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Abstract. Recently, a new set of fundamental stereological formulae
based on isotropically oriented probes through fixed points have been
derived, the so-called “nucleator” estimation principle (cf. Jensen and
Gundersen (1989, J. Microsc., 153, 249-267)). In the present paper, it is
shown how a model-based version of these formulae leads to stereological
estimators of reduced moment measures of stationary and isotropic random
sets in R".
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1. Introduction

One of the recent trends in stereology has been towards the creation of
more sophisticated sampling designs such as vertical sections (cf. Baddeley
et al. (1986)) and the nucleator (cf. Gundersen (1988)). The latter device
uses isotropic lines and planes through a restricted subset of space, which
may reduce to a single fixed point. The theoretical foundation of the
nucleator, which has been given in Jensen and Gundersen (1989), is based
on a generalized version of the Blaschke-Petkantschin formula.

The East German School of stochastic geometry has developed stereo-
logical estimators of second-order properties of random spatial structures
in the last decade (cf. e.g., Hanisch and Stoyan (1981), Stoyan (1981, 1984,
19854, 1985h), Stoyan and Ohser (1982, 1985), Hanisch (1985), Schwandtke
(1988)). Reading papers on stereological estimation of moment measures
by this school, in particular the paper by Stoyan (1981) dealing with planar
fibre processes, it became apparent to us that the theory presented in
Jensen and Gundersen (1989) could also be used in the development of
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stereological estimators of reduced moment measures of random d-
dimensional sets in R”, d < n. The critical observation was that the reduced
moment measures can be expressed as moments with respect to a random
set which is isotropic but not stationary. The geometric measure decompo-
sition given in Jensen and Gundersen (1989) is just the one needed for
treating such random sets.

In this paper, we try to give parts of a general theory of stereological
estimation of reduced moment measures, generalizing earlier work by the
East German School. The results were presented at the 18th European
Meeting of Statisticians, East Berlin, August 1988. At that meeting, it
became apparent that similar results had been obtained independently by
Ziahle (1990). Estimation of non-reduced moment measures has also been
discussed in Nagel (1987).

In the present paper, we mainly discuss stereological estimation of
reduced moment measures defined for general random sets under station-
arity and isotropicity assumptions. In Section 2, we give a formal definition
of a random d-dimensional set and its reduced moment measures. The
stereological estimator of the measures is presented in Section 3. In Section
4, a modification of the reduced second moment measure is presented. The
modified measure is the Lebesgue measure for a random set described by a
Boolean model, and represents a generalization of the K-function known
from point processes (d = 0) to general d-dimensional random sets. Stereo-
logical estimation of this modified reduced second moment measure is also
discussed in Section 4.

2. Random (d, n)-sets and their moment measures

Let A2 be the d-dimensional Hausdorff measure in R*, d=0, 1,...,n. In
particular, A, = A, is the Lebesgue measure in R" and A5 is the counting
measure in R". A formal definition of the Hausdorff measure can be found
in Zidhle (1982), which also contains many of the geometric measure
theoretic definitions referred to below. General references on geometric
measure theory are Federer (1969) and Simon (1983).

Let Z" be the Borel g-algebra in R” and let N, be the set of subsets
¢ € R" which are closed and Af-rectifiable. A set ¢ € R" is called A%-
rectifiable if A2(¢ N B) < oo for any bounded Borel set B and if there exists

a sequence {¢;}-1 of d-rectifiable subsets of R" such that /1;’(¢\ UI ¢j) =0.(A
P

set € R" is d-rectifiable if there exists a Lipschitzian function which maps
some bounded subset of R? onto y.) The closed Ad-rectifiable sets are a
subclass of the class & of all closed subsets of R", which can be equipped
with Matheron’s g-algebra &. In Zihle ((1982), Theorem 2.2.1), it is shown
that Ny e . Let .#; be the restriction of & to Ng, i.e. A a= N;N . The
functions from Ns to R defined by ¢ — A%(¢p N C), Ce RB", are (N,
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B[R U { + o}))-measurable (cf. Zdhle (1982), Corollary 2.1.4).

DEFINITION 2.1. A random (d,n)-set is a random variable @ with

range (Na,.7), i.e. a measurable mapping from a basic probability space
(Q,., P) into (Ny, A4).

A random (d, n)-set @ is called stationary respectively isotropic, if its
distribution is invariant under translations respectively rotations in R”".
A random (d, n)-set gives rise to a random measure on (R", #")

2.1 po(B) = 22(@N B), BeRB".

The associated intensity measure of @ is

(2.2) Ao(B) = Eus(B) = EAX(® N B), Be%B".
Observe that if @ is stationary, then

(2.3) Ao(B) = Vida(B) ,

where vi is called the intensity of @. In what follows, we assume that
0 << o0.

The intensity measure represents the first-order properties of the set.
Higher-order properties can be studied by means of moment measures of
order 2 or more. Let u%’ be the k-fold product of us with itself. Then, the
k-th moment measure is defined as

(2.4) AY(B) = Eu¥(B), Be&B*" k=1,2,....

In particular,
k
(2.5) AY(Bix - x B) = ETl M@NB), BeAB" i=1,. k.

The moment measure of first order is simply the intensity measure.

If & is stationary, then A, is completely described by vi. More
generally, it is possible, still under the stationarity assumption, to describe
the £-th moment measure by the so-called reduced k-th moment measure.
To make this precise, we need to define the Palm distribution Py of the
random (d, n)-set.

Heuristically, Po(A), A €.#4 can be interpreted as the probability
that @ € A when the origin of R" is chosen as a typical point of @. There
are a number of equivalent ways of defining the Palm distribution.

Probably the most direct one is the following. We let B e 2" be a Borel set
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with 0 < 4,(B) < . Then, (cf. Mecke (1967), (2.8))
26)  Pod) =] [ L6~ x)2dx) P(de)
. 0 vﬂﬂn(B) Nl BN A n

I d
:E’l‘}ﬂ(—B)EmetplA(@*x)in(dx)’ Aeﬂd.

Because of the stationarity assumption, this definition of P, does not
depend on Be " Using the “standard” measure theoretic proof, it
follows directly from the definition of the Palm distribution that

2.7) E[, hx, ®)Aidx) = vi [, de h(x, & + X) Po(dd)In(dx)

for any %" x .#;-measurable non-negative function. This result is usually
called the refined Campbell theorem. (The standard Campbell theorem
concerns functions of the simpler type A(x, @) = f(x).) The distribution P,
is not stationary. However, it is easy to prove that if the original process is
isotropic then P is isotropic too. Below, we let @, be a random (d, n)-set
with distribution Py and Fy is the mean operator with respect to Po.

The reduced k-th moment measure is defined as the following measure

on (R"(k‘l) %n(k~1)):
(2.8) HNB) = A5 "(B) (), BeB™ V.

Using the refined Campbell theorem we can express A%’ in terms of A4

For B.e %", i=1,...,k,
(2.9)  AP(B % - x B) = ngg. de 24 N (Br— X)) -+ 2 N (B — X))
« Po(dp)An(dx)
= vfff& A N(By — x X -+ X Bk — X)Au(d)
= vZfR"fR"‘k o Ipxxp (X, x + hi,...,x + he-1)
A% dhy,..., dhe-1)An(dx)
More generally, for Be B,

(2.10) APBY = Vi [ i B, x + Py x 4 i)
AN dh,..., dhi-)An(dx)
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= (V;i')kfwfﬂ"“ o Ie(x, x + hi,...,x + hio)
LK dh,..., A1) da(dX)

which is the announced relation between moment measures and reduced
moment measures.

For d = n, the reduced second moment measure can be expressed in
terms of the covariance C of the process which is defined by

(2.11) Cx)=P0eP,xe®), xeR".

It is thus easy to prove, using the definition (2.6) of the Palm distribution
that

(2.12)  ViHKEP(B) = Esdn(® N B) = vi fB C(x)n(dx), BeRB".

The reduced second moment measure is thereby for d =#n a cumulative
version of the covariance.

3. Stereological estimation of reduced moment measures

Below, we present a stereological estimator of (vi)!F 4" V(B) = A%)(B)
for sets B e 8™ of the form

(31) B= le...qu
where
(3.2) Bi={xeR" " <|x|| <R"},

i=1,...,q. For n=2, Bi is an annulus. The estimators are based on
measurements on or in the neighbourhood of a g-dimensional subspace of
R". In case g = 1, knowledge of F4?"" on sets of the form (3.1) completely
determines 47" under the isotropy assumption of @. For g > 1, this is
no longer true. Reduced third moment measures are discussed in Hanisch
(1983).

The estimator is based on a generalized version of the Blaschke-
Petkantschin formula which has been described in Jensen and Gundersen
(1989). This formula gives a geometric measure decomposition which is just
the one needed for our estimation problem. In order to present this
formula, we need some extra notation and notions.

Let Lgo) denote a g-subspace of R", i.e. a g-dimensional linear
subspace of R" and let &) be the set of all g-subspaces. Let dLy) be the
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(differential) element of the measure on &£ which is invariant under
rotations in R” about the origin. This measure is unique up to multiplication
with a positive constant and is here scaled such that the total integral is

(3.3) [, dLow =01 on-gerfor - o,
=dn.q),

say, where

34 6= 20" [(n[2),

2
o1=2, o,=2n, o3=4n, 0s=271",

is the surface area of the unit ball in R".

We can normalize the rotation invariant measure on $& ) to a
probability measure. We let dL,o be the element of this probability
measure. Let u, be the unique invariant probability measure on the group
SO(n) of rotations in R”. Then, it is easy to show that if Lgoo) is an
arbitrary fixed g-subspace and T is the mapping

(3.5) A € SO(n) — ALgoo) € Ly

then u, - T is the rotation invariant probability measure on (.

The generalization of the Blaschke-Petkantschin formula concerns a
geometric measure decomposition of the g-fold product measure of A% with
itself, d = 1,..., n. As we shall see, the decomposition is only meaningful, if
g=n—d,...n Let x{,...,x2 be g points on a A-rectifiable closed set ¢ € Ny
in R". The superscript of x{ is used to indicate the dimension of the space
within which the point is regarded to lie. For brevity, we write, when
convenient, dx! instead of A2(dx?) in what follows. We need to assume that
x{,...,x% are linearly independent such that these g points determine a
unique g-subspace Lyo). Let xi "*%...,x2 "% represent the position of the
points within ¢ M Lg). Then,

(3.6) T X )t e dxE = dxT e AT L,

where J,* is the Jacobian of the mapping

3.7) (..., x5) — Lo

(cf. Federer (1969), (3.2.22)). The existence of this Jacobian is a very deep

result in geometric measure theory. The decomposition (3.6) is a special
case of the so-called co-area formula. In Zéhle (1990), an explicit expression
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for the Jacobian has been derived. In Jensen and Kiéu (1990), an alternative
proof is presented.

Lemma 3.1 below represents the first step towards the development of
a stereological estimator of

(3.8) (I (By X - X By) .
In this lemma we express (3.8) as the mean value in the Palm distribution
of a measurement along a fixed g-subspace Lq00. We will assume that g

points XedNB, i= l,...,q, are essentially linearly independent in the
following manner

q
Po({qs: 11 (6 N B)
:fwa ---fMB I(x4,..., x2 linearly independent)dx{ --- dxg}) =1.

LEMMA 3.1. Let @ be a stationary and isotropic random (d, n)-set.
Let Lgoo) be a fixed q-subspace and let B; be of the form (3.2),i=1,...,q.
Furthermore, let

(3.9) S(®; Loy, Bi X -+ X By)

= c(n,q)f¢mBlqu(w) “'fd,me -

TG X ) T dxg
Then,
(3.10) (VYIS V(By X -+ X By) = Eof(¢b; Lgooy, Bi X +++ X By) ,
g=max (l,n—d),...,n
PROOF. Because of the isotropy of the Palm distribution
(3.11)  Eof(D; Lgwo), Bi X --- X By) = Eo f(AD; Lgooy, B1 X *-+ X By) ,

for any rotation 4 € SO(n). Using the transformation x{ "*% — A’x{ """,
i=1,...,q, we therefore get

(3.12) Eo f(D; Lyooy, Bi X -+ X By)
= FEo f(P; A’ Lgooy, Bi X -+ X By)

= Eo f(D; A"Lyoo), Bi X -+ X Bg)un(dA)

SO(n)
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:f%o, Eof(D; Loy, Bi % ++ X By)dLqqo)
digy-1
= FE f f f -
0 Ly N By M Ly, ® N B, N Ly (J” )
cdx{ " e dxg " d Ly

- “on d o d

= Eofams, fdmsqul dxg

= (VHIHL (B x -+ X By) . O
Note that in Lemma 3.1 we have assumed that we can use the

reciprocal of the Jacobian. This is true if we use the convention that f'is an
integral over the set, where JH s positive, and furthermore assume that

q .
Alle: 0N B =, o, T et ad]) < 1
where I. is the indicator function of R..

Example 3.1. (Random planar fibres) Let us assume that n =2,
d=1 and g = 1. The aim is thus to estimate the reduced second moment
measure of a planar random set consisting of fibres. We let
(3.13) Bi= B0,r) = {xe R ||x|| =}
and use the short notation

(3.14) nFSNBO,r) = LaF(r) .

We assume that the fibres are piecewise smooth of class C'. The Jacobian
of the mapping x!' = (L), x") is then (cf. Jensen and Gundersen (1989)),

(3.15) JixN = J(xY @) =sin o/ |x'],
where « is the angle between Lio) and the tangent to ¢ at x'. Thus, if

¢ M Liwoy M B0, r) = {xi,..., xue)} With corresponding angles ai(¢) and dis-
tances di(¢) = | xi

")
(3.16) f(@#; Lo, B) =7 X di()/sin ai(¢)
under the assumption that

PO({¢3 Ai((b N B, r) :f¢mB(0,r) IR,(a(xl))dxl}) =1,
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where a(x') is the angle between the tangent to ¢ at x' and the line joining
0 and x'. The result of Lemma 3.1 is therefore that under the above
assumption

(3.17) LS (r) =1k ::ﬁ: di(D)/sin a:(D) .

This is Stoyan ((1981), (4.1)) under the assumptions stated. Note that in
that paper the coefficient 27 instead of 7 occurs, because in that paper half
of the line Lo is used for observation.

In conclusion, it follows from Lemma 3.1 that LsS%(r) can be
estimated by choosing a typical point of the fibre as the origin and
performing the measurement (3.16).

In order to use the result in Lemma 3.1 it is necessary to select a set of
typical points on ¢. Evidently, it would be most convenient to use points
on ¢ M Lgoo). Some caution should be taken here because ¢ M Ly oo) cannot
be regarded as a collection of typical points from ¢. We can solve the
problem by means of Lemma 3.2 below which only requires stationarity of
@. We collect points on ¢ M Lyoo), where Lo~ Lgoo) i1s an r-subspace
contained in Lgoo. Typically, r is chosen such that ¢ M Ly 18 0-
dimensional, i.e., d —n+r=0. We let G&'(-; ¢) be the Jacobian of the

mapping
(3.18) xlep—x"",

where x" " is the projection of x? onto the orthogonal complement Lio).
Note that

(3.19) G (x; ) = Gi'(0; ¢ — x) .
LEMMA 3.2. Let @ be a stationary random (d, n)-set and let Lo be
a fixed r-subspace. Let T, C Loy be a bounded Borel subset of Lo and

let h(-,-): LnooyX Na— R+\U {0} be a measurable non-negative function.
Then,

(3.20) E h(x, D)4 (dx)

SdNT,
=i, [, hx,8 + 0G0 6) Pold)i(d)
r=max (1,n—d),...,n.

PROOF. For any y € Ly we have, because of the stationarity of @,
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(3.21) E h(x, @A (dx)

dNT,

=E f,p_m L h(x, @ = )2 (dx)

h(x—y,®— y)AF " "(dx) .

fd)ﬂ(Tr*y)

If we let p and p, be the projections onto L0y and L0, respectively, we
can define a function 4 on R" x N, by

(3.22) h(x, ) = h(px,d — p.x) .

The last line of (3.21) can thereby be expressed as
(3.23) E fwm) R(x, YA (dx) |

Thus, if we let Z,-, be the unit cube in Lo, we get, using the refined
Campbell theorem,

(3.24) E h(x, YA (dx)

eNT,

=f,,, CEJ iz h(x, @) (dx)AR " (dy)

= B[ [, R @R d0is ()

h dre.. d
f(bﬁ (T, X I-,) h(xs ¢)Gn (.x, @)An(dx)

- vsfr,x L .fN./ h(x,¢ + X) G (x; ¢ + x) Po(dep)dx
=S 1 Sy HPx, &+ PX)GE0; ) Po(dp)dx
=i, [, hx. & + )GE(0; ) Po(dp)i () 0

For r = n, Lemma 3.2 is simply the refined Campbell theorem. We are
now ready to present the main result of this paper.

THEOREM 3.1. Let @ be a stationary and isotropic random (d, n) set.
Let Lyoo) and Ly oo) be fixed g- and r-subspaces, such that Lyoo) S Lgoo) and
let T, < Lyoo) be a bounded Borel subset of L. Let B; be of the form
(3.2),i=1,...,q, and let f be defined as in Lemma 3.1. Then,
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(3.25) (VYA V(B % -+ X B,)

1 -
=y Elor 1 /@ = x5 Ly, B x B G0, @~ )

';I.f_n+’(dX) ,
g, r=max (l,n—-d),...,n, r<gq.

PROOF. Using Lemma 3.1 and Lemma 3.2, we get

(326) Ef, . f(® = x; Lyooy, By x -+ x B/ GE(0; & — x)24""(dx)
= Vide(T) Eof(®; Lyoo, Bi X -+ X By)
= VIA(T)(VDIFST (B, % --- X By). O

Note that we in Theorem 3.1 also have assumed that we can use the
reciprocal of the G-Jacobian. This is true if we use the convention that the
integral in (3.25) is over the set where G is positive and furthermore
assume that

Po({d: GE'(0; ) >0 =1.

The right-hand side of (3.25) depends on the unknown intensity vi.
Estimation of v{ can be done by determining the lower-dimensional ana-
logue, viz. the volume of @ N 7,. The result is formulated in the corollary
below.

COROLLARY 3.1. Let the situation be as in Theorem 3.1 and let

)5

d+r—n+1 n+l1\)’
r
r( 2 ) ( 2 )

(3.27) b(n,d,r) =

Then,

(3.28) (VIHST (B x -+ X By)
= b(n,d,N[EA" (@ N T
: Efmnf(‘p — x; Lyoy, Bi X -+ X Bp)] G¥'(0; @ — x)

-A’;i*n+r(dx) ,
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g,r=max (l,n—d),...,n, r<gq.
PROOF. The result follows immediately from the fact that
(3.29) EXT(@ N T) = v " A(T)
and (cf. e.g., Zéhle (1982), Theorem 3.2.2.3),
(3.30) ViV = b(n,d, r) O

Example 3.1 (Random planar fibres, continued). Let r=1. The
Jacobian G of the mapping (3.18) is

(3.31) G(x")= Gy'(x"; ¢p)=sina,

where o is the angle between Lo and the tangent to ¢ at x'. Let
@ N Lyoo) = {zi}i=1, and let a; be the angle between Lioo) and the tangent to
Datz,i=1,2,...If welet N be the number of the z’s in T}, the estimator
of L,4S(r) obtained by replacing expected quantities by observed quantities
in (3.28) is

21
n N

Z,

(3.32) X X 7|z — zl|/sin o sin g .
i J

T |zi—z|<r

This formula can also be found in Stoyan (1981); see also Mecke and
Stoyan (1980) and Ambartzumian (1981).

Example 3.2. (Random spatial surfaces) Let us assume that n =3,
d=2 and g = r = 1. For convenience, let

(3.33) WHS(BO,r) = SyF(r) .

We assume that the surfaces are piecewise smooth of class C'. Then, the
J-and G-Jacobians are

(3.34) J(x*) = I @) =ssin af | X7,
(3.35) G(XH) = G¥'(x* ¢p)=sina,
where a is the angle between the Liwo and the tangent plane to ¢ at x°.

With the same notation as in Example 3.1 we get the following estimator of

SvH(r)
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(3.36) Y X 2n|zi—z|*/sin a;sin g .

11
2 N z T lzi—z| <7

The measure decomposition which is used here provides stereological
estimators only for the cases where n — d < g <n. Another case (n=3,
d=1, g=1) is treated in Stoyan (1984, 1985a4) where a stereological
estimator of the reduced second moment measure of a spatial fibre process
is presented. Again, spatial angles are needed. Furthermore, estimators of
the reduced second moment measure of (0,2)- or (0,3)-sets (planar or
spatial point processes) can be derived using disector-sampling. The results

for spatial point processes are presented in Jensen (1990).

4. Modified reduced second moment measure

Reduced second moment measures are often used in the statistical
analysis of (0, n)-sets, i.e. point processes. In particular, they are useful for
comparison of a point process with a stationary Poisson point process.
When @ is a point process, the reduced second moment measure is

(4.1) FNB) = EANP N B)/vs, BeRB".

Usually, B= B(0,r) is a ball of radius r centered at the origin, which under
P, with probability one contains a point from @. It is usual that this point
is not counted, leading to the following modification:

(4.2) Ko(r) = F(B(0, N\{0}) = EAND\{0} N B0, r))/ vy .
For a stationary Poisson point process, we have
(4.3) Ko(r) = Au(B(0, 1)) = wur” |

where w, = n"?/T(n/2 + 1) is the volume of the unit ball. A plot of Ko(r)
versus r or r" is usually used in the second-order analysis of point
processes. Deviations of an empirical plot from the Poisson curve can be
interpreted as clustering or inhibition of the points (cf. e.g., Diggle (1983)).

The use of the moment measures in the analysis of random (d, n)-sets
is for d > 0 less standard, because usually only a restricted class of random
sets is considered. Each class implies its own definition of total randomness.
Here we shall focus on the class of random sets which can be described by
marked point processes. We shall call them (d, n)-marked point processes.
The totally random (d, n)-marked point process is the Boolean model (cf.
Stoyan et al. (1987), p. 65).

Deviations of a (d, n)-marked point process from the Boolean model
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can be analysed with the standard measures associated with marked point
processes. But (d, n)-marked point processes also give rise to the random
measure defined in (2.1) (note that we cannot in general identify the (d, n)-
marked point process from the random measure (2.1)). Similarly, we can
define moment measures, a Palm distribution, and reduced moment mea-
sures. Following the point process approach, we shall now propose a
modification of the second reduced moment measure analogous to Ko(r)
which behaves in a similar manner for the Boolean model.

First we shall give a formal definition of a (d, n)-marked point process:

DEFINITION 4.1. A (d,n)-marked point process ¥ = {[x; Z]}i21 is a
random point process on R"Xx N; such that {x}iZ; is a random point
process on R” and such that for any bounded Borel set B € %" the number
of @; = x; + 5 hitting B is finite.

Associated with ¥, we have the random closed set @ = 91 &; =

»@1 (x: + =) which is a random (d, n)-set.

DEFINITION 4.2. A (d,n)-marked point process ¥ = {[x; Zi]}i: is
called a Boolean model, if {x:}i| is a stationary Poisson point process and
{Z}i=1 are i.i.d. and independent of {x;} ;.

The reduced second moment measure of @ is in general defined by
(4.4) FEB) = EAX® N B)/v:, Be%RB".

In the present paper, we shall define a modification of this measure which
requires that the @;’s are essentially non-overlapping, i.e.,

(4.5) ) (BN By = (DN B) as., forall BeJB".

This is in the spirit of the present paper since we primarily consider
random sets and not processes.

We assume that ¥ is stationary, i.e., ¥, has the same distribution as ¥
for all x € R", where ¥, = {[x; + x; Z]]}21. Because of the stationarity we
have for Be 28" and K e .4,

(4.6) E#i: xie B,Ei € K} = utn(B)Pn(K)
where u is the intensity of the point process and P, is the mark distribution.

Under stationarity, the assumption (4.5) of non-overlapping is equivalent
to the following simple relation between v, the first-order characteristic of
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&, and p, the first-order characteristic of the point process {xi}i-1, using the
standard Campbell theorem for marked point processes

4.7 Ve = uE(AN(E)),

where E, is the mean in the mark distribution (cf. Stoyan et al. (1987), p.
101). The assumption of non-overlapping is always satisfied for a Boolean
model with d < n.

We shall define a Palm distribution of the marked point process ¥,
with another form of weighting than the one usually used for marked point
processes,

1

(4.8) Py(A) = W

EfD, (x+E)NW La(¥-)Ai(dx) ,

where A belongs to the o-algebra associated with a (d, n)-marked point
process and We " satisfies A,(W)>0. The Palm distribution may be
interpreted as the probability that ¥ € 4 when the origin of R”" is chosen as

a typical point of @ = Q @;. Note that the mapping
4.9) V={[x; E]}c1 - ®= H (xi + £)

transforms the Palm distribution of this section into the Palm distribution
of Section 2. It can be shown that for any measurable, nonnegative
function A

(4.10) Ef, hx, ®)23(dx) = vi [, Eoh(x, ¥)an(dx) .

Because of the assumption of no overlapping exactly one @; hits 0
under P,. This is most easily seen by proving that

@.11) Po(0eu¢,-)=Eo(§1¢,(0)): 1,

which can be done using the definition of P, and the non-overlap assump-
tion.

We are now ready to define the modified reduced second moment
measure.

DEFINITION 4.3. Let ¥ = {[x;; =]}z: be a (d, n)-marked point proc-
ess, distributed according to the Palm distribution Po. Let @° be the unique
@; = x; + 5 hitting 0. Then, the modified reduced second moment measure
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is defined by

(4.12) Ka(r) = EJi(®\&° N B0, )/ v} .
PROPOSITION 4.1. If 'V is a Boolean model then

(4.13) Kai(r) = war" .

PROOF. Under the non-overlapping assumption, it can be shown
that the distribution of ®\@" under P, is the same as the distribution of @
under the original Boolean model. Therefore,

Ka(r) = EX(D N B0, 1)/ vi= war" . O

In Stoyan (1985a), a result of this type was obtained for a planar fibre
process.

The modified reduced second moment measure Ku(r), defined for
(d, n)-marked point processes, can also be expressed as a mean value of the
type presented in Lemma 3.1. Thus, let ¥ be a stationary and isotropic
(d, n)-marked point process. Isotropy means that 4 ¥ has the same distri-
bution as ¥ for any rotation 4 in R” about the origin. Here, AY¥ = {[Ax;;
AZ]}Z1. Under these assumptions @\@° has the same distribution as
A(P\@") under Po. Therefore,

(4.14) VaKa(r) = Eo f(S\®°; Lioo), B, 7)) .

It is also easy to derive a modification of Theorem 3.1 and Corollary 3.1.
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