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Abstract. Under some regularity conditions, it is well known that the
maximum likelihood estimator (MLE) is asymptotically normal and
efficient. However, if the observation is contaminated, the MLE is not
always an appropriate estimator. In this paper, we treat M-estimators
and study their asymptotic behavior. By choosing estimation equations,
robust M-estimators are presented for phase parameters.
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1. Introduction

We consider a Poisson process X(f) with a parametrized intensity
A(Z,0), where the parameter 6 is to be estimated and belongs to a bounded
open interval @ of R (the real line). The log likelihood function based on
the observation (X(¢); 0 < ¢ < T) up to time T is given by

KT,0) =], log A(t,0)dx(t) - [, A(t,0)dr .

The maximum likelihood estimator (MLE) maximizes the log likelihood
I(T, 6) and is a solution of the likelihood equation

fT A(1,0)

fT. 0 _
22.0) dx@ -, A(t,0)dt =0

*Now at The Institute of Statistical Mathematics, 4-6-7 Minami-Azabu, Minato-ku, Tokyo 106,
Japan.

489




490 NAKAHIRO YOSHIDA AND TOSHIHARU HAYASHI

under some regularity conditions, where 4 is the derivative of A with respect
to 0. Moreover, it is well known that the MLE is consistent, asymptotically
normal and efficient (see, e.g., Kutoyants (1984)).

If the artificial model does not sufficiently reflect the generation
mechanism of the data or the data are contaminated by noises, the true
intensity u(#) of the process X may not belong to the parametric model
{A(1,0); 0 € ©}. In such circumstances, the MLE is not always an appro-
priate estimator of the parameter 6.

For example, we shall consider the following point process X. Let the
true intensity u(¢) be (1 — €) f(¢) + ec(f) and A(¢,0) = f(¢t — 8), where f and ¢
are periodic even functions with the period 1, ¢ denotes the rate of
contamination and the phase parameter 6 (€ @ = (— 1/2,1/2)) is required
to be estimated. If the data are not contaminated (i.e., ¢ = 0), the MLE is a
very good estimator. However, its asymptotic efficiency diminishes for
¢>0. So, our purpose is to construct robust estimators in the sense that
high efficiency is kept even if the data are contaminated.

The robust estimation problem has been studied by many statisticians.
Huber (1981) and Hampel et al. (1986) sum up it in the independently and
identically distributed case. In time series, it has been studied by Kleiner ez
al. (1979), Denby and Martin (1979), Kiinsch (1984), Martin and Yohai
(1985, 1986), Bustos and Yohai (1986) and many other authors. Yoshida
(1988) treats it in diffusion processes. They use the M-estimation and the
G M-estimation to get robust estimators. Here, we treat an M-estimator
which is a solution of a generalized likelihood equation. In Section 2, we
examine its asymptotic behavior, that is, its consistency in a sense and
asymptotic normality. In Section 3, we illustrate how to get a robust M-
estimator for the above model with unknown phase parameter. Moreover,
we show that our robust estimator has the minimax variance provided that
the true intensity belongs to a suitable class.

2. Asymptotic behavior of the M-estimator

We treat the M-estimator defined by

DEFINITION 2.1. For functions A(¢,6) and H(t,8), the solution of
the equation

T T
C(T,0) = [ h(t,0)dX(0)~ [, H(1,0)dt =0

is called the M-estimator.

The MLE corresponds to the M-estimator for
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A(1,0)

W0 =700

H(t,0) = A, 9)

when the parametric model is {A(¢,0); 0 € O }.

We assume the following conditions to show the consistency and
asymptotic normality of the M-estimator 0r.

(1) The true intensity u(¢) of the Poisson process X is a bounded
measurable function with period 7 ( > 0).

(2) The functions h and H are periodic in ¢ with period 7 for any
6 € © and are absolutely continuous with respect to 6 for any # = 0. Their
Radon-Nikodym derivatives # and H are bounded in (¢, §).

(3) There exists a 6, € @ such thatfot{H(t, 0:) — h(t,0:)u(t)}dt = 0.

4) r= % fOT[H(z, 01) — h(t,0)u(H]dt >0,
@ = —i—forh(z, 0. u(t)dt > 0.

(5) There exist constants C; and C, which are independent of ¢ and ¢,
such that for any sufficiently small d > 0,

v( U {re[0,1]; |A(t,0) — h(z,01)] = C1|6 — 01|})§ G,

|0-6i]<6

where v(-) denotes the Lebesgue measure.

(©) JJ1A@0) - H@,00)ldt~0 as  0—061.
It follows from the conditions (2) and (5) that
@.1) J 1R, 6) ~ h(t,8)|di —0 as 60,

Under these conditions, the M-estimator Or is near 6, with high probability
for sufficiently large T. More precisely, the M-estimator fr is consistent in
the following sense.

THEOREM 2.1. For any T=0, there exist a positive number 6(T)
(— 0 as T— ) and an event A(T) such that P(A(T)) — 1 as T — o and
an M-estimator Or exists in U(6(T)) on the event A(T), where U(J) =
{6, 10— 6| <5}
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PROOF. Let
1 ¢7
m(T,0) = — [, h(t,0)0dX() ~ p(d)
1 T
G(T,0) = — |, tH(1,0) ~ h(t,0)u(n)}d ,

(T, 0) = % fOTh'(z, O)dX (1) — u(r)dr)

and
. 1 p7 . .
G(T,0)=— J, {H@1,0) ~ ha, 0)u(n)dr .

Hereafter, ¢ denotes any fixed positive number. We have that for any
T=r1,

sup |G(T,0) - G(T,0)|

0 e U(J)

< sup {%fOT|H(Z,0)—H(t,01)IdI}

e U©)

+ [l {“l'lehtﬂ—ﬁtﬁ)ldt}
All= sup | 1) (1,0) = h(z, 0,

< sup {—i—for |H(t,6) — H(t,0))|dt }

Ge U@S)
2 o .
+llulle sup {—fo |h(z,0)—h(t,01)|dz},
e U(S) T

where |Ju|l~ = sup |u(#)|. By the conditions (1), (6) and (2.1), the right-
hand side converges to 0 as 6 — 0. Hence, we obtain that

(2.2) sup |G(T,0)— G(T,0)| -0 as J6—0
e U(d)

uniformly in 7> 7. Since G(T, 6;) — I" as T — o, we have that there exists
a T1 = 7 such that for any sufficiently small 6 > 0 and any 7> Tx,

@3 inf G(T.0)= inf {G(T.0) ~ |G(T,0) - G(T.0)]}

>I—2¢,
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where I' is a positive constant given in the condition (4). We easily see that
forany T= 1,

|i(T, 0) — m(T, 01|

1 r7 . . 1 7 . .
s?r—fo |h(t,t9)—h(t,@l)ldX(t)+7f0 |h(t,0) — h(t,0,)|u(t)dt

1 : : 1 : :
= 7fu,,_7. |h(2,0) = h(t,00)1dX(1) + — f[o, -, 1A, 0) = (1,00 ]dX(1)

2 oo T . .
+J‘T‘~”~f0 \h(1,0) — h(t,00)\dr ,

where Dyr={t€[0, T]; |h(t,0) — h(2,6:)| = C:|60 — 6:]} and C; is the con-
stant given in the condition (5). By (2.1), there exists a J; > 0 such that for
any 6 € U(dy), the last term of the right-hand side is less than ¢. Since X(T)

T
conforms to the Poisson distribution with meanf0 u(t)dt, we have that for

any 6 >0 and any 7> 0,

P{ sup 1 V|H(t,0)—}i(t,01)|dX(t)28}

oevg I "10.TI-Doy

Cio

SP{ X(T)Zs}

Cio (T
< —_

< —=J, nar

- Cillull- S5

&

For a measurable set B, let X(B) denote fB dX (1) which is the number of
events occurring in B. Since X(B) conforms to the Poisson distribution

with meanfB,u(t)dt, we see that for any 7= 7,

P{ sup L .Tlh'(t,H)—ﬁ(t,Bl)IdX(t)ze}

pcv@) T Do

IA

2 ]i o0
P{ 2017l sup X(De,r)zs]
T secup

2/l
P{ T X(gekg(é)Dg,T)ze

IA
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21lA ]|
<2l o] (0, 000
Te 6eUE)

- 2All=llulle T+z
Te T

v(lg_%‘Jl<5{te[0,T]; |A(t,0) — A(1,601)| = C1|0 - 01|}),

where v(-) denotes the Lebesgue measure. From the condition (5), we get
that for any sufficiently small 6 > 0 and any 7> t,

P{ sup —71~‘ful,r|/i(t,0)~/'z(t,01)|dx(t)2£}Swﬁé_

fe U(d) ET

Hence, we have that for any sufficiently small J and any 7> 1,

P[ sup |#(T,0) — m(T,6)| = 33}<%(5,

0 e U(d)

where C; = (Ci + 4| |« C2/7)|| || =. Since m(T,8:) converges in probability
to 0 as 7 tends to infinity, we obtain that for any sufficiently small §, there
exists a 72(0) = 7 such that for any 7> T>(9),

(2.4) P{ sup |mi(T,0)| 243}< 2803 J.

0 U(0)

From the condition (2), we have, for any 8 € ©,

g .
2.5) C(T,0)= C(T,0) + [, C(T,wydu,
where

(T =J hewdx - [ B, war

Let A:(T,5) be an event {a); sup |m(T,0)| <F/3], where " i1s a
fe U

positive constant given in the condition (4). Then, we have that for any
sufficiently small § and any 7> T»(J),

4
P(A\(T,0)) =1 —%5 (=1- C49, say)
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by using (2.4) for e = I'/ 12. We easily see that for any sufficiently small ¢
and 7> T,

(2.6) inf { - —;,— C(T,u) } = inf {—n(T,u)+ G(T,u)}

L
2

on the event 4(7T,d) by using (2.3) for ¢ =1I/12. Since (1/T)C(T,6,) =
m(T,0,) — G(T,0,) — 0 in probability as T — oo, for any sufficiently small
d, there exists a T3(d) (= T»(d)) such that for any 7> T3(J),

P(A:(T,8)) =1 - 2Csd,

where A,(T, ) denotes the event {w; |C(T,0))|/ T<Id/4} N Ai(T,J). From
(2.5) and (2.6), we easily see that for any sufficiently small 0 and T> Ti,
C(T, 0, + )< 0 and C(T,0; — &) >0 on the event A>(T,¢), which implies
that there exists a fre U(S) such that C(T,07)=0. Consequently, we
obtain that for any sufficiently small J > 0, there exist an event A2(7,0)
and a Ty(9) (= max {T1, T5()}) such that P(A:(T,d)) =1 — 2Cso for any
T> To(d) and an M-estimator 07 exists in U(J) on the event A,(T,5). We
can take a monotone increasing sequence {7,} (T, — o) such that for any
T= T,, P(A:(T,1/n)) =1 — 2Cs/n. Hence, we obtain the conclusion of this
theorem by setting 6(7T) = 1/n for T, < T< Ty+1 and A(T) = A2(T,6(T)).

We examine C(T7, #) to obtain the asymptotic normality of the M-
estimator fr. From the condition (3), we get

1 1 T
T (0= J, h(1,0)(dX (1) - p(tydi) + 0p(1) .

The first term of the right-hand side converges in distribution to the
normal distribution N(0, @) by the central limit theorem for martingales,
where @ is a positive constant given in the condition (4).

On the other hand, we get
LC(TH)—\/Tf”'J—C(Tu)du
ﬁ s V1) — 0 T ’

- JT (f;'m(:r, wdu [ G(T, u)du)
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O 0 . .
= VT ([} T du [ 6 (T~ 6T, 00)d

+ (éA 91)6(T,01)) s

where 8 = 07 is a zero point of C(T,0), that is, the M-estimator. We easily
see that

f;lm(T,u)du < 16— 6| sup {|m(T,0)|; 0 € U0 — 6:])}

and

0, . .
[, 16(T,w) — G(T, 6)}du

<1001l sup {|G(T,0) ~ G(T,6)|; 6 € U(10 - 61])} .
Hence, we have that

1 P
I C(T,0)) =T (6~ 0.)T + 0,(1)) ,

from (2.2), (2.4) and the previous theorem. Consequently, we obtain the
following theorem.

THEOREM 2.2. The M-estimator Or is asymptotically normal.:
VT (0r—61)= N, dI"?)

in distribution as T — oo, where @ and I are positive constants given in the
condition (4).

3. Minimax robust M-estimator

We shall estimate the phase parameter 6 in the periodic intensity
A(1,0) = f(1 — 0), where fis a C’-class, strictly positive and even function
with period 1 and 8 € @ =(—-1/2,1/2). For simplicity, we assume that

folf(t)dt= 1. We suppose that the score function S(z,6) (=S — 0)) =
1
(8/90) log f(¢ — ) is concave in t€[#,6+ 1/2] and that fo S(t—0)f(t -

8)dt > 0. Note that (9/90)S(t — )= —(3/9)S(t — )= — S'(t — 0).
The true intensity is given by



ROBUST ESTIMATION IN POISSON PROCESSES 497
(3.1) ()= (1 = &) f(t = bo) + ec(t - o) ,

where 6y € 0, e € [0, M.], 0 < M. < 1 and c is a periodic, even, bounded and
measurable function. Without loss of generality, we can assume 6, = 0. Let
h(t,0) = y(t— 0) and H(t,0) = (¢t — 0), where ¢ is odd and both y and ¢
are periodic functions for which the conditions (1)-(6) in the previous
section hold with 6, = 0 ( = 6). Then, we easily see that I" in the condition

1
(4) is equal to fo w'(H)u(t)dt. Hence, the asymptotic variance is a measure

of goodness of estimation and is related to  only. The authors will discuss
the robust estimation for asymmetric contaminations elsewhere.

We shall construct an M-estimator which has the minimax variance
provided that the true intensity u belongs to a suitable class. First, we shall
look for an intensity go minimizing the information /() defined by

(s v
(32 I(4) = sup ~—
v [y

b

where () i1s the class of all periodic and continuously differentiable
1
functions withf0 w (O u(0)dt > 0.
Putting, for0 < f < max S(1),

(3.3) a=inf{te[0,%];S(t)2ﬁ}
and
3.49) b=sup[te[0,%];S(t)2ﬂ},

We easily see that @ and b are solutions of the equation S(¢) = and
differentiable with respect to ( 0<p< max S() ) and that {r €0, 1/2];
S(t) = B} = [a, b] by the concavity of S(z) on [0, 1/2]. Let

(1-M)f() lt|<a,
(1 - M.,)f(a) exp { - B(t - a)} as|t|<b,
(3.5 mw()= f(a) 1
(1-M) 1) exp{-fb-alf() b=l==,
| periodic otherwise .
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Then its score function is given by

$)(0) = ~ 223 = max - g, min (5. 41
rS(t) |t|<a,b<|t|§%,
_| B a<t<b,
-p -b<t< —a,
periodic  otherwise .

For a constant £ ( > 1, near by 1), we determine § by the equation

[ wydi = ¢,

equivalently,

a b
36 [ f@adi+f@] exp{- - a)dr

fa) B B 12 __ ¢
+ f(b) exp{ ﬂ(b a)}fb f(t)dt_ 2(1 - M) :

Since the derivative of the left-hand side of (3.6) with respect to f§ is
negative, it is decreasing in f and its maximal value and minimal value are
f(0)/2 and 1/2, respectively. Hence, for M. € [0, 1 — &/f(0)), equation (3.6)
has a unique solution fo. Hereafter, we abbreviate the intensity x5 and its
score function Sp, as o and So, respectively. Let M be a class of all
periodic, even and measurable functions u(¢) satisfying that

J uwdr=[ wwar (=0,
and for any ¢,

S(ao)
S(bo)

(I-M)f()=pu@)=(1- M) exp { ~ fo(bo — a0)} /(1)

where ao and bo, respectively, denote a and b given by (3.3) and (3.4) for
B = o and ¢& is explained as the upper bound of the average number of the
events occurring during one period where the observation is contaminated.
From & > 1, we easily see that the intensity f of the model belongs to the
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class M of the contaminated intensities.
Under the condition

(3.7) B +28'(H) — S(1* <0
for any ¢ € [bo, 1/2], we shall show that

(3.8) I(4t0) = min I(p) -

As in Chapter 4 of Huber (1981), it is sufficient to check that for any
M1 € M with I(u1) < oo,

d 1
B9 )| =], @S0~ S0 () ~ wo()dr =0,
where us = (1 — s)uo + sui1, s €[0, 1]. We easily see that

f (B2 + 285(t) — Solt))) a1 (1) — po(1)) dit

1d .
2 a5 )

- B fol/z (1 (1) — po(2))dt
2-[oao (B3 +25°(1) = SO ) w1 (1) — po()) dt

+ fbum (B3 +287(2) = S(1" ) (1) = po(2)) dt
=I+1I (say).

We see that I = 0 because for 7 € [0, ao], 6 — S(2)* =0, u1(f) — #o(¢) = 0 and
S’(t)= 0. Since ui(t) — uo(¢) <0 for te€[bo,1/2], we get 11 =0 by (3.7).
Consequently, we obtain (3.9).

We shall show that the M-estimator corresponding to A(z, 0) = So(z — 0)
has the minimax asymptotic variance, that is,

(3.10) inf sup V(u,y) = V(uo, o) ,

vedr ye M

where Q; is the class of all periodic functions y with the Radon-Nikodym
derivative y’, for which the conditions (2)-(5) in the previous section hold
with 8, = 0 ( = 6) and
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1 2
J, v@u@ar

1 2
Jy vt

Vi, w) =
|

is the asymptotic variance of the M-estimator corresponding to h(z,6) =
w(t — 0). From Lemma 4.4 in Huber (1981), 1/ ¥V (us, So) is convex in s,
where s = (1 — s)po + su1, s € [0, 1] and w1 € M. We see that for any u; € M,

d 1 i ,
ds ( Vs, So) ) 0 :fo (285(1) = So() ) p1() — po(2))dt 2 0

s=

because the last inequality is valid by (3.9). Hence, we have that

(3.11) Vo, So) = sup V(u, So)
ue
> inf sup V(u, ).
Vel yeM
We get
V(po, So) = ——
b5 = T

= inf  V{(po, 1)
vied
(see, e.g., Huber (1981)). For any w2 € Q> and any ¢>0, we can find a

w1 € Q1 such that |y2(¢) — w.1(?)| <e for any ¢ €[0,1] from Weierstrass’
1 1
theorem. For any yie Qi (i=1,2), [, wihuo(t)di = ~ [ ity

because both w; and uo are periodic. Hence, for any ;e Q,, we can
approximate V(uo, 2) by V(uo, w1) for some y; € Q) from the boundedness
of w1, w2, (o and uo. Furthermore, we have that

Vipo, So) = inf V{40, 1)
< inf V(uo, y2)
Vi€

< inf sup V(u, ).

l//zEQzﬂeM

From (3.11) and the above inequality, we obtain the following theorem.

THEOREM 3.1. Under the condition (3.7), the M-estimator corre-
sponding to h(t,0) = So(t — 0) has the minimax asymptotic variance, that
is,
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lIlf sup V(ﬂ’ !//) - V(.u()a SO)

vedr yeM

where po = ug, is given by (3.5), Po is a unique solution of the equation (3.6)
and So(t) = — p(8)/ po(2).

In the first half of this section, we have constructed the M-estimator
which has the minimax variance provided that the true intensity x4 belongs
to the class M. In the latter half, we shall consider the minimax problem
when the true intensity u(z) is given by (3.1). The class of all functions
given by (3.1) is wider than the class M but we impose a restriction on the
function A(z, 8). More precisely, for a fixed function y satisfying conditions
below, the function 4 is given by

h(t,9)=ﬁw(S(tﬁ 2).

where f is a positive constant, S(z — 0) = (d/d0) log f(t — 0) is the score
function and y(x) is a piece-wise continuously differentiable, continuous,
monotone increasing, odd function and is concave on the [0, o). Then the
asymptotic variance of the M-estimator is given by

V(oo ) = o
where
ocep)=J, v [ S 1 - 070 + ccwan
and

S@

ries )=, sow (=7

) {(1 —&)f(@) + ec(r)}dr .

Let C be a class of all periodic, even and measurable functions ¢ with
0 < c(?) = M. for any ¢ and B be a class of all § satisfying that for any c e C
and 0 <e¢< M, I'(c,¢,f) >0, where M, is the bound of &. We suppose that
the class B is non-empty.

Our purpose is to determine the f € B which minimizes max Ve, e, B).
CcE€
O<es M,
First, we shall show the following lemma.

LEMMA 3.1. ForO0<a<1/2, let
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1
M. a<|t|§-2—,
calt) = 0 [t < a,

periodic  otherwise .

For ¢ = c., we abbreviate the asymptotic variance V(c,e,f) as V(a,¢,p).
Then for any P € B, there exists an o™ € [0, 1/2] such that

(3.12) max V(c, g, p)=V(*¢ep).

Moreover, for any a €[0,1/2] and p € B, V(a,¢,B) is monotone increasing
ine.

PROOF. Since V(a, ¢, f) is continuous in a, there exists an ao € [0, 1/2]
such that

max V(a,e f)= V(ao, e p) .

It is sufficient to show that

(3.13) max Vie,e,8) = V(ao,&,B) .
Let
S
v = by (4.

Since y is monotone increasing and concave on [0,0) and S(?) is concave
on [0,1/2], ¥(¢) is concave on [0,1/2]. Hence, ¥’(¢) is decreasing on
[0, 1/2]. Accordingly, putting

to:SupIte[O,—;—];'P’(t)ZO},

we have that P’(#) >0 for z €[0, ] and P'(¢) <0 for 7 € [to,1/2]. We can
easily check that

1 1/2 )
(3.14) 5 D(c,¢,p) =f0 PO —e)f() +ec(®)}dt >0,

because f € B. Since S(7) is periodic and odd, S(0) = S(1/2) =0, which
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implies ¥(0) = ¥(1/2) = 0. From (3.14), there exists ¢, € (0, 1/2) such that
¥(1) # 0. It follows from the concavity of ¥ and ¥(z,) >0 and for any
te(0,1/2), (1) > 0. Moreover, we see that 0 <z, <1/2.

Let

p@ =5 Iy pv (5 cwrar

and

S()
p

s© =, 0w (5 cwar.

Then we easily check that

172 2
p@ =] Payiewadi

and
12
g =/, PDc@ar.
For ¢ = ¢,, we abbreviate p(c) and g(c) as p(a) and g(a), respectively. Since

p(a) is continuous in a, for any function ¢ € C, there exists an a; such that
p(c) = p(a1); equivalently,

(3.15) D(c,e,f) = DP(ca, e, ) (=0).
Furthermore, we have that g(c¢) = g(a1); equivalently,
(3.16) I'(c,e,p) =T (care,f) (>0).
Indeed, if a; € (0, 7], we get
20— g(a) = [ Wewar + [ P - Mdr

= [ w@e@dr+ [ @) - Mode
> ¥(a) [ ) ewar+ [ ey~ Mc)dt] ,

because P’ is monotone decreasing on [0, 1/2] and ¥'(¢) < 0 for ¢ € [#0, 1/2].
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On the other hand, we have

0=p(c) —pla)
<[ Pwrewar+ [ PO - Myds

swmy[gfmm+ﬂ@m—A@¢L

because ¥ is non-negative and monotone increasing on [0,#]. Since
¥Y(a:1) >0 and ¥’(a:1) = 0 by definition of #, we obtain g(c¢) — g(a1) = 0. If
a1 €[t0,1/2), g(c)=g(a1) 1s similarly shown. We easily see that g(c) =
g(ar)=0if a; =0 or 1/2. Hence, for any ¢ € C, we can find an a; satisfying
(3.15) and (3.16). Consequently we obtain that

Vic,e,) < V(a, & B) < V(iao, e, ),

which implies (3.13).
We easily see that for any a €[0,1/2] and § € B,

1/2
Tewef)=2], PO~ o) /() + scalt)}dr
=2(1 - ¢)g(f) +2eg(a) (>0)

and

d
7= —2()+2%@ (<0,

because g(f) = 0 and g(a) < 0. Similarly, we see that

D(care, f) = 2(1 = &)p(f) + 2ep(a)

and

d
5 2=~ 2())+2(@.

Therefore

5 Veap=|(5 o) r-2e( L r)|r
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[(5e)relzrllir
=4[p(@g(f) — p(Ng@) T’
=0.

Consequently, we obtain the conclusion of this lemma.

Let a*(f) denote an a maximizing V(a, M., ) and B, denote a f
minimizing V(a*(B), M., B), where M, is the bound of ¢. From the previous
lemma, we have that

V(a*(ﬁ*)a Mﬂ» ﬂ*) = 1}16151 I}lEaCX V(C, &, ﬁ) .

O=e=M,

As an example, let

w 1 (x— k)’
f(x)zkz,w N exp| =57 - (c=0.1)
and
1 x> 1
w(x)={ x x] =1
-1 x<-1.

We give the tables of asymptotic variance V' and asymptotic relative
efficiency (ARE) which is the reciprocal of the variance divided by that of
the MLE in M, = 0.

Table 1. Model (M, =0).

B 12.6 14.4 15.1 15.3 16.7
V(% 10% 1.07 1.05 1.05 1.04 1.03
ARE 941 960 .966 967 976
B 17.6 17.8 19.6 21.0 ML
V(%107 1.03 1.03 1.02 1.02 1.01

ARE 981 .982 989 .992
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Table 2. M, =0.0l.

1 2 3
Mc
Bx=210 ML B,=196 ML ,=176 ML
o* 142 .147 .143 152 .143 157
V{(x10%) 1.06 1.09 1.09 1.17 1.13 1.25
ARE 956 .927 924 .863 896 .807
4 5
M(‘
Be=167 ML  B,=15.1 ML
o* 143 161 142 .166
V(x10% 1.16 1.33 1.19 1.42
ARE 870 757 .846 13

Table 3. M, =0.05.

0.5 1

ML‘
B=178 ML B,=153 ML
o* 144 155 .143 167
V(x 10%) 1.16 1.27 1.25 1.50
ARE .869 795 .807 675

1.5 2

MC
Be=144 ML B,=126 ML
o* 144 179 126 .190
V(x10% 1.34 1.73 1.42 1.97
ARE 757 .584 712 512
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