xm)
and y = yje; where x;<xj and y; =0. Then, from (ii) it is seen that g is
convex in x; when the other m — 1 coordinates are held fixed. Finally, let
X1 = (xl,...,xifl,x,‘, Xit1yeeey Xj—1, Xj, xj+1,...,xm) N
X2 = (Xtpeeey Xio1y Xy Xit 1yeeny Xjm 1y Xjy Xjt 1,025 Xm)

and y = (xj — x))¢; were x; < xi, x; < xj for i #j. Then (2.2) follows from (ii).
Therefore g is supermodular. The proof of the concave case is similar. (]

Remarks. (1) 1If g satisfies (ii), then in any positive direction in S,
the increase in g(x) per unit increases (decreases) in x. This is why we called
g directionally convex (concave).

(2) If g is twice differentiable, then it is directionally convex (concave)
if and only if

J’ '
6x2g(x)2(5)0’ .]ZI,""m,
7

and

2

ax:ax_j

gx)=(=)0, i#j.

(3) Usual convexity (concavity) neither implies nor is implied by
directional convexity (concavity).

3. Preliminary: Stochastic convexity and concavity

Let {Po, 0 € O} be a family of univariate distributions. Throughout this
paper @ is a convex set (that is, an interval) of the real line or of the set
{0,1,2,...}. Let X(@) denote a random variable with distribution Ps. We
find it convenient and intuitive to replace the notation {Ps, 6 € O} by
{X(0),0 € &} and this notation will be used throughout this paper. Note
that when we write {X(#),0 € @} we do not assume (and often we are not
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concerned with) any dependence (or independence) properties among the
X(6)’s. We are only interested in the “marginal distributions” {Ps, 8 € O}
even when in some circumstances {X(#), 6 € ©} is a well defined stochastic
process. Note also that X(0) does not mean that X is a function of §; it
only indicates that the distribution of X(6) is P.. Thus, for example, for ¢:

R — R, the notation E¢(X(8)) stands for f¢dP(1——thiS is usually denoted in

the literature by Exp(X). When {X(0),0 € ©} is a well defined stochastic
process then the notation E¢(X(0)) is often justifiably used.

In the following definition (Shaked and Shanthikumar (1988a)), the
abbreviations SI, SICX, SD, SDCV, etc., stand, respectively, for stochast-
ically increasing, stochastically increasing and convex, stochastically
decreasing, stochastically decreasing and concave, etc.

DEFINITION 3.1. Let {X(0),0 € @} be a set of random variables.
Denote:
(a) {X(6),0€ O} SI[SD]if

(3.1 e C= EQX(-) e Co

for C—the class of all increasing real functions on R and Ce—the class of
all increasing (decreasing) real functions on 6.

(b) {X(0),0eO}eSICX [SICV] if {X(0),0€ ®}e SI, and if (3.1)
holds for C— the class of all increasing and convex (concave) real functions
on R and Co—the class of all increasing and convex (concave) real
functions on 6.

(c) {X(0),0e0}e SDCX[SDCV] if {X(0),0 € O} e SD, and if (3.1)
holds for C—the class of all increasing and convex (concave) real functions
on R and Co—the class of all decreasing and convex (concave) real
functions on ©.

In Definition 3.1(a) and (b) we require C and Ce to be “similar” classes
(e.g., for SICX, both are classes of increasing convex functions). In
general, these need not be “similar”. For example, of particular interest is
the class of processes {X(6),6 € ®} such that E¢(X(0)) is increasing and
convex in 6 for all increasing functions ¢. Such classes are considered in
Shaked and Shanthikumar (1990).

Shaked and Shanthikumar (1988a) found sufficient conditions which
imply that a process {X(60),6 € @} satisfies some of these notions. Their
approach was to “put” some (more explicitly four) of the random variables
{X(0),0 € ©} on a common probability space and then obtain “almost sure”
results which carry back to the whole process { X(6), 0 € ©}. In general, the
technique of constructing new random variables having a certain relation-
ship with probability one, but the same marginal distributions as the
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original random variables, is often very powerful (see, e.g., Cambanis and
Simons (1982) and references therein).

For any four real (or vectors) xi, x2, x; and x4 we abbreviate the
conditions x; < min (X2, X3) < max (x2,x3) <xs by x1 <[x2,x3] <xs. Also,
x1 =[x2,x3] denotes x; < min (x3, x3) and [x1, x2] < x3 denotes max (xi, x2)
< x3. Similarly, [x1, X2, x3] < x4 denotes max (x1, x2, X3) < Xa.

Consider a family {X(0),0 € ©}. Let 6, € 0, i =1, 2, 3,4 be four values
such that 6, <0, <0; <0, and 6, + 04 = 0, + 65. Sometimes (see examples in
Shaked and Shanthikumar (1988a, 198854)), there exist four random vari-
ables X;, i = 1,2,3,4 defined on the same probability space such that

(St) Xi & X(gi), i=1,2,3,4,

and which satisfy some of the following inequalities. (The notation (s?)
above stands for the stochastic equality which it states. Below, (cx), (cv),
(i-cx), (d-cx), etc., stand for the conditions of convexity, concavity, increas-
ingness and convexity, decreasingness and convexity, etc., which these
state.)

(cx) X+ X=X+ Xy a.s.,
(cv) X+ Xes X+ X; a.s.,
(i-cx) [/\;2, X3] =X, a.s.,
(d-cx) [ Az, X3] <X a.s.,
(i-cv) X] = [Xz, X3] a.s.
and

(d-cv) X: <[ X2, X5] a.s.

In the following definition {X(8),0 € ©} is classified according to the
almost sure inequalities which X;, i=1,2, 3,4, satisfy.

DEFINITION 3.2. Let {X(0),0 € O} be a family as described above. If
for any ;€ ©,i=1,2,3,4, such that 8, <6, <6;<0, and 0, + 04 =0, + 03,
there exist four random variables X;, i = 1,2, 3, 4, which satisfy:

(a) conditions (st), (¢x) and (i-cx), then {X(#),60 € @} is said to be
stochastically increasing and convex in the sample path sense (denoted by
SICX(sp));

(b) conditions (st), (¢v) and (i-cv), then {X(6),0 € O} is said to be
stochastically increasing and concave in the sample path sense (denoted by
SICV(sp));
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(¢) conditions (s7), (¢x) and (d-cx), then {X(#),0 € @} is said to be
stochastically decreasing and convex in the sample path sense (denoted by
SDCX(sp));

(d) conditions (s?), (¢v) and (d-cv), then {X(0),0 € @} is said to be
stochastically decreasing and concave in the sample path sense (denoted by
SDCV(sp)).

Remark 3.1. The definition of sample path convexity and concavity
given in Definition 3.2 here differs slightly from a similar definition in
Shaked and Shanthikumar (1988a, 19885 and 1990). In those papers, for
example, (i-cx) states [ X1, X», X3] < Xs a.s. and not just [ X2, X3] < X4 a.s. as
in the present paper. However, all the results which appear in those papers
are valid for the modified definitions of SICX(sp), SICV(sp), SDCX(sp)
and SDCV(sp) given here.

For example, Theorem 3.1 in Shaked and Shanthikumar (19885b) is
stated for the SICX(sp) notion which requires (i-cx) to be [ X1, X2, X3] < X4
a.s. and not just [ X, X3] < Xu a.s. as in the present paper. However, that
theorem is valid also for the present definition of SICX{(sp), but in order to
prove it one needs to modify the proof in Shaked and Shanthikumar
(1988b) along the lines of Theorem 5.1 below. In particular, instead of
using Result 5.A.9 of Marshall and Olkin (1979) (which increases (X2, X3)
to (X5*, X3)), as is done in Shaked and Shanthikumar (19885), one should
decrease X1 to Xi* as in the proof of Theorem 5.1 in the present paper.

Shaked and Shanthikumar (1988a) showed that if {X(6),0 ¢ O}
€ SICX(sp) (SICV(sp), SDCX(sp), SDCV(sp)), then {X(#),0 € O} e SICX
(SICV,SDCX,SDCYV). They used these results to obtain useful stochastic
convexity and concavity properties of output random variables in various
stochastic systems.

Counterexample 3.1. It should be mentioned that whereas, for
example, SICX(sp) = SICX the reverse implication is not true in general.
To see this, let @ ={1,2, 3} and let the distributions of X (1), X(2) and X(3)
be as follows:

1 3
P{X(l):O}:T, P{X(l):4}:7,
PX(2)=4}=1, PX3)=6}=1.

Then, clearly, {X(8),0 € {1, 2,3}} € ST and, for each x, the value of E[X(6)
—x]+( =fx P{X(6)> u}du) is a convex increasing function in 6 € {l,2, 3}.

Approximating a convex increasing function ¢(-) by a constant plus a sum
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of functions of the form a{- + x;]” where a; >0 for each i (see, e.g., Stoyan
(1983), p.9), it is seen that the convexity of E[X(0) — x] in 6 € {1, 2, 3}, for
each x, implies the convexity of E¢(X(0)) in 0 e{l,2, 3} for each convex
increasing function ¢. Therefore {X(8),0 € {1,2,3}} € SICX.

To show that {X(8),0 € {1,2,3}} ¢ SICX(sp), let 01 =1, 6, =0; =2 and
0s=3. Then, indeed 6, <6,<6:<6; and 0, + 604 =0,+6;. Suppose we
construct on some probability space four random variables X, i =1,2,3, 4,
such that X; < X(6), i=1,2,3,4. Then X»=X3=4 as. and Xs=6 a.s.
whereas X, equals either 0 (with probability 1/4) or 4 (with probability
3/4). Clearly, [ X2, X3] < X4 a.s. However, with probability 1/4, X, + X, =6
<4 +4 =X, + X;. Therefore {X(0),0 € {1,2,3}} ¢ SICX(sp).

In a similar way it can be shown that the implications SDCX(sp) =
SDCX, SICV(sp) = SICV and SDCV(sp) = SDCV are strict.

4. Stochastic directional convexity and concavity

In this section we first define a regular stochastic directional convexity
(concavity) analogue of Definition 3.1. Then a definition of sample path
stochastic directional convexity (concavity) which is analogous to Definition
3.2 is given. Using these we establish, in Section 5, parametric stochastic
convexity (concavity) for some Markov processes.

DEFINITION 4.1. A collection of random variables {Z(x), x € S}, § = 51 X
-+ X S (wWhere each S; is as described in Section 2) is said to be:

(a) Stochastically increasing and directionally convex (concave) in x
if {Z(x),x € S} €SI and if Ep(Z(x)) is directionally convex (concave) in x
for every increasing convex (concave) function ¢. We then write {Z(x),
x€S}eSI-DCX (SI-DCV).

(b) Stochastically decreasing and directionally convex (concave) in x
if {Z(x),x e S} e SD and if E¢(Z(x)) is directionally convex (concave) in x
for any increasing convex (concave) function ¢. We then write {Z(x), x € §}
€ SD-DCX (SD-DCV).

DEFINITION 4.2. A collection of random variables {Z(x),x € S}, S = S1 x
S2 X --+ X Sp (as in Definition 4.1) is said to be:

(a) Stochastically increasing and directionally convex (concave) in
the sample path sense if, for every choice of x;€ S, i=1,2,3,4, such that
X1 <[x2,x3] < x4 and x; + x4 = x» + X3, there exist four random variables Z;,
i=1,2,3,4, defined on a common probability space such that

4.1 2% Ax),  i=1,2.3.4.
4.2) [22, 23] <Z a.s.
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(4.3) (21 = [Zz, 23] a.s.)
and
(4.4) 21+Z4Z(S)22+Z3.

We then write {Z(x),x € S} € SI-DCX(sp) (SI-DCV(sp)).

(b) Stochastically decreasing and directionally convex (concave) in
the sample path sense if, for any choice of x;€ 8, i=1,2,3,4, such that
x1 >[x2,x3] > x4 and x| + x4 = x; + x3, there exist four random variables as
in (a) which satisfy (4.1), (4.2), (4.3) and (4.4). We then write {Z(x),x € S}
€ SD-DCX(sp) (SD-DCV(sp)).

Remark 4.1. 1t is not hard to show that

SI-DCX(sp) = SI-DCX ,
SI-DCV(sp) = SI-DCV ,
SD-DCX(sp) = SD-DCX

and that
SD-DCV(sp)= SD-DCV .

The reverse implications need not be true. For example, it is shown in
Counterexample 3.1 that SI-DCX # SI-DCX(sp).

5. Parametric stochastic convexity and concavity for Markov proc-
esses

In this section we consider temporally homogeneous discrete time
Markov processes. Denote such a process by X(0) = {X«(0),n=0,1,2,... }.
Let its state space 7T be a convex subset of R or N. The notation indicates
that the distribution of the initial state Xo(#) and the transition matrix of
the process are allowed to depend on a parameter € ©® where @ is also a
convex subset of R or V.

For any random variable U and an event A4, denote by [U|A] any
random variable whose distribution is the conditional distribution of U
given A.

For the Markov process X(60), let Z(x, 8) denote any random variable
which satisfies

Z(x,0) 2 [ Xn1(0)| Xu(0)=x], xe€T, 0eO.
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In Theorems 5.1 and 5.2 and in the related results below, it is assumed that
{Z(x,0), (x,0) e Tx O} is SEDCX(sp) or SI-DCX. This means, explicitly,
that the SI-DCX property of Z(x, 8) is assumed to hold in terms of the pair
(x,0).

THEOREM 5.1.  Suppose {Z(x,0), (x,0)e Tx O} e SI-DCX(sp) (SI-
DCV(sp)). If {Xo(0),0¢€ 0} e SICX(sp) (SICV(sp)), then {X.(0),0€ O} ¢
SICX(sp) (SICV(sp)) for eachn=0,1,2,....

PROOF. Only the convex case will be proved. The concave case is
proven similarly.
As an induction hypothesis assume that for some n

5.1 {Xn(0),0 € O} e SICX(sp) .
We just have to show that
5.2) {Xn+1(0),0 € O} € SICX(sp)

and the proof will be complete.

From (5.1) it follows that for any #;e @, i=1,2,3,4, such that
61<0,<05<0, and 6, + 6, = 6, + 65, there exist four random variables X,
i=1,2,3,4, defined on a common probability space such that

Xis:tX(ei), i219293943
[Xz, X3] < X4 a.s.

and
X+X%<Xi+X  as.
Define X{* = min (Xi, X2, X3) and X = X, + X5 — X¥ and notice that
(5.3) X*<X, and X&f<X: as.

Then it is not hard to see that Xi* <[X,, X3] < X& a.s. and that X* + X
= X2+ X5 as. Therefore (X¥,0)) <[(X2,6), (X3,05)]< (X 04) as. and
(X1, 01) + (X&,0s) = (X2, 00) + (X3, 65) as. So if Vi< Z(X,0), i=2,3, and
Y* =Z(X}¥,0), i=1,4, then from the fact that {Z(X,#6), (X,0)e Tx O}
€ SI-DCX(sp) it follows that there exist four random variables Y;, i =2, 3,
and Y, i=1,4, defined on a common probability space, such that

v:2v, i=23, Y*Zv* i=1,4,
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[)72, ?3] < Y4* a.s.
and
Yl* + Y1* = }72 + Y3 a.s.

From the stochastic monotonicity of Z(x,#) in x, using (5.3), it follows
that random variables ¥;, i = 1,4, can be constructed such that ¥; £ Y; and
Yi=Y*as.,i=1,4.

Summarizing, we have shown the existence of ¥;, i=1,2,3,4, such
that

VL Z(XA0),6), i=1,2,3,4,
[Yo, V1< Vs as.

and
Yz + Yg < Y1 + )74 a.s.
But Z(X«(0), 0) £ X.1(6y), i = 1,2,3,4. This proves (5.2). O

Remark 5.1. In Section 6 we will need a modification of Theorem
5.1. The modification corresponds to the restriction that in the choice of 6,
0y, 05, 0,4 it is required that 6, = 8;. Using a proof similar to the proof of
Theorem 5.1, one can show the following result: If for any choice of (x;, 6)),
i=1,2,3,4, such that 6, <0, =0:<04, x1<x2<x3<xs and (x1,6:) +
(X, 04) (X2, 6,] + (x3,93) there exist random variables Z;, X;, i=1,2,3,4,
such that Z; * Z(x;, 6), X * Xo(), i=1,2,3,4, and a.s. 22, 23] < 24, 20 +
Z4=>2,+ 275, [ X2, X;]< X4 and X, + X4 > X, + Xs, then for every n eN
there exist four random variables Y;, i=1,2,3,4, such that ¥;< X,(6)),
i=1,2,3,4, [Yz, Yg] <Yias.and Vi+ V4=V, + f’; a.s. A similar statement
corresponding to the increasing concave case can also be stated and
proved.

In order to apply Theorem 5.1, one needs to verify that {Z(x,#),
(x,0) € Tx O} is either SI-DCX(sp) or SI-DCV(sp). This can be achieved
only by coming up with a sample path construction. So far there is no
standard way of doing it. Hence it seems advantageous to provide a
sufficient condition, for the parametric stochastic convexity (concavity) of
discrete time Markov processes, that would be easy to verify. This is done
in the next result. This result assumes less than Theorem 5.1 but its
conclusion is weaker.
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THEOREM 5.2.  Suppose {Z(x,0), (x,0) e Tx O} e SFDCX (SI-DCV).
If {Xo(0),0 € ©} e SICX (SICV), then {X.(0),0 € O} e SICX (SICV) for
eachn=0,1,2,....

PROOF. We prove the convex case only. The concave case is similarly
proven. As an induction hypothesis assume that {X.(#),0 € ©} € SICX for
some ne€N. For any 6;€ 0, i=1,2,3,4, such that 8, <60, =60;<6, and
0, + 0a =0, + 65 consider Xq(6), i=1,2,3,4. The stochastic monotonicity
of X,(6) implies that there exist two random variables X; and X. defined
on a common probability space such that X; £ X,(6), i=1,4 and X, < X,
a.s. Let I be a random variable independent of X, and X, such that
P{I=0}=P{I=1}=1/2. Define Xo=(1 - )X, +IXs and X;=1IX, +
I- I)X4 Clearly, X, 2 X3, (X1 01) < (min (Xz, X}) 6,) < (max (Xz, X3) 0)
= (X4, 0s) a.s. and (X1, 0:) + (X4, 0s) = (min (Xz, X3) 6;) + (max (Xz, X;) 0)
a.s. So using the fact that {Z(x, 8),(x,0) € T x @} € SI-DCX, it follows that
for any increasing and convex function ¢, one has

(5.4)  EQ(Z(X1,0)) + ES(Z(Xs,04))
= E¢(Z(min (X2, X3), 62)) + Ed(Z(max (X2, X3), 65))
= EQ(Z( X2, 02)) + EP(Z( X5, 65))

where the last equality follows from 8, = 6s.
By the definition of X,

P{Xs>x} = %P{XH(GI) >x}+ —;-p{x,,(&) >l

From the fact that {X,.(0),0 € ©} € SICX it follows that fwa{X,,(H) >uldu

is a convex function of @ for each x. Therefore using the fact that
0,=0,/2 + 64/2, we have

PR > wyu = % I PLx6) > widu
+ %fme{Xn(&t) > uldu > f:cP{Xn(ﬁz) > uldu .

That is, X,>. X,(f,) where the ordering >, is defined, e.g., in Stoyan
((1983), Subsection 1.3). Therefore, using the fact that {Z(x,#),(x,0) ¢
Tx O} e SI-DCX, it is seen that

(5.3) EQ(Z(X2,02)) = ES(Z(Xu(02), 02))
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since w(x)= E¢(Z(x,6)) is increasing and convex in x by Proposition
2.1(iii). Combining (5.4) and (5.5) and observing that Z(X;,6;) £ Xu+1(6),
i=1,4 and Z(Xu(0,),0:) = Xnr1(62) £ X,1(65), one obtains {X,.+1(0),0 € O}
e SICX. [

Remark 5.2. Analogous to the observation in Remark 5.1, it is
sufficient in Theorem 5.2 to require the SI-DCX (SI-DCV') property of
{Z(x,0),(x,0) € Tx ©} with the restriction #, = ;. That is, using a proof
similar to the proof of Theorem 5.2 the following result can be obtained: If
{Z(x,0),(x,0) e Tx O} e SI, and if for any choice of (x;,6:), i=1,2,3,4,
such that 8, <8, =05 < 04, X1<x2<x3<xsand (x1,01) + (X4,64) = (X2,92) +
(x3,03), we have E¢(Z(x1,61)) + EP(Z(x4,04)) = (<) EP(Z(x2, 62)) +
E¢(Z(x3,0s)) for every increasing convex function ¢, and if {Xo(0),0
€ @} e SICX (SICV), then {X,(0),0€ @} e SICX (SICV) for each n=
0,1,2,....

Remark 5.3. Notice that in order to verify that {Z(x,8),(x,0) €
TxO}leSI-DCX (SI-DCV), or its weaker version described in Remark

5.2, one only needs to show that, for each y, fwa{Z(x,ﬁ)>u}du is

increasing and directionally convex (concave) in (x, f) or its weaker version.

Using a proof similar to that of Theorem 5.2, the following closure
property can be established.

THEOREM 5.3. Suppose {X(0),0 € O} and {Y(0), 0 € O} are two collec-
tions of random variables such that, for each 0, X(0) and Y(0) are
independent. If {X(0),0 € ©} e SICX (SICV) and {Y(0),0 € O} e SICX
(SICV), then {X(0)+ Y(0),0 € O} € SICX (SICV).

PROOF. We prove the convex case only. The concave case can be
similarly proven. Let 6 € @, i =1,2,3,4, be such that 6, <6, =60; <0, and
0, + 64 = 6 + 6;. The stochastic monotonicity of X(B) and Y(#) can be used
to construct four random variables Xl, X4, Y1, Ys such that X; < X(0),

LY@, i=1,4, X, < Xs as. and Y, < ¥y as. Furthermore, (X, Xs) and
(f’], Y4) can be constructed so that they are independent. Let I, and I, be
independent random variables, independent of X\, X, Yi, Ys, such that
P{LL=0}=P{[,=1}=P{LL=0}=P{hL=1}=1/2. Define X;=(1-I)X +
11)24, X} ]1)214‘(] *11))24, ?2 (] —11))714—]2)74 and ?3:[2}714'(1—[2)?4.
It is then not hard to see that X, £ X;, ¥, £ 13,

[X1, Y[) < [(Xz, Yz), (X3, Y3)] = (X4, Y4) a.s.

and
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(X] + Y1)+(X4+ ?4):()224- Y2)+(X3 + Y3) a.s.
Then, for any increasing convex function ¢, one has

Ep(Xi + Y1)+ Ep(Xs + Ya)
> EQ(X> + Vo) + E(X; + Ys) .

Observe, as in the proof of Theorem 5.2, that X, >, X(6,) and ¥, =, Y(6,).
So by the preservation of the ordering =>. under convolution (see, e.g.,
Ross (1983)), it follows that X, + ¥>>. X(6:) + Y(6,). That is, for any
increasing convex function ¢, one has

EP(X: + Vo) = Ep(X(0:) + Y(6)) .
Therefore

Ed(X(0)) + Y(01)) + ED(X(0s) + Y(6s))
= EP(X(02) + Y(02)) + E(X(65) + Y(65)) .

Combining this with the preservation of stochastic monotonicity under
convolution, one has {X(8) + Y(#),0 € ©} e SICX.

6. Applications

6.1 M®| M(n)/1 queues

Consider a single stage queueing system at which customers arrive
according to a Poisson process with rate () >0 which depends on a
parameter ¢ € © where O is a convex subset of R or N. Customer » brings
a random number B, of tasks, n=1,2,.... The B,’s are independent and
identically distributed with a common distribution function
Q. The service rate of a task, when there are x tasks in the system, also
depends on 6. Denote it by u(x,8), x € N, 8 € ©. Suppose u(0,6) =0 and
#(x,8) > 0. Let Y,(9) denote the number of tasks in the system at time ¢.

Denote us = sup {u(x,#)} and A, = sgup {A(0)}, and suppose that u; < oo

32

xeN,0e©
and As < co.

THEOREM 6.1.  Suppose that A(0) is increasing and convex in 0 € @
and that p(x, 0) is decreasing in 8 for each x and is directionally concave in
(x,0). If {Yo(0),0 € O} € SICX(sp), then {Y(0),0 € O} € SICX(sp) for each
t=0.

PROOF. Define 4 =2(us+ As). Consider the discrete time Markov
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chain {X,(0),n=0,1,2,... } with state space N and

x+ B with probability  A(8)/4 ,
Z(x,0)= (x with probability 1 — —/11— (A0) + u(x, 9)),
x—1 with probability — u(x,8)/4,

where B has the distribution function Q. Suppose Xo(6) £ Yo(6). Let
{N(f),t =0} be a Poisson process with rate 4 defined on the same probability
space as that of {X,(#),n=0,1,2,...} and independent of it. Then the
uniformized process { X (6), ¢ = 0} satisfies

{Yz(G), t=0} 2 { Xn(0),t =0} foreach fOe O

(see, e.g., Keilson (1979)).

Now, for any x;e€ N, i =1,2,3,4, such that x; <[x2,x3] <xs and x; +
Xs=x2 + x3 and for any 6, € @, i =1,2, 3,4, such that 6, <[6, 0] < 6, and
0, + 04 = 0, + 05 construct X;, i=1,2,3,4 on a common probability space
using two independent uniform (0,1) random variables U; and U, as
follows:

(i) If Ui €(0,A()/4), then set Xi=xi+ Q '(Us), i=1,2,4 (here Q
=1- Q)andif

Ui € (0,A(6)] ) U (A6)] A, (AB2) + A(03) — A(61))[ 4) ,

then set X;=x3;+ Q '(U,). Note that by the convexity of 4, one has
M6:) + A(05) — A(61) < A(Bs).
(i) If Uy e (A0)/A,1— pus/A), then set X;=x;, i=1,2,4 and if U, €
(M0))/ A, X(02)] A) U (A(62) + A(Bs) — A(0)))/ 4, 1 — us] A), then set X3 = x3.
(iii) Denote r; = u(x;, 6), i =1,2,3,4, ri = min (r1, r2), r3a = min (r3, r4),
Ri3 =max (r1, r3) and Ras = max (r2, rs). If Uy € (1 — p5/ A, 1), then set X; = x;
—4;,i=1,2,3,4, where

4= I(()"IZr"/‘.\)( U2) + I((Rn‘rl+'|2)//‘1‘»’R|3/‘/‘.\-)( Uz) >
Ay = Lo.r,u)(U2) + LiRos-ro i, Royi)(U2)
A3 = I(OJM//H\)( UZ) + I((lerz*hA)//‘\vRn//‘\-)( Uz)

and

AA = I(Osrm/,ll\)( UZ) + I((Ry‘l’a‘ffu)//‘uR24/’/‘«)( U2) .
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It is now easily verified that X; £ Z(x;, 6), i =1,2,3,4. It is not hard to
verify that [X;, X;] < X, and X; + X4 = X, + X3 a.s. in case (i) and also in
case (i) (that is, when U, € (0, 1 — s/ A)). For case (iii) notice that by the
directional concavity of u(x,#) in (x,8), one has r| + r4 < r, + r;. Therefore
we have only the following three cases to consider (see, e.g., Appendix of
Shanthikumar and Yao (1987a)): (a) ri<r, and r;<rs, (b) r1 >r, and
rs=rsand (c) 11 <r;and r3 = ra.

In case (a):

(42 + A3) — (A + Aa) = LRy—r,rpin, Royi)(U2)

— Iry—ri+ryiuryu)(U2) =0 as.

since r1 —r, < r3 — ra.
In case (b):
(AZ + A3) - (Al + A4) = I((RIJ—r3+r4)_y‘/4\‘,R”;‘/ﬂ)( UZ)
- [((R”—rl*rz),‘/l\,Rmi/tb\)(U2) = 0 a.s.

since ra —r3s<r,—ri.
In case (c):

(42 + 43) — (41 + A4) = Iry=r,+r) 10, R 1) U-)

- I((R”—r1+r4)/,,¢\,R|3//4_»)( UZ) =0 a.s.

So in case (i11), (1\7] + X4) - (Xz + Xg&) =(x1+x13) — (X2 + x3) + (42 + 45)
~ (41 +44)=0a.s.

We will now show that in case (iii), [ X2, X3] < X4 a.s. Since each 4; is
either 0 or | we only need to consider the cases: (@) xs = x2 (and show that
then 44 = 4) and (f) x4 = x; (and show that then 44 < 45).

Consider case (a). Then, since u(x,8) | 8 it follows that r, = rq. There-
fore Ras = ro.

In case (a) (that is, when r; <r; and r3 < r4):

A, = I(O.rz;"/l\)( UZ)
and
As = Loryuw)(U2) + Loy, —r 1)) wortu)(U2)

So 44, 4,.
In case (b) (that is, when ri > r,, and r; = r4):
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4, = I(O.rzf/l,\)( U2)
and
As = Toriu)(U2) .

Since r; = rq it follows that 44 < 45.
In case (c) (that is, when r| < ra, r3 =r4):

A2 = I(O,rzy‘,u‘)( U2)
and
As = Lo.rw)(U2) .

Since r2 = r4 it follows that 44 < 4s.

Consider now case (). Then since u(x,8) ! 8 and 6; <0, it follows
that r3 =rs. So, only case (b) and (c) are to be considered. But in these
cases it is easy to see that 4, < 4;.

In summary, we have shown that X2 Z(x:,0), i=1,2,3,4, [ X2,
X;]1< X, as. and X, + X4 = X, + X5 a.s. Therefore {Z(x,0),(x,0) e N x 6}
€ SI-DCX(sp). Then, by Theorem 5.1, one has {X.(0),0 € O} e SICX(sp).
The required convexity of Y(8) now follows from the preservation of the
SICX(sp) property under mixtures (see Theorem 3.9 of Shaked and
Shanthikumar (1988a)). U

Consider now an M/ M/c¢ queue with arrival rate A and mean service
time ' where A < cu. Let N(4, p) be the stationary number of customers in
the system. Then one has

COROLLARY 6.1.  If (A, ), i = 1,4, are such that A\ < A4, p1 = s and
A4 < cita, then

Ep(N(Z, 1)) <[ED(N (A1, 1) + ES(N(As, 1)1/ 2
for any increasing convex function ¢, where (4, 1) = [(A1, tr) + (44, pa)]/ 2.

PROOF. Let A(0) =4 + (A2 — A1), =0, 1,2 and p(x, 0) = min (x, c)u(0)
where u(0) = 1 — (u1 — n2)8, 8 =0, 1,2. Observe that A(0) is increasing and
convex in 0 and u(x, 6) is increasing and concave in x and is decreasing and
concave in 0. Furthermore, a lengthy verification shows that for any choice
of x;, i=1,2,3,4, such that x; < x, < x3 < xs and x| + x4 = x2 + X3, one has

u(x1,0) + u(xs,2) = min (x1, ¢)p1 + min (Xs, C)ia
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= min (xz, ¢)uz + min (X3, )z = u(x2, 1) + p(xs, 1) .

That is, u(x, 8) is directionally concave on N x{0, 1,2} (for 6, = 6;). Now
the desired result follows from the proof of Theorem 6.1 combined with
Remark 5.1. [

Remark 6.1. The above result does not give the joint convexity of
N(4, ) in (4, p). It only gives the joint convexity of N(4, ) in the diagonal
decreasing direction (i.e., along the line A = a — bu for b > 0). Anyway, the
joint convexity of N(A,u) in the general context is not possible. For
example, where ¢ — o0, i.e., for the M/ M /oo queue, one has EN(A, u) = A/ u.
This is clearly not jointly convex in (4,x4). Harel and Zipkin (1987),
however, show that E[W(4,u)] = E[N(4,1)]/4 is jointly convex in (4, u)
where W(4, u) is the corresponding stationary waiting time.

6.2 GI/M/c queue

Consider a c-server queueing system with a renewal arrival process
and exponentially distributed service time. Let A(f) be a generic random
variable, with distribution depending on a parameter 6 € @, representing
the interarrival times, and let 4 ' be the mean service time. Let N(8)
denote the number of customers in the system at the k-th arrival epoch and
let Wi(0) denote the waiting time of the k-th customer. Then one has

THEOREM 6.2.  Suppose {A(0),0 € O} € SDCV(sp). If {No(h),0 € O} €
SICX(sp), then

(a) {Nu(0),0¢€ O} e SICX(sp) and

(b) {Ww(0),0¢€ O} e SICX(sp).

In order to prove the above theorem, we need the following result of
Shanthikumar and Yao (1987h). Let D(x, ) be the number of survivors at
time ¢ in a pure death process starting with x survivors at time 0, that is,
x — D(x,t) is the number of deaths during (0, f]. Let y(n) be the death rate
when the number of survivors is n. Then one has (Shanthikumar and Yao
(1987b)).

THEOREM 6.3.  Suppose y(n) is increasing and concave in n. Then for
any choice of (xi, t:), i = 1,2,3,4, such that x, < x; < x3 < x4, X1 + X4 = X2 + X3,
h=[t,t:]1<ts and t1 + t4 = 12+ 13, there exist four random variables X,
i=1,2,3,4, defined on a common probability space, such that

XiS:lD(xi,[i), i:17253s4:
[X],sz,/\%]ﬁ)a a.s.
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and
X1+X42X2+X3 a.s.

PROOF OF THEOREM 6.2. Observe that {N«(0),k=0,1,2,...} is a
Markov chain with

Z(x,0) £ [N+ 1(0)| Nu(0) = x] £ D(x + 1, 4(9)) ,

where D(x, t) is the number of survivors at time ¢ in a pure death process
starting with x survivors and the death rate, when the number of survivors
is n, is y(n) =min (n,c)u, n=0,1,2,.... Clearly, y(n) is increasing and
concave in n. So combining Theorem 6.3 with the observation that
{A(0),0 € ©} e SDCV(sp) and D(x,1) is stochastically decreasing in ¢, one
can conclude that

{Z(x,0),(x,0) e Nx O} e SEDCX(sp) .

(In order to verify this statement, one needs to use an argument similar to
the one used in the proof of Theorem 5.1.) Part (a) now follows from
Theorem 5.1. For part (b) observe that

[Ni(0) <]
W) 2 ; Xi,

where X;, i=1,2,..., are independent and identically distributed exponen-
tial random variables with mean (uc)'. The closure properties of the
SICX(sp) property, given in Shaked and Shanthikumar (1988a, 1988b)
guarantee that {Wi(0),0 € ©} e SICX(sp) for each k. [J

Remark 6.2. Consider a GI/ M(n)/1 queue with service rate p(n)
when there are n customers in the queue. Then from the proof of Theorem
6.2 it is clear that part (a) will still hold true for this system as long as y(n)
is increasing and concave.

6.3 Cumulative damage shock models in reliability theory
Esary et al. (1973) considered the following model for wear processes
to which we here add a parameter 6.

Model 6.1. Suppose an item is subjected to shocks occurring ran-
domly in time according to a Poisson process {N(¢), 1 >0} with rate A. The
i-th shock causes a nonnegative random damage X«(f) where 6 € @ and @ is
a convex subset of R or N. The damages are independent and identically
distributed and accumulate additively.
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Let So(#) be the damage at time 0 and define S.(8) = Sa-1(8) + Xa(9),
n=1,2,.... Thus at time ¢ > 0 the accumulated damage is Sy (8).

THEOREM 6.4. Suppose {X(0),0 € ©} e SICX(sp) (SICV(sp)). If
{So(0),0 € O} € SICX(sp) (SICV(sp)), then for each t, {Snu(0),0¢€ O} ¢
SICX(sp) (SICV(sp)).

PROOF. By Theorem 3.9 of Shaked and Shanthikumar (19884) it
suffices to show that

6.1) {Sn(0),0 € O} € SICX(sp) (SICV(sp))
foreachn=0,1,2,....

Let
(6.2) Z(x,0) Z[SA0)|S.-1(0) = x] .

Then Z(x, 8) = X(0) + x where X(0) £ X:1(0).

Fix (x;,60), i=1,2,3,4, such that (xi,0:) <[(x2,02), (x3,05)] < (xa, 04)
and (xi, 81) + (x4, 04) = (x2, 62) + (x3,65). Then there exist four random vari-
ables X;, i = 1,2,3,4, defined on a common probability space such that

X £X(0), i=1,234,
[Xz, X3] < X (X1 = [Xz, X3]) a.s.

and
X1+X42(§)X2+X3 a.s.
Define Z;= X; +x;,i = 1,2,3,4. Then

Zi2Z(x,0), i=1,2734,
[Zz, 23] <7 (21 = [27_, 23]) a.s.

and
2+ Zy<(=2)Z1+ 24 as.
That is,
{Z(x,0),(x,0) €[0,00) x O} € SEDCX(sp) (SFDCV(sp))

and (6.1) is obtained from Theorem 5.1. I
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Remark 6.3. A simple modification of Theorem 6.4 shows that the
conclusion {Sny(0), 60 € O} € SICX(sp) (SICV(sp)) holds for models which
are more general than Model 6.1. All that is needed is that Z(x, #), defined
in (6.2), satisfies the SI-DCX(sp) (SI-DCV(sp)) property. For example, if

Z(x,0) =w(X(0),x) +x

where y is a directionally convex (concave) function, then {Sn((0),0 € O} €
SICX(sp) (SICV(sp)). Here the distribution of the new damage is allowed
to depend on the present accumulated damage.

6.4 Branching processes

Consider a Galton-Watson discrete time branching process { Xi(0),i =0,
1,2,...} depending on a parameter € (0,o) with the offspring discrete
probability function f{(-; ). If

(6.3) Z(x,0) 2 [ Xu(0)| Xu-1(0) = x],
then

P{Z(x,0) =y} ="(y;0)

where f(:; §) denotes the x-th convolution of f(-; ). The following result
is a generalization of Result 5.9 of Shaked and Shanthikumar (1988a) and
its proof is simpler than in that paper.

THEOREM 6.5. Suppose f(-;0), 0 >0, has the semigroup property,
that is, f(+;01) * f(-;02) =f(-; 01 + 0,) where “*” denotes convolution. If
{Xo(0),0 € (0,0)} € SICX(sp) then {Xx(0),0¢€(0,)} € SICX(sp) for each
n=0,12,...

PROOF. Fix (x;,8),i=1,2,3,4, such that (xi, 6;) <[(x2, 02), (x3,03)] =
(x4,0s) and (xi1,61) + (xs, 04) = (x2,02) + (x3,05). On some probability space
define the following mutually independent random variables

Y;' having probability function f(+;6,), j = 1,2,...,

Y/ having probability function f(+;6, — 6,), j=1,2,... and

Y} having probability function f(+;6s — 6,), j = 1,2,....

Let

N

il
I

N
™M
=~
+
&N

-
il
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Z=3(0 +¥)+ B (% + 1)
and
Zi=3 (Y + 4 Y.
Then it is easy to verify, using the semigroup property of f(-; 8), that
Zi2 Z(x,0), i=1,2,34.
It is also easy to see that
[Z2, 23] < Z4 a.s.
and
i+ Zs=72>+ 2723 as.

That is, {Z(x,8),(x,0) € N x(0,90)} € SI-DCX(sp). The desired result now
follows from Theorem 5.1. J

Acknowledgements

The authors thank Ludolf Meester for pointing out an error in a
previous proof of Theorem 5.1, and they thank the referee for helpful
comments.

REFERENCES

Block, H. W., Griffith, W. S. and Savits, T. H. (1987). L-superadditive structure functions,
Tech. Report 87-03, Department of Mathematics and Statistics, University of Pittsburgh.

Cambanis, S. and Simons, G. (1982). Probability and expectation inequalities, Z. Wahrsch.
Verw. Gebiete, 59, 1-25.

Esary, J. D., Marshall, A. W. and Proschan, F. (1973). Shock models and wear processes,
Ann. Probab., 1, 627-649.

Harel, A. and Zipkin, P. (1987). Strong convexity results for queueing systems, Oper. Res.,
35, 405-418.

Karlin, S. and Rinott, Y. (1980a). Classes of orderings of measures and related correlation
inequalities, 1, Multivariate totally positive distributions, J. Multivariate Anal., 10,
467-498.

Karlin, S. and Rinott, Y. (198056). Classes of orderings of measures and related correlation
inequalities, [I, Multivariate reverse rule distributions, J. Multivariate Anal., 10,
499-516.



PARAMETRIC STOCHASTIC CONVEXITY 531

Keilson, J. (1979). Markov Chains Models— Rarity and Exponentiality, Springer, New
York.

Kemperman, J. H. B. (1977). On the FKG inequality for measures on a partially ordered
space, Indag. Math., 39, 313-331.

Marshali, A. W. and Olkin, 1. (1979). Inequalities: Theory of Majorization and lIis
Applications, Academic Press, New York.

Ross, S. M. (1983). Stochastic Processes, Wiley, New York.

Ruschendorf, L. (1983). Solution of a statistical optimization problem by rearrangement
methods, Metrika, 30, 55-61.

Shaked, M. and Shanthikumar, J. G. (19884). Stochastic convexity and its applications,
Adv. in Appl. Probab., 20, 427-446.

Shaked, M. and Shanthikumar, J. G. (1988b). Temporal stochastic convexity and concavity,
Stochastic Process Appl., 27, 1-20.

Shaked, M. and Shanthikumar, J. G. (1990). Convexity of a set of stochastically ordered
random variables, Adv. in Appl. Probab., 22, 160-177.

Shanthikumar, J. G. and Yao, D. D. (1987a). Optimal server allocation in a system of
multi-server stations, Management Sci., 33, 1173-1180.

Shanthikumar, J. G. and Yao, D. D. (1987b). Spatiotemporal convexity of stochastic
processes and applications, Tech. Report, School of Business Administration, University
of California, Berkeley.

Stoyan, D. (1983). Comparison Methods for Queues and Other Stochastic Models, Wiley,
New York.

Topkis, D. M. (1978). Minimizing a submodular function on a lattice, Oper. Res., 26,
305-321.



