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Abstract. This paper is concerned with single server queues having
LCFS service discipline. We give a condition to hold an invariance
relation between time and customer average queue length distributions in
the queues. The relation is a generalization of that in an ordinary
GI/M/1 queue. We compare the queue length distributions for different
single server queues with finite waiting space under the same arrival
process and service requirement distribution of customer and derive
invariance relations among them.
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1. Introduction

In recent years, the study of relations between characteristics in a
queueing model and ordering relations among characteristics in different
queueing models has been developed.

For the latter, see, for example, Stoyan (1983). As typical examples of
the former, many relations between time and customer averages of quanti-
ties in queues have been derived based on the theory of point processes (see
e.g., Miyazawa (1979, 1983) and Franken et al. (1981)). The relations were
called “invariance relations” by Miyazawa (1983). In this paper we call
both the relations between time and customer averages of quantities in a
queue and the relations (not ordering) among characteristics such as queue
length and sojourn time distributions in different queues “invariance
relations.”

This paper is concerned with single server queues having last-come-
first-served (LCFS) service discipline in the steady state. Yamazaki (1984)
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derived a relationship between the queue length distributions for a GI/GI/ 1
with preemptive-resume (PR)-LCFS at any time and at an arrival instant.
The relationship is the same as that in an ordinary GI/M/1 queue.
Subsequently, Shanthikumar and Sumita (1986) showed that it remains
true for G/GI/1 with PR-LCFS. Fakinos (1987) derived a similar relation
for GI/GI/1 with PR-LCFS and service depending on queue size.

The first purpose of this paper is to unify and to extend the above
results. This is done based on the equilibrium equations in the point
process theory, called the basic equations (Miyazawa (1986)).

Our next concern is to obtain relations among the queue length
distributions for different queues at arrival instants. For two kinds of single
server queues with PR-LCFS and finite waiting space, these relations are
derived.

This paper is composed of six sections. In Sections 2 and 3, we briefly
introduce a model and the basic equations, respectively. In Section 4, we
discuss relations between time- and customer-average queue length distri-
butions in the model. In Sections 5 and 6, we deal with the single server
queues with finite waiting space.

2. Model

Let us consider the following queue. Customers arrive at the queue in
accordance with a stationary point process of rate A. The service require-
ments of customers are stationary dependent random variables (r.v.’s).
There is a single server and waiting space for N customers. The waiting
space is partitioned into cells numbered from 1 to N. A cell with number j
is called “position j.” A customer present in the queue occupies one of the
positions. When there are n customers in the queue, it operates in the
following manner:

(i) Positions 1 — n are used.

(11) The service effort by the server is supplied at the rate ¢, and it is
directed to the customer in position 1.

(ii1)) When a customer arrives at the queue, he and the customers
previously in positions 1 —# move to positions 1 — (n + 1) at the arrival
instant according to a policy, called “reordering policy,” where we use
“position (N + 1)” as the “outside world,” i.e., “a customer moves to
position (N + 1)” implies that he leaves the queue (this customer is called a
“lost customer”). When the customer in position 1 leaves the queue, his
service completed, customers in positions 2 —» move to positions 1 —
(n — 1) according to the reordering policy.

If the service discipline in the queue is FCFS, the reordering policy is
as follows. Suppose that there are n customers in the queue. When a
customer arrives at the queue, he moves into position (n + 1); customers
previously in positions 1 — » remain the same positions. When the customer
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in position 1 leaves the queue customers in positions 2 —n move to
positions 1 — (n — 1), respectively.

If the service discipline is LCFS, when there are n customers in the
queue the reordering policy is as follows. When a customer arrives at the
queue he moves into position I; customers previously in positions 1 —n
move to positions 2 — (n + 1), respectively. When the customer in position
1 leaves the queue customers in positions 2 —n move to positions 1 —
(n — 1), respectively.

Under a service discipline such as LCFS, the service of a customer
may be interrupted several times, owing to subsequent arriving customers.
The restarting policy, that is, the way the server serves an interrupted
customer, may depend on the history of the customer in the queue. For
example, it may be preemptive-resume, that is, each customer continues his
service just from the point he left it upon his last interruption and hence no
loss of service is involved. Or again it may be preemptive-repeat.

3. Basic equations

For a queue in Section 2, the following characteristics are defined at
time f:

/() = the number of customers in the queue ,

R;(#) = the remaining service requirement of the customer in
positionj (j=1,2,...,1(2)) ,

U(t) = the remaining time until the next arrival of a customer .

Let X(¢) = {{(¢), Ri(¢),..., Riy(2), U(2)}. Our essential assumption is that
X (1) forms a stationary process with respect to a suitably chosen proba-
bility measure P. Now, introduce two point processes consisting of the
arrival and departure instants of customers, denoted by No and N,
respectively. Let P; be conditional distribution P under the condition that
there exists a point of N; at time 0 for i =0,1. Let E, Eo and E) be the
expectations concerning P, Py and P, respectively.

Define

I{I(t) = n}exp { — EU(1)} for n=0,
Xn(t) = n
I{l(f)=n}expy — EU®) —El 0; Ri(?) for n>1,

where 14 is an indicator function of a set A, and & and §; are non-negative
numbers.
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When lost customers are counted as departures, the following equa-
tions, which are a version of Corollary 3.1 of Miyazawa (1983), hold.

(B.1)  EX;0) =2 éo E[X:(0 —)— X,(0+)] for 0<n<N,

where X;(0) is a right-hand derivative of X,(0).

For convenience, we use the following notation.
pn=PUO)=n), g.=P(0-)=n),
rm=P(0+)=n),

(61, 0s,...., 03 &) = E{X(0)|10) = n}

Fa(01,0n,..., 005 &) = Eo{Xa(0 =) |10 — ) = n}
FX01,0s,...,00; &) = Eof{ X(0 + )10 +) = n},
Gu(01,0s,...,0n; &) = E{Xa(0 +)1(0 +) =},
G (61, 02,..., 00 &) = E{Xn(0 —)|1(0 — ) = n} .

Then (3.1) can be rewritten as

EpoHo(&) = Algo — reGo(&)],
(& + Gu00)pufln(01, 0s,...., 03 &)
= A[gnFn(61, 0s,..., 003 0) — gu-1 FF(61, 0., O &)
+ 1a-1G (61, 0a,..., On; &) = 1aGu(61, 6., On; )]

(3.2)

forn=1,2,..., N. Equations (3.2) are called “the basic equations”, following
Miyazawa (1986). For details of the equations, please refer to Miyazawa
and Yamazaki (1988).

Although p., g» and r, are defined for the queue, we use the same
notations for other queues, i.e., { p.}, {g.} and {r.} are the distributions of
the number of customers in any queue at an arbitrary instant, just before
an arrival instant and just after a departure instant, respectively.

For more general queues, it is well-known that

(3.3) gn=rn forall n.

For the queue in this section, (3.3) can be directly obtained by putting
{=0=0,=--=0y=0in(3.2).
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4. Relationship between time- and customer-average queue length
distributions

For G/M/1/N or G/GI/1/1 queue, the following relations hold (see,
e.g., Franken et al. (1981)):

4.1) Pn=AE(S)r,-1 for n=1,

where S is a genetic r.v. of the service requirement for their queues.
The main purpose of this section is to give a condition to hold a
generalization of (4.1) for the queue described in Section 2.
By putting £ =60, =63 = --- = Oy =0 in (3.2) and using (3.3),
(4.2) $nbnpnEfexp (— R1(0)6:]1(0) = n)}
= AlraEofexp (— 01 Ri1(0 —)|1(0 — ) = n)}
— rn-1Eofexp (— 61R (0 +)[1(0 +) = n)}
+ rn-1 — rEfexp (— 61R1(0 +)[1(0 +) = n)}]

forn=1,2,...,N.
By dividing (4.2) by ¢.6: and letting 6, | 0, we can find that

Ei(Ri(0+)[1(0+)=n)— Eo(Ri(0—)|I(0—)=n)
®n

4.3) p.=4 [ In

n-1

E(Ri(0O+)I0+)=n) ]
¢n ’

In the derivation, the L’Hospital theorem is used. Equations (4.3) give a
relation between { p,} and {r.}.

Let LD(N — 1) be a set of service disciplines under which a customer
finding n customers in the queue upon his arrival instant moves into
position 1 whenn< N — 1.

Let B, and E(S.) be the distribution function and expectation of
service requirements for customers who find n customers in the queue upon
their arrival instants, respectively. Then we have the following.

PROPOSITION 4.1. For the queue with a service discipline belonging
to LD(N - 1), if,

(4.4) Es(Ri(0-)[I(0~)=n)= E(Ri(0+)]I(0+)=n),

then,
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AE(S,-
(4.5) PrF%n—l for n=1,2,...,N.

Furthermore, if,

(4.6) Po{fRi(0—-)>x|l(0-)=n}=P{R(O+)>x|I(0+)=n},

then,
4.7) P{Ri(0) > x|/(0) = n} = B1(x) ,
where
1 x
Bri(x)=1- ESiD fo {1 = Bi1(y)}dy.

PROOF. Because of the discipline, we have
Eo{Ri(0 +)[I(0+)=n}=E(Sp-1) for n=1,2,...,N.

By substituting this and (4.4) into (4.3), we have (4.5). Equations (4.7) can
be obtained by substituting (4.5) into (4.2), dividing it by ¢.6: and using
(4.6).

Remark 4.1. Consider a queue operating under (i) and (ii) in Section
2 and the following (iii") and (iv).

(iii") If n, which is the number of customers in the queue, is less than
N, the reordering policy is on LCFS basis (cf. Section 2). If n= N, an
arriving customer moves to position (N + 1) upon his arrival instant;
customers in positions 1 — N remain in the same positions, and when the
customer in position 1 leaves the queue customers in positions 2 — N move
to positions 1 — (N — 1), respectively.

(iv) The restarting policy is preemptive-resume.

We refer to this queue as an N-loss queue with PR-LCFS. When
¢n=1(n=1,2,...,N), the N-loss queue with PR-LCFS is denoted by
G/G/1 (N; PR-LCFS). If the inter-arrival times or service requirements of
customers are i.i.d. r.v.’s, we correspondingly use “GI” instead of G.
Furthermore, we allow N to be infinite and use the notation “cc.” Because
of (i11") and (iv), in the N-loss queue each customer leaves the queue in the
same state that he finds it upon his arrival instant. Hence, this queue is a
typical one for which (4.5) and (4.7) hold. A G/GI/1/1 is equivalent to
G/GIl/1 (1; PR-LCES).
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Remark 4.2. Consider a queue in Section 2 in which a customer
finding »n customers in the queue upon his arrival instant joins the queue
with probability o, and immediately leaves the queue with probability
I — a,. When customers who immediately leave owing to this are not
counted as both arrivals and departures, (3.2) remains true if A in (3.2) is
replaced by the effective arrival rate “A*.” Therefore, Proposition 4.1 for
the queue with a service discipline belonging to LD(N — 1) remains true if
A in the proposition is replaced by A*. Shanthikumar and Sumita (1986)
proved (4.5) for G/GI/1 (eo; PR-LCFS) with the above lost customers in
which the service requirements of customers are independent of the arrival
process.

Remark 4.3. Fakinos (1987) proved (4.5) for GI/G/ 1 (e0; PR-LCFS)
in which the service requirements of customers finding »# customers in the
queue are indentically distributed r.v.’s with d.f. B, and the successive
service requirements are stochastically independent of each other and of
the arrival process.

Remark 4.4. Consider a queue in Section 2 in which the service
requirements of customers are i.i.d. r.v.’s with an exponential d.f. and they
are independent of the arrival process. Equations (4.4) and (4.6) hold for
the queue under any reordering policy. Therefore, (4.5) and (4.7) hold for
the queue, not depending on the reordering policy.

5. Loss queue with PR-LCFS

Consider GI/GI/1 (j; PR-LCFS) queue (cf. Remark 4.1), j=1,2,...,
N, in which the service requirements of customers are independent of the
arrival process. Let A(+) and B(-) be d.f.>s of the inter-arrival times and
service requirements, respectively. It is assumed that the expectations of
A(+) and B(-) are finite, and that 4(0) = B(0) = 0. Throughout the paper
the Laplace-Stieltjes transform (LST) and tail distribution of a given d.f.
are distinguished by adding these marks ( ~ ) and ( — ) over the same letter:
A(-)is the LST of A(+) and A(-)=1— A(-). This is the reason for using
(~) in equations (3.2). We will use j for notations to specify “j” in this
j-loss queue whenever it is needed: p] = P(I(0) = n in j-loss queue).

Let .97 (&) be the set of arrival (departure) instants in the GI/GI/1
(j; PR-LCFS) queue. At instant e€e @ = .ZU ), let K.= +1 or — 1
according as e € .7 or e € @. Suppose that the process X(z; j) defined in
Section 3 is observed exclusively at instants e € ¢& : the process is observed
just before or after instants e according to whether K.= +1 or — 1. We
count lost customers as departures. The process X? = (K., [, Ri, Rz,..., R, U)
observed at successive instants e € & is a Markov process.

We assume that, for each j, the process X/ has a stationary distribu-
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tion, i.e., there exists the distribution of X/ which satisfies the following
equations.

5.1)  Pr(K=+1,1=0=] Pr(K.=-1,1=0,Uedy),
(5.2) Pr(K.= +1,/1=n, Ri>x1, R2> x2,..., Ra > x»)
=/ Pr(Ke=+1Li=n-1,R>x,
Ry > x3,..., Ruc1> x2) B(x1 + »)dA(»)
+f0wPr(Ke= —1L,l=n Ri>x+y,
Ry > x2,..., Rn>xn, Ue dy)
forn=1,2,...,J,
(5.3) PriK.= —1,l=n, Ri>x1, Ro>x2,..., Ru > xn, U> )
=J Pr(K.= +1,1=nRi>x,
Ry > x2,..., Ri> x2) A(y + 2)dB(2)
+f Pr(K.= —1,1=n+1,Riedz, R:>x,
Ri>xy..., Ri-1>x,, U>y +2)
forn=0,1,...,j—-1,

5.4 Pr(Ke=-LIl=j,Ri>x,R>x...., R>x,U>Y)
=Pr(K.= +1,1=j, Ri>x1, Ra> X2,..., R > x) A(y) .

To obtain (5.1) note that the event {K. = + 1, /= 0} will occur at an instant
if and only if at the preceding instant the event {K.= — 1, /= 0} occurred.
Equation (5.2) is obtained from the consideration that the event {K. = + 1,
/= n} can occur at an instant only if at the preceding instant either of the
events {K.= + 1,/=n—1} or {K.= — 1, /= n} occurred. Equation (5.3)
reflects the fact that the event {K, = — 1, / = n} must be preceded by one of
the events {K. = + 1,/=n}or {K.= — 1,/=n+ 1}. Equation (5.4) follows
the fact that for /= an arriving customer leaves the queue immediately.
The stationary distribution is denoted by
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Pr(K.= + 1,l=n, Ri > x1, R. > xy,..., R.> x»)
=Pr(K.= +1, 1= n)Fl(x1, X2,..., Xn) ,
(5.5)
Pr(K.= — 1, I=n, Ry > x1, Ry > x2,..., Ry > X, U>y)

=Pr(K.= —1,l=n) G_,’;(xl,xZ,...,x,,,y)
forn=20,1,...,j, where

Fr{(xbm,...,xn) =Pr(Ri>x1, R2>xz..., Rn>xn|Ke= + 1, 1=n),
G—,’,'(xl,xz,...,xn,y)

:PI(R1>X1, R2>X2,..., Rn>.x”, U>y|Ke: - 1, l:n) .

Since the lost customers for the j-loss queue are counted as departures, it is
clear that Pr (K. = +1)=Pr(K.= — 1) =1/2. Therefore, using (3.3) we
have

(56) Pr(Ke= £1,/=m)=Pr(l=n|Ke= £ )Pr(Ke= £ 1)
1 .

J
In.
2

THEOREM 5.1.  For a GI/GI/1 (N; PR-LCFS) queue,

(5.7) Bl zno) = U FiGounn)
(5.8) G (X1, X2y0eey Xy ¥) = C?JV'"(y)j:NII%[nH F'(Xn+j-N) ,
(5.9) Ao T B

PRLYe

where Go(y) = A(y) and i = ri/ K.

PROOF. We start with deriving a relation among F{(-), G&(-) and
G{(-). R{ and U’ under the condition that a customer, C{, leaves 1
customer in the j-loss queue are independent of each other because U’
depends only on the arrival instants and service requirements of customers
who arrive between the arrival and departure instants of C{. Hence we have

(5.10) Gl(x,y)=Pr(R{>x|Kl= - 1,/=1)
Pr(U>y|lKl=-1,/=1).

Because of the particular service discipline, each customer leaves the queue
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in the same state that he finds it upon his arrival instant. From this fact we
can find that

(5.11) Pr(R{>x|Kl=—1,/=1)= Fi(x).

For a (j — 1)-loss queue, consider U’ ' under the condition that a customer,
C{™', leaves the queue empty. This U’"' depends only on the arrival
instants and service requirements of customers who arrive between the
arrival and departure instants of C§~'. The stochastic behavior in the time
interval between the arrival and departure instants of C{~ ! is the same as
that between the arrival and departure instants of C{ because of the
assumption that the inter-arrival times and service requirements of cus-
tomers are 1.1.d. r.v.’s with d.f.’s 4(-) and B(:), respectively, for both
queues. This implies that

(5.12) G =Pr(U">ylKi=—-1V=1).
Combining (5.10), (5.11) and (5.12) yields
(5.13) Gl(x,y)= F(x)G{'(y) for j=1,2,....N.

Using (5.6), (5.13) and f{ = r{/r{, (5.2) for n =1 and (5.3) for n =0 can
be rewritten as

BIFC) =], Bl +3)dA0) + B[, Fx+)d6h ™),
(5.14) 3} .
G =], A +2dB@) + B[] GI'(v+ DdFIG) .

Suppose that FY(-) and G.'(:) in (5.5) for j= N are (5.7) and (5.8),
respectively, i.e., the stationary distribution for X" is

Pr(K.= +1,l=n, Ri>x1, Ry > x3,..., Ry > x)

Ll X og
= 2 In j=N-nt1 I(Xn+j—-N),
(5.15)

Pr(Ke= —1,l1=n, Ri>x1, Ro>x2,..., Ru> xn, U> y)

_ N _.
G "(y) I Fl(xXnej-n).

1

a 2 j=N-n+1

To prove Theorem 5.1, then, it is sufficient to show that (5.15) satisfies
(5.2) for n=2,3,..., N, (5.3) for n=1,2,..., N—1 and (5.4). This can be
checked by using (5.14).
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Remark 5.1. The process X.” observed at successive instants e € .7
(ee @), XJ' (X1), is an aperiodic Markov process. A stationary distribu-
tion for X.' (X.') is identical with the distribution concerning Po (P))
introduced in Section 3. The stationary distributions for X' and X, can be
obtained from Theorem 5.1 (cf. Kelly (1976)) and hence we have that, for
the N-loss queue,

Po(l(0—)=n, Ri(0—)>x1, Ry(0 =) > x2,..., Ra(0 — ) > x»)

N
N -
=T IT Fi(xn+j-
anN'nJrl 1( n+j N),

(5.16)
Pil(0+)=n, Ri(0+) > x,

R(0+)>x2,.., R(0+)> x0, U0 +) > y)

N
= Go "(y) _I1  F{(xns;-n) .
j=N-n+l1

Remark 5.2. For an oo-loss queue with PR-LCFS, ie., a single
server queue with infinite waiting space and PR-LCFS service discipline, a
similar result stronger than Theorem 5.1 has been obtained. For example,
Fakinos (1981) and Yamazaki (1982) showed that (r,) n=0,1,... in a
GI/GI/1 (eo; PR-LCFS) queue is a geometric distribution, and that the
remaining service requirements of customers just before an arrival instant
are i.i.d. r.v.’s. Shanthikumar and Sumita (1986) showed that (r,) n =0, 1,...
in a G/GI/1 (eo; PR-LCFS) queue is a geometric distribution.

A relation among pj (j=1,2,..., N) can be obtained by combining
(5.9) with Remark 4.1. An expression of LST of P(R;(0) > x1, R:(0) > xa,...,
R(0) > xn, U(0) > y|1(0) = n), H,'(01,6s,...,6.; &), for the GI/GI/1 (N; PR-
LCFS) queue can be determined by using (3.2) and (5.16) and it becomes

(5.17) BN O, 0s,...,0.;0)
N .
I F{(6ns;-n)

_ j=N-n+2

E(S)(& + 6)
IR 001 - G + GYTE) — B(0) A(9)]

forn=1,2,..., N, where S is a generic service requirement.

6. Push-out queue

A queue having N positions and operating under (i) and (ii) in Section
2, (iv) in Section 4 and LCFS service discipline (cf. Section 2) is called an
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“N-push-out queue”. Note that the N-push-out queue and N-loss queue are
the same except for who leaves the queue when an arriving customer finds
N customers in the queue; i.e., the customer in position N leaves at the
arrival instant in the N-push-out queue, whereas the arriving customer
leaves immediately upon his arrival instant in the N-loss queue.

In this section we only consider an N-push-out queue with ¢, =1
under the same assumptions as those in Section 5. We refer to this queue as
GI/GI/1 (N-push-out). We also use the same notations as those in Section
5 for the GI/GI/1 (N-push-out) queue.

Consider the process X7 for GI/GI/1 (j-push-out) queue, j=1,2,..., N.
Then, for each j the stationary distribution for X7 satisfies (5.1), (5.2), (5.3)
and the following equation.

(6.1) Pr(Ke= —1,1=j, Ri>x1, Ro > x2,..., R > x;, U> y)
=Pr(Ke= +1,l=j, Ri > x»,
Ry > x3,..., Ri-1> x5, R > 0)B(x)A(y) .
Equation (6.1) follows the fact that when an arriving customer finds j

customers in the queue, he enters into position 1 and the customer
previously in position j leaves the queue.

THEOREM 6.1. For a GI/GI/1 (N-push-out) queue,

(6.2) F(x1, X250y Xn-1,0) = F01 ' (%1, X2y, Xn1)

(63) G_nN(.xl, X2y0009 Xn-1, an) = G_n]g_ll(xly X2ye00y xn—l,y)

forn=23,...,N,

N

(6.4) m=r I1 pi.

j=N-n+1
PROOF. For a GI/GI/1 (j-push-out) queue, let

Dj, = the time interval that begins when an arrival finds n
customers in the queue and ends when, for the first
time after that, a departure leaves n customers .

Because of the particular service discipline and the assumptions of the

inter-arrival times and service requirements of customers, the stochastic

behavior in Df is the same as that in D§™'. From this, (6.2) and (6.3) follow.
Equation (5.2) can be rewritten as
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(6.5) BiFI(x1, X2,..., Xn)
= F,’,.-l(xz,x;,...,x,,)f:> B(x1 + y)dA(y)
+ ,Br];fom Pr(R{>x1+y, Ri>xs,..., Ri> xn,
UedylKl= -1,/ =n)

for n=1,2,..., j, where B =ri/ri-.. When n =2, by putting x, = 0 in (6.5)
and using (6.2) and (6.3) we can obtain

(6.6)  BAFIZ1(x1, X2yeees Xn-1)
= B0 Xy xn2) [ Bxi + ) dA()
+,b’,{f: Pr(R{"'>xi+y, RI’">x,..., RIZI > x4,
UlledylKI ™' = -1, '=n-1).
Similarly, using (6.2) and (6.3) in (5.3) and (6.1) we find that
6.7)  GI(x1, X2,y Xn-2,¥)
= Fod(on, Xapees xae) | A(y +2)dB(2)
+ 8] Pr(RI™ edz, R > xipee, RICT > 2,
U''>ylKi ' = -1, '=n-1)
forn=2,3,...,],
(6.8) GIZ (1, X2y, Xj-1,Y) = FI (X2, X300, X5-1) B(x1) A (D)

Noting that (6.6), (6.7) and (6.8) correspond to (5.2), (5.3) and (6.1),
respectively, for X', we find that

(6.9) J=piZl  for n=23,..,j.

From (6.9), (6.4) follows.

From Theorem 6.1 we can obtain expressions of the distributions of
X M(#) concerning Py and P; (cf. Remark 5.1).

Much work has been performed with service disciplines in relation to
insensitivity (with respect to queue length distributions) in queues, under
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the assumption that the arrival process to the queues is a Poisson one. One
of the common properties resulting from the service disciplines is that the
remaining service requirements of customers in the queue at any time or an
arrival instant are ii.d. r.v.’s. The loss queue in Section 5 has a similar
property weaker than this (cf. (5.16) and (5.17)). On the other hand, for the
push-out queue, the independence among remaining service requirements
of customers such as (5.16) and the equation (4.5) no longer hold. This can
be checked by using an M/E,/1 (3-push-out) queue. It should be noted,
however, that an expression of ry in the N-push-out queue is the same as
that in an N-loss queue (cf. (5.9) and (6.4)).
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