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Abstract. Let 6 be the angle between a line and a “random” k-space in
Euclidean n-space R". Then the random variable cos’ § has the beta
distribution. This result is applied to show (1) in R" there are exponential-
ly many (in n) lines going through the origin so that any two of them are
“nearly” perpendicular, (2) any N-point set of diameter d in R” lies
between two parallel hyperplanes distance 2d{(log N)/(n — 1)}'’* apart
and (3) an improved version of a lemma of Johnson and Lindenstrauss
(1984, Contemp. Math., 26, 189-206). A simple estimate of the area of a
spherical cap, and an area-formula for a neighborhood of a great circle
on a sphere are also given.

Key words and phrases: Beta distribution, Spherical cap, Johnson-
Lindenstrauss Lemma.

1. Introduction

The beta distribution Beta (p, q) has a continuous probability density
inside the interval (0, 1) given by

B(p,q) 'x" (1 -x)"",
where p, g > 0 and

B(p.q)=T'(p)I'(9)/T'(p+q).

If X and Y are independent random variables having the chi-square
distributions with degrees of freedom a and b, then the random variable
X/(X + Y) has the beta distribution Beta (a/2,b/2) (e.g., Wilks (1962), p.
187). The beta distribution is well known as an appropriate prior distribu-
tion for Bayesian inference.

By a random point v in Euclidean n-space R", we mean a point
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v = (z1,...,z:) Whose coordinates zi,..., z,» are independent normal variables
with zero mean and unit variance. In other words, v is distributed according
to the n-dimensional normal distribution N(O, I') with mean O (the origin)
and covariance matrix the identity matrix. Let vy,..., v be k independent
random points in R". If X < n then the vectors Qu; (i =1,...,k) span a k-
dimensional linear subspace almost surely. We call this subspace a random
k-space in R".

Let L be a fixed 1-space (line) in R", and let H be a random k-space in
R". Let 6 be the angle between L and H.

THEOREM 1.1. The random variables cos’ 8 and sin 0 have the beta
distributions Beta (k/2,(n — k)/2) and Beta (n — k)/2,k/2), respectively.

This theorem seems to have appeared in many places and forms (e.g.,
Muirhead (1982), p. 39 and Watson (1983)). However, for the convenience
of readers, we give here a short proof.

PROOF. Since the distribution N(O, I) is “isotropic”, we may assume
that the I-space L is a random I1-space taken in advance of the random
k-space H. Then we can reverse the order: first take a random k-space H,
and then take a random point v and determine the random line L = Ov. In
this case, we may regard H as a fixed k-space, say

H={(x1,...,xt,0,...,0): xie R} .

If we let v = (z1,..., z»), then since z;’s are independent normal variables with
zero mean and unit variance, the sums

2 2 2 2
it +zi and  Zkert+ e+ zn

are independent random variables having the chi-square distributions with
degrees of freedom k and n — k, respectively. Hence

cos’ 0=+ + 20/ + - + 2D)

has the distribution Beta (k/2, (n — k)/2). Similarly, sin® 6 has the distribu-
tion Beta ((n — k)/2,k/2). O

For a random point v in R”, the point v/|v| is uniformly distributed
on the surface of the unit sphere S centered at the origin in R". (Since the
probability Pr (v =0) is zero, we may assume v # ().) Hence we have the
following.

COROLLARY 1.1. Ifv=/(z,...,2n) is a point uniformly distributed on
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the surface of the unit sphere S centered at the origin in R", then
Zi + -+ + zi is distributed according 1o Beta (k/2,(n - k)/2).

In this paper we present some geometric applications of Theorem 1.1
and Corollary 1.1.

2. A neighborhood of a great circle on a sphere

Let S be the unit sphere in R" centered at the origin O, and let G be a
great circle on S. More precisely, G is the intersection of the sphere .S and a
plane (2-space) through the origin O. Let Gs denote the d-neighborhood of
G in S, that is, the set of points on S within angular distance ¢ from G.
Then the area of G; can be easily calculated from Corollary 1.1.

THEOREM 2.1. area (Gs) = (sin 6)""* area (5).

PROOF. Let H be the plane in R" determined by G and let v be a
random point uniformly distributed on S. Let 6 be the angle between the
line Ov and H. Then sin® 6 is distributed according to Beta ((n —2)/2, 1).
Hence X := sin’ § has the probability density function

g(0) = B((n=2)/2,1)"x"7 = {(n - 2)/ 22"

Therefore,
Pr (8 < §) = Pr (X < sin® 6) :fosmldg(x)dx = (sin 9)" 2.
Thus the probability content of G is (sin 6)" %, and hence
area (Gs) = (sin )" * area (S) . O

3. The angle between two random lines

Let 6 (0 =< 0 < n/2) be the angle between a fixed line L passing through
the origin O and a random line K = Ov. Then, by Theorem 1.1, the variable
X := sin’ @ has the probability density function

) =1/B)x" V1 -x)"? (0<x<])

where B= B((n—1)/2,1/2). Since log I'(x) (x> 0) is a convex function
(e.g., Artin (1964), p. 17), we have

log I'((k + 1)/2) + log T'((k — 1)/2) > 2 log I'(k/2)
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and hence log I'((k + 1)/2) — log I'(k/2) > log I'(k/2) — log I'((k — 1)/2), that
is,

I'((k+1)/2)/T'(k|2)>T'(k/2)/ T (k- 1)/2).

Therefore, noting that

{r((k+ 1)/2)/T(k|2RICK[2)/T((k =1/} = (k= 1)/2
we have

T(kj2)/T((k — 1)]2) <{(k = 1)/2}"* <T((k + 1)/2)/ T (k/[2) .
And since I'(1/2) = n'*, we have
G {(n-2/Cr} < B((n—1)/2,1/2) <{(n - 1/Cm)}"*.
THEOREM 3.1. Forany 0 <a<m/2,
Fu(a)(1 — o(1)) < Pr (6 < a) < Fa(a),

where o(1) — 0 as n — o and

(sin a)"”!

F@) = =)  cos @ -

PROOF. Letting y = sin” @, we have
¥y
Pr(0<a)=Pr(X<y) =] f(x)dx

y 12 (n-1y2-
<(/B) [ (1~ yy P gy

2(sin a)"!

_ N V2 gyt emn2_  ASIDGY
=21/ B)Y1 — ) Pn = 1)y Boi—Doosa”

This is less than Fn(a) by (3.1). Letting 1 = 1 — (1/n)"?,

foyf(x)dx >f,jf(X)dx > (I/B)f,j(l — gy PR gy

2B
(n— 11— 1)

(n-1)/2 (n-1)72
2V (1=
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__ 2B
(n=1)(1—)

Here, {(1 — »)/(1 — 1)}"* =1 — o(1), and since

A (R R (R C T

log " " =((n—-1)/2) log (1 —n "%
<((n-D/2(-n")< - =12 > —o,

we have 1"~"* = o(1). Therefore,

2(sin a)""" (n-2)" B
Pr(6<a)> —-————B(n "1 cos a (1—-o(1))> —(n )7 F.(o)(1 —o(1))
= Fu(a)(1 = o(1)) . O

Note that in the n-dimensional normal distribution N(O, I), Pr (6 < )
corresponds to the probability content of the “double” cone with axis L
and angular radius a. Thus we have the following.

COROLLARY 3.1. Let C(a) (0<a<m/2) be a spherical cap of
angular radius a on the surface S of a unit sphere in R". Then

area (C(a))/area (S) < Fu(a)/2 = (sin a)" ' /{27 (n — 1))"* cos a}
and both sides are asymptotically (n — o) equal.
THEOREM 3.2. For any 0 < a < m/2, there exist more than
Fu(a) ' = ((n—1)/2)"* cos a(sin ) "™V

lines in R" going through the origin O such that any two of them determine
an angle greater than a.

PROOF. Consider a collection of lines passing through the origin in
R" such that

(*) any two lines in the collection determine an angle > a .

Let A ={L,,..., Ln} be such a collection of lines which is maximal in the
sense that no line can be added to 4 without violating the condition (*).
Consider a random line K = Ov, and let §; be the angle between L; and K.
Then,
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Pr (6; < a for some i) < m:Pr (61 < o) <m- F.(a) .
Hence, if m < F,(a)”' then Pr (8 < a for some i) < 1, that is,
Pr(6;> aforalli)>0.

Thus, if m < F.(a)", then there exists a line K such that all angles between
K and L; (i = 1,..., m) are greater than o, contradicting the maximality of
4.0

Thus, in R", there are exponentially many lines going through the
origin so that all angles of them are greater than, say 89°. For other related
results, see, for example, Erdos and Fiiredi (1983).

A line going through the center of a sphere in R” meets the surface of
the sphere at two points. Hence, letting a = 29 in the above theorem, we
have the following.

COROLLARY 3.2. On the surface of a sphere in R", more than
2F,(26) ' = @2r(n — 1))"* cos 25(sin 26) """
caps of angular radius 6 (0 < 6 < n/4) can be packed.

4. A random hyperplane

Let L be a fixed I-space, and K be a random 1-space, H a random
(n — 1)-space in R". Let Ok be the angle between the two lines L and K, and
0y be the angle between L and the hyperplane H. Then by Theorem 1.1,
sin® Ok ( = 1 — cos® k) has the same distribution as cos’ 4. Therefore,

4.1 Pr (8x > J) = Pr (cos’ Oy < cos’ §)
= Pr (sin’ Ok < sin’ (7/2 — J))
n-1
< Fa(n/2 - 6) = —{€089)

(n(n—1)/2)""sind’

THEOREM 4.1. Any N-point set V in a ball of radius r in R" lies
between some two parallel hyperplanes at distance

2r{(2+log N)/(n— D}

apart from each other.
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For example, if N = O(n) and » tends to infinity, then
{2-log N)/(n— 1)} = 0.
Thus, for any N = O(n) points in a ball of radius r in R", there exists a

hyperplane which is close to all these N points, provided that n is
sufficiently large.

PROOF. Let V ={vi,...,un}. By translating V, if necessary, we may
suppose the ball of radius r containing V is centered at the origin. If
2log N=n— 1, then the theorem is trivial. So we consider the case
2log N<n—1. Let L; be the line Ov;, i=1,...,N. Let H be a random
(n — I)-space and let 0; be the angle between L; and H. Suppose, for a
moment, N- F,(n/2 — d) < 1, where ¢ is defined by

sind={(2-log N)/(n— 1D}, 0<d<n/2.
Then applying (4.1),
Pr (6;> J for some i) < N- F,(n/2 - 6)< 1,

and hence Pr(6;<d for all i=1,...,N)>0. Therefore, there exists a
hyperplane H such that

;<6 forall i=1,...,N.
In this case the distance between v; and H is less than
rsin d < r{(2-log N)/(n— 1)}'"*.
Hence V is sandwiched between the two hyperplanes, each parallel to H, at
distance r{(2-log N)/(n — 1)}"* apart from H.
Now we show that N: F,(n/2 - d) < 1.

Fu(nj2—6)"'={n(n—1)/2}"*sin 6 (1 — sin® §) " 12
= (n log N)"*(1 —sin® 6) "1
= (nlog N)"exp {— ((n — 1)/2) log (1 — sin’ 6)} .
Since log (1 — ) < —tfor0 <<,
Fu(n/2 - 6) ' > (mlog N)"* exp {(n — 1)(sin 6)*/2}
= (m log N)"* exp (log N)
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= N(nlog N)*>N.
Hence N- Fu(n/2 —-9d)< 1.0

For a finite point set in Euclidean space, the distance between the
farthest pair in the set is called the diameter of the set. Jung’s theorem (e.g.,
Danzer et al. (1963)) asserts that if a point set ¥ in R" has diameter d, then
V is contained in a ball of radius d{n/(2n + 2)}'”. Hence we have the
following.

COROLLARY 4.1. Let V be an N-point set of diameter d in R". Then
V lies between some two parallel hyperplanes at distance 2d{(log N)/
(n — D} apart from each other.

5. Tails of Beta (p, q)

Let X be distributed according to the beta distribution Beta (p, g). The
mean and variance of X are

u=pl(p+q), o =pq/i(p+q’(p+q+1)},

respectively. Then (X — ¢)/o is asymptotically normally distributed with
zero mean and unit variance, when p and g both tend to infinity (e.g.,
Moran (1968), p. 329). Apart from the asymptotic normality, it seems to be
useful to evaluate the probabilities

Pr(X/u<l-¢ and Pr(X/u>1+%¢)
for a given constant ¢ > 0. In this section, we consider this problem for
large p, g. The result (Theorem 5.1) will be used in the next section.
We start with evaluating the probability density function f(x) of the
beta distribution Beta ( p, g):
fX)=B(p, ' x" 1 -x)"" (0<x<1).
By Stirling’s formula,

I'(s)=Q2n/s)"*(s/e)’e’® for s>0,

where

E(s) =§O{(s +n+1/2log(+(s+n) ) —13<1/(12s),
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see, for example, Artin ((1964), p. 24). Since the function ¢(s) is monotone
decreasing,

B(p.q) =T'(p+/{[(p)T (g}
={pq/Qn(p + g} {(p + @/p¥U(p + g)| g}'e P PP
<{pq/Qr(p+ )} {(p + @/p¥ip+ @/ g}
=(p+9)"Qrpg) *{(p+ @IpY" o+ @)/ g}’
=(p+ )" Qrpg) (1w (2l @)W,

where 4 = p/(p + q). Hence
Jx) < Clx/ud H(pl @ =0/, C=(p+q)Qnpg) .
Letting x= (1 + Hu (— 1 <t < g/p), we have
S+ <C+0"' (1 -pt/g)f .
In the following we suppose p,qg = 1.

LEMMA 5.1. Suppose 0 < &< 1, pe’ > 6. Then
(1) f((1-0u)< Cexp(—pt’|2)< Cexp (— pet/2) fore<t<1,and

(2) S0+ 0w < Cexp (- pa) fore<t<q/p,
where u=p|/(p + q) and a. = ¢/2 — €/ 3.

PROOF. (1) Using the inequality log (1 — )< —t—£/2-17/3 (¢
<1,

log f((1 = u) <log C+(p—1log(l — 1) +(g—1)log(l+pt/q)
<log C+(p—I)(—1—-1/2—1[3)+ (g Dpt/q
<log C+p(—1t—1]2-1]3)+ 2+ pt
<log C—pt’|2—pt|3+2t.

Since pr* > 6 for 1 > ¢, this is less than
log C— pi*/2 =log {Cexp (— pr*/2)}.

(2) First, let G(@t)=(1 + 0*"'(1 = pt/q)* " exp {p(¢*/2 — ’/3)}. Then
log G(0) = 0, and

flog G()}' = (p— /(L + 1) —p(g—1)/(g—pd) +pt—pl’
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<p/(1 +1)—p+pt—pt*=p/(l +1)-pt’<0.
Hence G () < 1. Next, let
H@) =1+ 01 - pt/ )" " exp (paut) .
Then H(¢) = G(e) < 1. And

{flog HOY =(p—1)/(1 + 1)~ p(qg—1)/(qg— p1) + p(e/2 — £/3)
<p/(l+1)—p+p/2-¢)3)
=p{3e(1 + 1) — 61— 2°(1 + n}/{6(1 + 1)} .

Since 3e(1 + 7) — 61 < 0 for ¢ > ¢, we have log H(z) < 0. Hence (2) follows.
O

THEOREM 5.1. Let X be a random variable having the beta distribu-
tion Beta (p, q). For ane, 0 <e < 1, suppose pe’ > 6. Then

Pr{X < (1 —e)u} < (2/e)i(p + q)/2npg)}"” exp (— pe’[2),
Pri{x>1+eu}<(/a)(p+ q)Qrpg)}'” exp { —p(e’/2 —&/3)},

and hence

Pr{|X = u| >eu} < 2/a)(p + @)/ 2rpg)}'” exp { — p(¥/2 - £'/3)}
where u=p|(p + q) and a, = ¢/2 — &*/ 3.

PROOF. By Lemma 5.1(1), Pr {X < (I — &)u} is
" reade < f 7~ wdi < cuf” exp (~ et/
<Q/ef(p + q)| Qrpg)}'” exp (- pe’[2) .
Similarly, using Lemma 5.1(2), Pr {X > (I + &)u} is less than
(1/a){(p + @)/ Qrpg)}'” exp { — p(e’/2 - £/3)} .

Thus we have the theorem. [J

6. Johnson-Lindenstrauss lemma

Johnson and Lindenstrauss (1984) proved an interesting lemma (see
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Theorem 6.1) concerning a nearly isometric embedding of n point set in R”
into surprisingly lower dimensions. A slightly improved version of this
lemma was given in Frankl and Maehara (1988). Here we present a short
proof of this lemma in more improved form.

LEMMA 6.1. For an ¢, 0<e<1, let p,q be positive numbers such
that

g=p=212-¢/3) " log (29) .
If X is a random variable having the distribution Beta (p, q) then
Pr{|X — ul > en} <2 (log 29) ""29)” ,
where = p/(p + q), the mean of Beta (p, q) .

PROOF. From the condition imposed on p, g, it follows easily that
pe > 6. Hence applying Theorem 5.1,

Pr(|X — ul > eu) < (2] a){(p + q)/2rp@)}" exp { — p(e'/2 — £'/3)}
< (2/a){2q/2npg)}"” exp {log (29) *}
<Q/a)e 12— &13}2m log 2q)} *(2g) "
=2{2n(1/2 - ¢/3)} "*(log 2¢) "*(2g)"*
<2(log 2¢) *(2¢)*. 0

THEOREM 6.1. (Johnson-Lindenstrauss lemma) Forane(0<e<1)
and an integer n, let k be positive integers such that

k=4(/2~¢/3) " logn.

Then for any n-point set V in Euclidean space, there exists a map f from V
to a k-space such that

1 —e<|fw)—fW)|/lu—vl*<1+e forallu,vof V,u#v.

Remark. 1In Johnson and Lindenstrauss (1984), the function 4(e%)2 -
¢'/3) of ¢ is not specified, and in Frankl and Maehara (1988), an extra
condition (n > k%) is imposed.

PROOF. If n <k, then the theorem is trivial. Hence we may suppose
that n> k. Let V= {vi,...,0,} be any n point set in R™ . Llet H be a
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random k-space in R"**, and w; be the projection of v; on H. Then for any
i, j(i#J),

Xy = [wi— wil?/ o — v
is distributed according to Beta (k/2,n/2). Hence by Lemma 6.1,
Pr{|X; — k/(n+ k)| >ek/(n+ k)} <2(log n) "*n?.
Therefore, the probability that

| Xs—kj/(n+ k)| >ek/(n+k) forsome ij (i#])
is less than ( ’21 ) 2(log n) ?n"* < 1. Thus there exists a k-space H for which

(1 —k/(n+k)<|wi—wl|*/|lvi—v]* <1 +e)k/(n + k) (i#]j).

Then letting f(v) = {(n + k)/k}"*w;, we have a desired map f. O
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