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Abstract. In this paper, Bayesian linear prediction of the total of a finite
population is considered in situations where the observation error vari-
ance is parameter dependent. Connections with least squares prediction
(Royall (1976, J. Amer. Statist. Assoc., 71, 657-664)) in mixed linear
models (Theil (1971, Principles of Econometrics, Wiley, New York)), are
established. Extensions to the case of dynamic (state dependent) super-
population models are also proposed.
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1. Introduction

Let the finite population be denoted by P ={l,..., N}. Associated
with unit k of 2, there are p + 1 quantities yx, X1,..., Xxp, Where all but yx
are known. The quantity yx is considered to be a realization of a random
variable Y, k = 1,..., N, but, since both are unknown, it is not distinguished
between them. Relating the two sets of variables, y’= (yi,...,y~n) and
X' =(X,...,Xn), where Xi= (xx1,..., %), k=1,...,N, we consider the
following conditional superpopulation model:

(1.1) E[y|0]=X60 and Var[y|0]=V().
With respect to the random vector 6, it is assumed that
E[0]=u and Var[0]=2,

a known matrix. Note that the superpopulation model (1.1) above is more
general than the superpopulation model considered by Smouse (1984), for
example, in the sense that the covariance matrix of the error vector is
allowed to depend on 6.

N
In order to gain information about the population total 7= -21 Vi, a
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sample s of size n is selected from 2P according to some specified sampling

plan. After s has been selected, we may write y, X, V(0), Q and E[V(0)]=V
in the following obvious fashion:

N XS ng VSI'H
o) ) ()

Yr Vis(8)  V:(0)
Qs er _ 175 I7sr

Q= , V= _ _|,
Qrs Qr Vrs Vr

where the subscript s corresponds to the observed units in # and r
corresponds to the units not in s.

The main object of this paper is to develop a distribution free Bayesian
approach to predict the population total 7 under the superpopulation
model (1.1). That is, in the class of the linear predictors T = a + Ry,
where @ and the n x 1 vector h are known, we seek to minimize the Bayes
risk (total mean squared error) E[T.— T7’, where the (unconditional)
expectation operator is taken with respect to the joint distribution of y and
6. But the derivations will require only the first and second moments of
those distributions.

In Section 2, the Bayesian linear predictor of the population total T is
derived by using some results in Rao (1973). Relationships with other
approaches are noted. In Section 3, an important connection with least
squares theory in mixed linear models is established. By exploring this
connection, a close relationship between prediction of 7 and estimation of
0 is obtained which extends existing results in the literature. In Section 4,
we make use of the connection with least squares prediction in mixed linear
models to propose a linear Kalman filter version of the least squares
predictor under dynamic (state dependent) superpopulation models.

2. General results

In this section, the Bayes linear predictor of T is derived under the
superpopulation model (1.1). Some special cases and relationships to other
approaches are discussed.

Let 1; and 1, be vectors of ones of dimensions » and N — n, respec-
tively. After s has been selected we may write 7 = 1iys + 17y, in such a way
that predicting 7 is therefore equivalent to predicting 7; = 1/y,. Let k and h
be known n-dimensional vectors. As emphasized before, we restrict our-
selves to linear predictors of 7, that is, predictors of the form

(2.1 Ti=a+Wys=Lys+ Ry +a=Ly,+1,
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where 7 = R’y + a is a predictor of 7, and seek to minimize
(2.2) E[T.-TT.

The lemma that follows provides an important link between the estimation
of linear functions of § and the prediction of 7.

LEMMA 2.1. Let T; be any linear predictor of the form (2.1) above.
Then,
(2.3) E[T.— TT = E{[t — LV,.V; 'p] — L[X, — V.sVs 'X]6)
+ lﬁ{Vr - VrsVs—IVsr}lr .
PROOF. After straightforward but lengthy algebraic manipulations,
it can be shown that
(2.4)  E[T.— TV = Ela+ Rkys— 1]
= Var [(R — 1V,sV: s + a]
+ 1V, — V.. ViVl + {E[£ - 1X,01)
= Var {[# — UV Vs 'y — V[X, — V. Vi 'X]0)
+ UV, — VW5 Va1, + (E[£ - 1X,01),

from which the result follows.
As a direct consequence of Lemma 2.1, we have

THEOREM 2.1. Let T11 and Tr» be two linear predictors of the form
(2.1). Then,

(2.5) E[Tu - TV <E[Tn—- TV,
if and only if
(26) E{[fl - I;Vrs I7s_ lys] - 1;[Xr - I7rs Vs— IXs]g }2

< E{[t, — LV, V:'y] - L[X, — V..V 'X )0} .

Remark 2.1. The relevant point about Theorem 2.1 is that it estab-
lishes a relationship between the problem of predicting 7 and the problem
of estimating a linear function of 6, which is typically an easier problem.
Expressions (2.5) and (2.6) enable the construction of predictors of T given
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estimators of 8. Indeed, they provide generalizations to similar results in
Bellhouse (1987), derived under a less general superpopulation model. See
also Fuller (1970) and Rodrigues (1989). Also, (2.6) implies that £, — LV, ¥; 'y;
has smaller expected risk than %, — 1;¥,.¥; 'y, for estimating 1[X, —
VisVs ' X6.

Now, we restrict ourselves to linear unbiased predictors of 7, that is,
predictors satisfying

2.7) E[T.— T]=E[t-1X,0]=0.

The theorem that follows next gives the Bayes linear unbiased predictor,
T7, of T and its linear prediction variance.

THEOREM 2.2. In the class of all linear predictors of T which satisfy
(2.7), the Bayes linear predictor of T is given by

(2.8) T = Uys + X0 + VooVs ' (vs — XsD)}
where

=XV X, + Q)Y XV s + 27')
and

(29) E[TL* - T]2 = 1;{I7r - Vrsis—lﬁsr}lr
+ 14X, — V. Vs X HXV X+ 7'
* {Xr - I7rx Vs— le},lr .

PROOF. Following Rao ((1973), Subsection 4a.11.4) it follows from
Theorem 2.1 that (2.2) above is minimized when g is known by taking

TL*Zléys-I-a*-l-ft’* s = Ly + %,
where
a* = wiX, - V..V, ' X)'1,
and

ﬁ,* = (I7s + XSQX.S{)_ IXSQ{XI - I7VSI7S_ IXS}’I’
— Vs_ IXS(Q_I + Xs’f/_s—lXS)—l{X’ - 17’5[75_ IXS}I: -
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Moreover,

Var {['f* - I;Vrs Vs— lys] - 1;[Xr - I7rs I75_ IXS]G}
= X, — VoV X HQ ' + XV X YX, - ViV ' X,

from which the result follows.

Remark 2.2. 1f V() =V is fixed and known, all the above results
continue to hold, with V replaced by V.

In the case where V(0) = V is constant and known, and g is unknown,
we have the following result

THEOREM 2.3. If V(0) =V is known and u is unknown, then the
Bayes least squares predictor of T and its linear prediction variance are
given by (2.1) and (2.2) in Royall (1976).

The proof follows directly from Rao ((1973), Subsection 4a.11.5), by
following the same steps as in the proof of Theorem 2.2.

Remark 2.3. Predictor (2.8) and the linear prediction variance (2.9)
may also be obtained (without the unbiasedness restriction (2.7) from (2.1)
and (2.2) in Smouse (1984), by considering the superpopulation model
where, marginalily,

Elyl=Xu
and

Var [y] = E{Var [y|01} + Var {E[y|01]}
=V+XQX .

So, predictor (2.8) is also a Bayes linear predictor within the class of all
linear predictors. Note however that (2.8) can not be argued for by using a
direct Bayesian analysis involving prior and posterior distributions, as was
done, for example, in Royall and Pfefferman (1982) or Bolfarine ez al.
(1987).

Example 2.1. Suppose that the elements of the superpopulation
model (1.1) are such that X = 1y and V(0) = 6°I, where I is the identity
matrix of dimension N. Suppose also that E[#] = u and that Var [0] = Q.
Hence, V = (Q + g1 = vl, where v = 4° + Q. It then follows from (2.8) and
(2.9) that the Bayes linear predictor of T'is



440 HELENO BOLFARINE

(nys/v + u/ Q)

TF = nps + (N —
L=nys+(N=n) njo+ 1/Q

with linear prediction variance

S% 2 _ a7 IS NS
E[T —TI'=(N—-nmv+(N—n) nt 1/

3. A connection with least squares prediction in mixed linear models

Now we turn to the least squares (in mixed linear models) interpretation
of predictor (2.8). Consider the following mixed linear model (Theil (1971))

o L

where u and e, are independent zero mean vectors with covariance matrices
Q and V;, respectively, and [ is the identity matrix of dimension p. After
some algebraic manipulations, the Gauss-Markov estimator of # may be
written as

(3.2) O=p+F(ys— Xsp),
where
F=0X(X.QX;+ V) ' = XV X, + Q7Y 'xqv: '
Moreover,
(3.3) Var [0] = (I - FX)2.
Now, from (2.5) and (2.6) and any given sample s, it follows by using the
Gauss-Markov theorem for mixed linear models that the variance of

T~ 1V Vs 'y is minimum among the variance of all linear unbiased
estimators of 1;{X, — V,.V; 'X,}0 if

I;Vrs Vs_ lys + 1:{Xr - Vrs Vs— lX_s}é
1X.0 + X, V¥ (s — Xs0) .

T

Therefore, the least squares predictor of 7 under the superpopulation
model (1.1) and the mixed model (3.1) for the observed sample and the
prior information is equal to the Bayes linear predictor of 7. The linear
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prediction variance of the least squares predictor follows from (2.4) and
(3.3) and it is easily shown to be equal to (2.9).

Hence, the above connection between the two approaches provides an
alternative way of obtaining the Bayes linear predictor (2.8). In the next
section use will be made of the above connection to derive the Bayes
dynamic linear predictor when sampling on successive occasions.

4. Dynamic Bayesian linear prediction

In this section, it is considered that the finite population is observed ¢
times. At time j, the observation equation is denoted by

(4.1) Yi=X;b;+ e,
while the state equation is denoted by
4.2) 0j = GJHJ‘Al + w;,

where ¢ and w; are independent zero mean vectors for all j, Var[e]=
Vi(0;), Var [w;] = W; and G; are known, j= 1,...,¢. The observation equa-
tion (4.1) describes the way data is generated at time j, while the state
equation (4.2) describes how 8; evolves through time.

It is of interest predicting the population total, T;, at time z. After a
sample s; of size n; is selected from 29 (the finite population at time j),
j=1,...,t we seek among the class of all linear predictors of the form

t
Tu=a +J§.1 h)y,, the one minimizing

(4.3) E[Tu-TYV,

where h; is a known vector of appropriate dimensions and ys denotes the
observed sample at time j. As before, the subscript r; is used to denote, at
time j, the unobserved part of %, ,j=1,...,t. The recursive Kalman filter
linear predictor of T; is now described under the superpopulation model
(4.1) and (4.2), by making use of the least squares connection described in
the previous section. Some other approaches where the population mean
itself is considered to follow a stochastic structure are considered in the
pioneering papers by Blight and Scott (1973) and Scott and Smith (1974).
In those papers, time series methods have successfully been applied to the
analysis of repeated surveys from random or probability samples. As
pointed out in Binder and Hidiroglou (1988), Blight and Scott (1973) gave
a recursive formulation for the Bayes estimation of the population mean
which is equivalent to those obtained by using the Kalman filter estimating
algorithm.
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Starting with the first iteration, each iteration thereafter may be
described as follows. Suppose that we have reached time ¢, so that before
observing ys, we have #,-1-and C,-1, the Bayes linear estimator of 6,-; and
its linear variance. Hence, prior to observing y, our state of knowledge
(prior information) about 8; may be expressed as

w=Gb-, and Q=GC-\G+W,,

both equations following from equation (4.2). Now, in order to adapt the
least squares connection to the present context, we identify, from the
previous section, u with u, Q with £, y, with y, 0 with 6, and V(-) with
V«(-). Therefore, by appealing to the least squares connection, we write the
following mixed linear model for the observed sample and prior informa-
tion at time ¢:

Mz I,
“ N
Vs X,

where the covariance matrices of the independent zero mean vectors u;, and
e, are €, and V,, respectively. So, by making use of (3.2) and (3.3), it
follows that the Gauss-Markov estimator of 6, and its variance, under the
mixed linear model (4.4), are given by

u;
0, +

3

€s,

(4.5) 6 = s + Fi(ys, — X ts)
and
(46) C = [It - Fth,]Qt P

where F, = Q. X;[X,.X + V,]''. Then, by using (2.8) at time ¢, it follows
that the Bayes linear predictor of 7; at time ¢ is

(47) le = nt_)7s, + 1;{Xr,5t + Vr,s‘ Vsjl(ys, - Xs,é)} R

where y;, is the sample mean at time # and with linear prediction variance
given by
(4.8)  E[T8 - TP =14V, - V.. Vs 'V, 01,
+ (X, — Vs Ve X }CHX, = VooV ' X )1,
Remark 4.1. Note that predictor (4.7) is indeed a more general (and

dynamic) version of the least squares predictor proposed by Royall (1976).
Moreover, a less general version (¥, fixed and known) of predictor (4.7)



BAYES LINEAR PREDICTION 443

was obtained by Bolfarine (1989) by making use of a dynamic multivariate
normal superpopulation model. Therefore, predictor (5) in Bolfarine (1989),
and the more particular predictor (12) in Bolfarine (1988) are indeed Bayes
linear predictors, if the normality assumption is dropped. One difference
between the two approaches is that the algorithm in Bolfarine (1988, 1989)
updates the conditional error covariance matrix, whereas the present
algorithm updates the unconditional error covariance matrix.

Example 4.1. Consider at time j, the observation equation
(4.9) Yie =6 + e,

where the ej are all independent, Ef[ex] =0 and V;(6) = 6,1,k =1,...,N;,
j=1,..., t. The state equation at time j is considered to be

(4.10) O —p=pl-1—pw+w,

where w; are all independent (also independent of ex) with E[w;] =0 and
Var [w;] = W;, a known and positive constant. Equations (4.9) and (4.10)
characterize the well-known steady-state Poisson forecasting model, which
is a special case of the model of Blight and Scott (1973). They assume an
independent AR(1) process on the error term e, for each k. Now, by using
(4.5)-(4.8), it follows that the Bayes linear predictor of the population total
at time ¢, T,, given ;-1 and C,-1, is

T2 = nys + (N — n)b
with prediction variance given by
E[T# — TT = (N:— njo+ (N — n)’Ce,

where v, = E[6] = 0, the mean level of the process,

Y nt/Uz _
0: +Ft s,_ls, = +— se — Mt)
Hi (v W) = My nfvi+ 1/Q y )
1
= nfoc+1/Q°

Q=p'Cr+ W, and ,u,:pét—1+(l—p)(7.
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