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Abstract. This paper describes a method for an objective selection of the
optimal prior distribution, or for adjusting its hyper-parameter, among the
competing priors for a variety of Bayesian models. In order to implement
this method, the integration of very high dimensional functions is required
to get the normalizing constants of the posterior and even of the prior
distribution. The logarithm of the high dimensional integral is reduced to
the one-dimensional integration of a certain function with respect to the
scalar parameter over the range of the unit interval. Having decided the
prior, the Bayes estimate or the posterior mean is used mainly here in
addition to the posterior mode. All of these are based on the simulation of
Gibbs distributions such as Metropolis® Monte Carlo algorithm. The
improvement of the integration’s accuracy is substantial in comparison
with the conventional crude Monte Carlo integration. In the present
method, we have essentially no practical restrictions in modeling the prior
and the likelihood. Illustrative artificial data of the lattice system are given
to show the practicability of the present procedure.

Key words and phrases: ABIC, Bayesian likelihood, posterior mean, ¢-
and y-statistic, Gibbs distribution, hyper-parameters, Metropolis’ algo-
rithm, normalizing factor, potential function, type II maximum likelihood
method.

1. Objective Bayesian method

Take the case where many parameters 6 = (6;) are required to present a
statistical model, such as the one used in the inverse problem. The model is
usually described by the likelihood function L(8;Y) for a given set of data
Y. If the number of parameters to be estimated is moderate in comparison
with the number of data or its resolution, the maximum likelihood method
usually provides a sensible and the most accurate estimation. However, in
the present case, the likelihood function L(8;Y) is likely to have many
local maxima or possibly to be unbounded. Such a situation is called i//-
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conditioned. This means that we are not able to have a sensible solution
without some restrictions among the parameters. In order to measure the
deviations from such restrictions, a penalty function is sometimes required
(see Good and Gaskins (1971), for example); consequently, it is then
necessary to resolve two conflicting aims which are to produce a good fit to
the data whilst also imposing a penalty to avoid any ill-condition. These
are described by a trade-off between the log likelihood and the weighted
penalty function

(1.1) log L(6;Y)— Q(0;7),

where the function Q represents a set of penalties and 7 = (tx) is the vector
of respective weights for the penalties, which we hereafter call the Ayper-
parameter. The crucial point here is the adjustment of the hyper-parameter
7. To obtain the optimal hyper-parameter, we are led to the Bayesian
interpretation of the function in (1.1). The exponential of the negative
penalty is considered to be proportionate to the prior probability distribu-
tion (0| 1), such that

e 0(0; 1)

(1.2) n(9|t)=m

is characterized by the hyper-parameter 7, so that the exponential of the
penalized log likelihood function in (1.1) is proportionate to the posterior.
Then we need to consider its normalizing factor

(1.3) A ¥) =L, Y)n(0;1)db

to define the posterior probability. The normalizing factor, called the
Bayesian likelihood of t, is useful to obtain the optimal hyper-parameter ¢
which maximizes A or its logarithm

(1.4) log A(; ¥) = log [ L(8; ¥)e %% 7d6 — log [e @940

This is called the method of type II maximum likelihood by Good (1965).
Akaike (1978, 1979) justified and developed this method based on the
entropy maximization principle and defined

(1.5) ABIC=(-2) max log A(t; ¥Y) + 2.dim (1),

for the comparable use with the Akaike Information Criterion (AIC;
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Akaike (1977)), both of which are to be minimized for the comparison of
respective statistical models. When both the likelihood and the prior
distribution take the Gaussian form, the integration in (1.2)-(1.4) can
usually be implemented analytically (see Akaike (1979)).

Since this is not expected in general for non-Gaussian models, a
Gaussian approximation method is considered and implemented (Ishiguro
and Sakamoto (1983), Ogata and Katsura (1988), Ogata et al. (1989)),
except in the case when the successive numerical integration is feasible such
as in the models of state space representation in time series (Kitagawa
(1987)). One problem with the former method, however, is the unestimable
bias of ABIC due to the approximation. Therefore, a reasonably accurate
and efficient numerical guess of log A(z; Y') for general models is required.
The Monte Carlo method developed in the present paper will be useful for
this purpose.

2. Monte Carlo integration

2.1 The method
Suppose that we wish to estimate the integral

@.1) Zu=f [ [ e %, ) i -

We shall denote the vector (xi, x2,..., x5) by x. Numerical methods for the
evaluation of Zy involve the calculation of f(x) at a number N of points x:.
The crude Monte Carlo method gives the sum

1 M
(2.2) Y2 Z f(x)

as an estimate for Zy where the points x; are chosen at random in ‘the range
of integration. Although there are some sophisticated modifications or
improvements of the method (see Hammersley and Handscomb (1964) for
example), those methods based on (2.2) are not practical for the integral of
a large multiplicity N: that is to say, the bias caused by the skewness of the
function is significant while the integrated values are usually very small or
very large (Ogata (1989)). Thus, in this paper, we are interested in esti-
mating log Zy directly, rather than via Zy itself.

Suppose that f(x) =f(x1,x2,...,xn) i1s a function defined and to be
integrated in an N-dimensional cube Vy = [a, b]". If f(x) is defined in the
infinite domain, [a, b] is taken sufficiently large for a reasonable approxi-
mation of the integral. Assume also that this function is bounded from
below, so that we can hereafter assume the non-negativity of the function
without any loss of generality. Consider a scaling parameter ¢ such that
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0 <o <1, and let the vector ox denote (ox1, 0x2,..., 0xy). Define a family of
probability densities {g,(x)} on the cube V= [a,b]", which are param-
eterized by the scale parameter ¢ in such a way that

f(ax)
2.3 o(X) =",
(2.3) 8o(x) Zn(@)
where Zy(0) is the normalizing factor

(2.4) Zw(o) =], f(ox)dx.

Under very broad regularity conditions, using Fubini’s theorem of change
between signs of integral and differential, we can expect

9 9
(2.5) ~ - log Zu(0) = /, { - log f(0%) } 2o(x)dx .

For convenience in later description, let us set the equality in (2.5) to w (o).
Replacing the expectation in the last equality by the time average, we get a
consistent and unbiased estimate of y (o)

1 M 9
(2.6) ylo)=—- %

7 25 1ogf(0X (1),

where X (1) = (X1(2), X2(?),..., Xn(?)) are vector series of samples following
the distribution g,(x). The practical sampling methods include the so-called
Metropolis’ simulation procedure. For the procedure we define the poten-
tial function by

2.7) Us(x) = —log f(ox),

in the present case. See Subsection 2.5 for the review and method of the
application of Metropolis’ procedure. On the other hand, the eventual
estimation of log Zy = log Zn(1) is written by

(2.8) log Zn(1) = log Zx(0+) + . w(0)do ,
where

2.9) Zy(0+) = lim [, rex)dx = (b - a1 (0)
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from (2.4), assuming the right continuity of the function at the origin and
that 0=(0,0,...,0). Based on this method, Ogata (1989) showed the
extremely significant improvement in comparison with the conventional
crude Monte Carlo integration.

2.2 A sophisticated version and its application

Here, I would like to add some sophistication to the above relations.
For that in the last section, the parameterization of the function f(x) by ¢
from the interval [0, 1] need not be in the form of the scaling like in (2.3).
Furthermore, the parameterization may be generalized by

(2.10) Jo(x) = fo(x) - ho(x) ,

in such a way that ho(x) =1 and hi(x) = f(x)/fo(x) hold. An example of
this parameterization is A,(x) = f(ox)/fo(ox). Here, the function fo(x) should
be positive and continuously differentiable and its integral on the given
region is known or estimated somehow. Then, for the potential energy

(2.11) Us(x) = —log fo(x) = — {log fo(x) + log hs(x)} ,

R 1 4 4
(2.12) (o) = Y2 l; e log hs(X (1))

is the corresponding estimate to that in (2.6). Furthermore, log Zy(0+) in
(2.8) is given by

2.13) Zw(0+) = [, fo(x)dx

instead of that shown in (2.9). A good choice of the function fo(x) would be
one in which both log A4:(x) and its derivative are small. For further details,
see the forthcoming Section 4 on the implementation of Bayesian integrals
and also Ogata (1989) for some experiments with the known integrals.

An interesting example of the choice of fo(x) is related to the Gaussian
approximation method suggested by Ishiguro and Sakamoto (1983) (see
also Ogata and Katsura (1988) and Ogata et al. (1989) for some applica-
tions). Let the logarithm of a posterior 7(8; 1) =log {L(0)7(0|7)} be
approximated by the quadratic form

i 1 - i -
T(611) = T(0]r) — - (0 0) H(8[1)(60 - 0),

where @ is the vector which maximizes T for a fixed z, and H(0;7) is the
Hessian matrix (i.e. second derivatives) of the penalized log likelihood at 8.
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Using this approximation, we set the exponential of the approximation to
fo(0) so that the integral of this function is reduced to the computation of
the determinant of the Hessian matrix. Thus we have

~ 1 ,
log Z(0+) = T(0|7) — e} log {det H(0|7)} — g log 27,

where N is the dimension of the parameter 6. This approximation seems to
be extremely useful when the prior is Gaussian and the likelihood is non-
Gaussian. Here, I would like to emphasize that the bias of the approximant
from the true is evaluated accurately enough by the integration of ¥ in
(2.12) over [0, 1].

2.3 Implication of the methods in statistical mechanics
Consider a system of N particles in a volume V at a specified
temperature T, as well as a total potential energy Un(x) = X ®(ry), where
i<j

@ is a pairwise interaction potential function of the distance between any
two points of the state x. Then the Gibbsian canonical distribution is given
by

(2.14) ‘ g(x) =exp { ;1? Un(x) }/Z(N, v, T),

where k is Boltzmann’s constant and Z(N, V, T) is the normalizing factor
of a probability density distribution. The quantity y defined in (2.5) is
related to the equation of state which is proportional to (PV/NkT) — 1,
where P is the pressure. Metropolis et al. (1953) and some of their
followers such as Wood (1968) calculated this quantity by computer
simulation in order to investigate the variety of aspects in statistical
mechanics, especially the phase transition of liquid.

Given a set of coordinates of N equilibrium points in a region V,
Ogata and Tanemura (1981a, 19815, 1984a, 1984b, 1989) developed the
evaluation of the normalizing factor log Z of the Gibbsian distribution in
performing the maximum likelihood method to estimate the shape of the
pairwise interaction potential function. We estimated the smooth equation
of state ¥(1) of T = No’/ V by fitting polynomials or spline functions to a
number of evaluated ¥(1;) of sampled 7’s obtained from the simulated
experimental data of the particles. Then, by a similar relation to (2.8), we
obtained the functions log Zn(0) of the scale parameter ¢ for a number of
parameterized pairwise potential functions.

Recently, I learned that such an estimation method of log Zn(0),
which is called free energy, by the derivative of a suitable scalar parameter
o has been commonly used in the field of statistical physics since late 1970’s
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(see Binder (1986) for example). For instance, the reciprocal of the tempera-
ture, 0 = T, has been used for such a scalar parameter. Incidentally, an
increase in the last parameter realizes the so-called stochastic annealing
(Kirkpatrick et al. (1983), Geman, S. and Geman, D. (1984)) of series of
equilibrium states. Here, we put h.(x) ={f(x)/fo(x)}° in (2.10). Then,
(2.11) and (2.12) imply that

: Ot )
| - L%
@) PO =0 518 fx )

instead of (2.6) with the total potential energy

(2.16) V,(x) = — (1 — o) log fo(x) — o log f(x)

instead of (2.7). In the present study, we will use the special case where
fo(x) =1 in the above pair (2.15) and (2.16) to compute (2.8), where y is
replaced by ¢ as the alternative to those given in (2.6) and (2.7). In this
case, Zy(0+) = (b — a)" holds in place of (2.9).

2.4  Numerical approximation and error estimate

Before carrying out the integration in (2.8), the estimation (2.6) of
w (o)) = (d/d0) log Zn(g)) should be made for many ¢;’s sampled from the
unit interval [0, 1], preferably with their estimated errors. In Ogata and
Tanemura (19815, 1984a, 1984b, 1989) polynomials or spline functions are
fitted to this sort of experimental data to get a smooth and well fitted
function, and then to be used for the integrand in (2.8). The alternative but
simple method to evaluate the integral in (2.8) will be by the trapezoidal
rule, for example,

1 J
(2.17) 5 2 (@) + ¥(@)Hgin — )

_ J el — O =
:(“22“‘)¢(al)+j§2(—c° 7 ‘).p(o—,-)+(—‘” > ‘”)y}(mﬂ).

If the estimates of the (o)) and their errors for respective g; are not
highly variable or inhomogeneous, the above sum with the equidistant
nodes {0j};-1.2...s, for example, is expected to provide an accurate estimate
of the required integral in (2.8) (see Examples 1 and 2 in Ogata (1989)).
This is because the estimate of w(g;) for each oj is consistent and unbiased
and the random variables 7(g;) and ¥ (ox) are mutually independent for
k # j, provided that a suitable generation of random numbers is achieved.
Thus, if the standard error of each ¥(gy) is s;, then the error variance of
log Zn(1) estimated by using (2.17) in (2.8) is given by
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2 7 2 2
g2 — 01 2 gj+1 — 0j-1 2 Oj+1 — 0yJ 2
)S1+.2(———‘— Si+| ———— | S7+1.
2 i=2 2 2

(2.18) (

The estimation of sf can be carried out in the following way. Let us set
J .

(2.19) 1e(1) =~ log f(eX (1)) = ¥ (o).

Then, utilizing Theorem 18.2.1 in Ibragimov and Linnik (1971), we have an
estimate of the variance of (o)

(2.20) Var (y(0)) =

7| Milﬂ
(1= ) & et 121

]M2 ltl<M
These evaluation methods will be used for the numerical implementation in
Section 4. Finally, similar arguments to those in this section are straight-
forward for the ¢-function in (2.15) with the potential in (2.16).

2.5 Simulation of the Gibbsian field

For a practical method to get the samples {X(7);1=1,2,..., M} in
(2.6), (2.12) and (2.15) from the distributions in (2.3) and (2.10) or a similar
version for the potential in (2.16), let us briefly review a simulation method
which uses a particular type of random walk known as a Markov chain.
The simulation was originally devised by Metropolis et al. (1953) and
developed by Wood (1968) and others for the study of atomic systems.
Consider a continuous Gibbs random field of a state space Vy (which is
[a,b]" in the present case) whose probability density distribution g(x) is of
the form

Q1) 509 = exp {~ UG},

where U(x) is the potential of the state x and Z is the normalizing constant
called the partition function.

The most commonly used simulation algorithm of the density (2.21) is
described in the following manner. Assume that, at time ¢, the state of the
N axes is X(1) = {(Xa(1);n=1,...,N) e V"}. A trial state X'(¢) = {(Xi(?);
n=1,...,N)} is then chosen in such a way that the coordinate X/(¢) of a
randomly chosen axis r lies in some neighbourhood (in the present case
[X:(2) — 6, X:(1) + 6], so that X/(1) = X,(¢) + (1 — 2¢) for a uniform random
number &), while all other N — | axes have the same position as in state
X (#), where d >0 is the parameter to be discussed below. We may use a
periodic or reflective boundary for the present random walk. The corre-
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sponding potential energy, U(X'(¢)), is then calculated and compared with
U(X (2)) as follows.

1. If UX'(t)) < UX(¢), then without further ado the next state
X (¢ + 1) of the realization is taken as the trial state X'(¢).

2. If UX'(¢)) > U(X(1)), then we obtain a uniform random number
&, and (i) if & <exp {UX(2)) — U(X'(2))}, state X (¢ + 1) is taken to be the
trial state X’(¢); (ii) otherwise, state X (¢ + 1) is taken to be the previous
state X (¢). '

It should be noticed that the normalizing factor Z in (2.21) has not
been used in the simulation. In essence, the Monte Carlo procedure
required here is nothing more than to select the transition probabilities

(2.22) g(x,dy) =Prob {X(t+ 1) e dy|X(t) = x}

of the Markov chain X () which satisfyfp(dx)q(x, dy) = p(dy) for all states
y in V" and for the equilibrium probability p(dx) = g(x)dx in (2.21);
furthermore, it is necessary that the n-step transition probability, ¢"(x, dy),
converges to the given equilibrium probability p(dy). Thus, of course, there
are many possible algorithms for that can be used to carry out these
conditions, other than those stated above (Wood (1968)). Incidentally,
there are some special cases where the transition probability is available for
the direct simulation of the Gibbsian distribution state without any rejec-
tion, unlike the above case of Metropolis’ algorithm. For example, Geman,
S. and Geman, D. (1984) used such a simulation, called the Gibbs sampler,
for the discrete state Markov random field on the lattice. Of course, this is
also useful for the Gaussian Markov random field, which we are going to
describe in an example for the implementation of the current Bayesian
method in Section 4, .

Back to Metropolis’ algorithm, the parameter ¢, the maximum single
step displacement allowed in passing from one state to the next, ought in
principle to be adjusted for the optimum rate of convergence in the
Markov chain. Wood (1968), suggests that a reasonable choice of the
adjusting parameter ¢ has been found to be the value leading to the
rejection of the trial configuration on about half the time-steps. This is a
trade-off between the effective transition of the state and the avoidance of
unnecessary repetition of the same state, especially in the case of a highly
variable potential. In addition to the selection of J, in order to attain the
equilibrium state in fewer time-steps in the Monte Carlo simulation, the
initial configuration should be suitably chosen. Incidentally, Ogata and
Tanemura (1981c¢) devised a method of sequentially generating points using
the potential function, for the construction of such an initial state.
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3. Application of the integration to the Bayesian method

We can now carry out the Monte Carlo method for the high dimen-
sional integrations which appeared in Section 1. Since the first and second
integrals in (1.4) are respectively given by

. . 1
(3.1 longJL(O; Y)e 29940 = log {(b — a)VL(0; ¥ )e 2%} +f0 wi(0)do
and

. ~ o0 1
(3.2) logf . e 29940 = log {(b — a)VL(0; Y )e 29} + fo v ¥(0)do ,
the log normalizing factor of the posterior in (1.4) is then written by
b P ),

3.3)  logA(w;¥)=1log LO;¥) +], y{"(0)do - [ yP(0)do

=A,+ A — A;

using the relations (2.8) and (2.9). Here, the terms A,, 4> and A; refer to
the tables in the next section. The potential functions to be used in
Metropolis’ algorithm are, replacing the variable x in Section 2 by 6,

(3.4) U0) = —log L(c6;Y) + Q(08;7)
and
(3.5) U(0) = 0(a6;7)

for the calculation of 4, and A3 in (3.3), respectively.
Alternatively, if we use the potential functions

(3.6) vi0) = o{ — log L(0;Y) + 0(8; 1)}
and
(3.7) Vs(0) = 0Q(8;7)

corresponding to that in (2.16) with fo(x) = 1, then we have

S (~log LX(1 ¥) + QX (1); 1)}

- 1
(3.8) o) =—r 2
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and
(3.9 7o) == 30X ()

for that in (2.15). Thus, the same log normalizing factor of the posterior is
rewritten by

(3.10)  logA(r:¥)=[ ¢o)do - [ ¢P(o)do= B~ B,.

It is worthwhile here to note that we can enjoy an advantage in
computing the prior integrals 43 and B, when the hyperparameter 7 is a
scaling factor of the parameter 6. That is to say, taking the range [a, b] of
the integration sufficiently large in comparison with 7, we can use the
equality

3.11) [, e2Cag="| &%Odp

N v

for Vi = [a, b]", so that we may calculate only the case of 7 in (3.5).

Suppose that the optimal hyper-parameter 7 in (1.1) is obtained by
maximizing (1.4), or by minimizing (1.5). Then maximization of the
posterior L(6; Y )r(0;t) or its logarithm (1.1) with respect to 6 is expected
to provide an optimal estimate of 6. This is feasible when the posterior has
a Gaussian form or its good approximation (see Akaike (1977), Ishiguro
and Sakamoto (1983), Ogata and Katsura (1988) and Ogata et al. (1989)).
However, this may not be easy to carry out for general models. To obtain
the estimation of the posterior mode, the annealing procedure performed
by Geman, S. and Geman, D. (1984) and the iterated conditional modes
(ICM) by Besag (1986) may be useful.

An alternative estimation of 6 suitable for the present procedure is the
so-called Bayes estimator, or posterior mean, 6 = (8,,...,8y) such that

(3.12) b=1 [ [ 0.g0)d0, n=12,..,N,

where g(0) is the posterior probability

L(0:Y)n(0;
(3.13) g() = KB D) A(t),’;/() 2

and A is given in (1.3). If g(0) is defined in the infinite domain of 6, the
interval [a, b] is taken sufficiently large for the reasonable approximation
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of the integral (see Section 4).

The present sampling of {@(¢); t=1,2,..., M} from g(0) in (3.13) is
carried out by Metropolis’ algorithm with the potential U{" or ¥{" in (3.4)
and (3.6), respectively, unless the suitable Gibbs sampler is available. The
simulated data set {@(r)} includes any information about the posterior
distribution such as the average, variance and sample quantiles of marginal
distribution of 8, for any n, as well as any covariances between 6 and 6,
etc. For example, we have the time average 0= (@1, O,,..., @N) such that

_ 1 M
(3.14) O, = o El O.(1), n=12,.,N,
for the Bayes estimate 8 in (3.12). Similarly, the estimated variances
1 u 2 N2
(3.15) Var (6,) = 75 .1 —0;, n=12,..,N

are useful for the variability of the posterior marginal of each axis.

4. Implementation

As an illustrative example of our method, we consider an array of data
{Y;} on a 20 x 20 lattice which has been artificially generated from the
following:

Yi~ N3, 1.0%, 1<ij<20,
1 for 1<i<10 and 1<j<10,
4.1 2 for 1<i<10 and 11=<;<20
-1 for 11<i<20 and 1<;<10,
0 for 11<i<20 and 11=<;=<20.
Graphs of the contour lines and bird’s-eye view of the data are shown in

Fig. 1(a). The problem is to estimate the step function 8 of the field (7, j) as
shown in Fig. 1(b). For this type of data, we use the log likelihood

4
4.2) log L(6;Y)= — 00

1
logsz—asjg(xj~09-)2.

We hereafter assume for simplicity that s> = 1.0° is known, which actually
can either be another member of 6 to be integrated or one of the
hyperparameters to be adjusted for the maximization of (1.3) or (1.4).
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(a)

(b)

Fig. 1. Graphs of bird’s-eye-view and contour lines of (a) the noisy data and (b) the true
pattern.

Thus, we have A4, = log L(0;Y) =400 log2—(1/2) X ¥j = — 518.51 and
ij

we simply have to evaluate either the two integrals 4, and 43 in (3.3) or B
and B in (3.10) for the present case.

For the roughness penalty in (1.1) we first use the following sum of the
pairwise potential function of the nearest neighbour

1 20 20 |

(4.3) 0B:n =" % X

2

1202 tomye R,,(e'j = Om)”,

where Ry is the nearest neighbourhood of (i,j): that is to say, R;=
{(i,j£ 1),(i+ 1,/)} when (i, /) is in the interior of the lattice domain, and
similarly only the available (k, m) composes the neighbourhood of (i, j) at
the edges. The corresponding prior distribution is nothing but Gaussian in
this case. There is a natural alternative roughness penalty, called the
Laplacian type, such that (6; — (1/4) Z 0n)” instead Z (85 — Oim)® in (4.3)
(see Ogata (1988) for example). Tanabe and Tanaka (1983) use the same
penalty, but they treat the prior distribution in a similar sense to Besag’s
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pseudo-likelihood (Besag (1974)) with a certain boundary condition so that
they have no need to get the normalizing constants in the sense of (1.2). In
our Monte Carlo method, we can assume the free boundary by virtue that
the above priors are defined on a finite domain such as ¥y = [ — 20.0,20.0]"
with N = 20 x 20. Incidentally, with the same domain, Ogata (1989) checked
the accuracy of the current estimation of the integral of a 1000 dimensional
Gaussian distribution whose covariance obeys the inverse of a Toeplitz
matrix.

In Metropolis’ simulation of all experiments throughout this section,
the maximum single step displacement parameter was chosen as J = 20.0,
half the size of a cube, although this may not be optimal, depending on the
scale o and the hyperparameter 7 of potentials. Looking at the time series
of potentials and the y-values, the simulation of the first 400 x 200 steps,
which may not be in equilibrium, was thrown away, and another M =
400 x 200 steps was set for the estimation of the y-values.

First, the potentials (3.4) and (3.5) are considered. For a fixed 7, the
corresponding functions y." (o) and wi?(0) in (3.3) are calculated for the
{ox} equidistant 100 nodal points in [0, 1] and for a further additional
equidistant 20 points in [0,0.05] (thus 116 distinct points altogether). The
reason for the extra partitioning is that we found a sharp trough in the
w-function around the origin ¢ = 0 when 7 is small. The estimated functions
(o), P (ox) are plotted for 7 =0.25, 0.5, 1.0, 2.0 and 4.0 in Figs. 2(a)
and (b), respectively. Integrating these functions by the trapezoidal rule in
(2.17), we have Table 1(a) for integrals A; + A2 and A; in (3.3) with the
standard error from (2.18) with (2.20) for each 7. Then the estimate of the
Bayesian log likelihood in (3.3) is obtained with its standard error.

For the alternative estimation of the same Bayesian log likelihood by
way of (3.10), I made another simulation using the potentials in the form in
(3.6) and (3.7) to obtain ¢{"(¢) and ¢:(s) in (3.8) and (3.9), respectively.
Since it is found that the trough of the ¢-functions are extremely deep near
the origin, I made a geometrical partition with the nodal points of
{0.9"; k=0,1,...,115} for the trapezoidal formula of the integration on the
unit interval [0, 1]. Thus, similarly to the above experiment, the ¢-functions
are obtained. These are shown in Figs. 3(a) and (b). The estimated
integrations of B; and B, and the Bayesian log likelihoods for respective 7’s
are also shown in Table 1(d) for comparison with results via (3.3).

Furthermore, to see whether the partitioning seriously affects the
unbiasedness of the integral, we calculated the integrals 4> and A3 in (3.3)
with the current geometrical partition, as well as B, and B, in (3.10) with
the above defined equidistant partition. The corresponding values are also
listed in Tables 1(b) and (c) for comparison. Thus, these two different
estimation methods with their two types of partition for the integrals
provide the four respective estimates of the log Bayesian likelihood for a
same model. The estimates of 4; + A, and A3 agree reasonably well with
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Table 1. Integral estimates of a Gaussian prior model: For A’ and B’s see the relations in (3.3) and
(3.10), respectively. (a) and (c) are for the equidistant partition, and (b) and (d) for the geometrical

partition. In the rows for log 4, their averages and corresponding standard errors are given.

T 0.25 0.5 1.0 2.0 4.0

—2216.0+2.5 —1859.7+2.1 —1573.84+1.9 —13347+12 —1190.9+1.1
—2232.742.5  —1863.6+2.5 —1570.1+£1.7  —1332.6+1.2 —1190.2+1.2
Ai+A,  —2212.2+2.8  —1855.7+23  —I1572.1¢1.6  —1333.7+1.2 —1188.6+1.2
—2217.0£2.5 —1864.0+22  —1571.8%1.6 —1337.841.3 —1186.3%1.1
—22223+23  —1863.9+19  —1572.2+1.6 —1332.7+1.2 —1188.4+1.2

a)
( —1877.2+1.8  —1605.4+1.5 —1324.1%£1.1  —1044.0+0.8 ~768.9+0.5
—1880.7+2.1  —1591.6+1.6  —1321.2+1.1  —1045.6+0.8 —~769.0+0.5
As —1876.9+1.7 —1600.3+1.6  —1323.5+1.0 —1044.0+0.8 —~769.4+0.5
—1873.742.2  —1597.5+1.4  —13183+1.1  —1046.1+0.7 —767.9£0.6
—1880.7+1.8  —1599.6+1.6  —1318.0+£1.2  —1042.6+0.8 —767.7+0.5
log 4 —342.243.2 —262.5+2.7 —250.9+2.0 —289.8+1.4 —420.3+1.3
—2431.0£3.9  —1866.1+3.4  —1570.2+3.2  —1334.9+2.3 —1187.5+19
—2339.04+3.5 —1868.3+3.1  —1578.8+2.9  —1334.3+2.8 —1189.1%1.9
AitA; —2394.4+4.0 —1886.8+3.6  —1565.2+2.6  —1338.2+2.2 —1188.2+1.7
—2387.0+4.5 —1866.7+3.6  —1570.9+2.9  —1342.742.3 —1194.2+2.0
—2364.0+3.8  —1885.5+3.7  —1578.3%x2.8 —1329.8+1.8  —1192.3+2.0

b
® —1881.6+£3.1  —1602.6+1.9 —1325.1%£1.9  —1043.3%1.5 -770.3+1.0
—1883.3+£2.9  —1599.0+1.9  —1328.7+£2.0 —1044.8+1.5 —765.5+1.0
As —1883.74+3.4  —1597.0+2.3  —1327.7£1.7 —1045.1+1.5 ~767.4%+1.0
—1878.243.1  —1601.1+£2.1  —1322.2+1.8 —1046.4+1.4 —765.5+1.1
—1878.84+2.7 —1602.8+2.4 —1324.4+18 —1046.7+1.6 —766.5+1.0
log A —~502.0£5.0 —274.2+4.1 —247.143.4 —-290.742.7 —423.242.2
—3686.8+13. —2084.2+3.3  —1591.9+1.7 —1340.4+1.2 —1191.9£1.0
—3671.9+11. —2079.4+17 —1597.5+1.6 —1342.0+1.3 —1191.7¢1.1
B —3640.6+14. —2086.0+2.8  —1598.2+2.3  —1343.4+1.2 —1192.2+1.2
—3701.145.7 —2092.2+3.0 —1593.1+1.8 —13359+1.2 —1195.3%1.2
—3689.4+9.3  —2089.5+3.1  —1599.9+1.7 —1337.7+1.2  —1192.2%1.1

C
. —3346.8+7.5 —1800.9+3.0 —1336.9+1.4  —1048.5+0.8 —766.5+0.6
—-3306.8+7.5 —1805.0+2.5 —1340.3%+1.7 —1048.3+0.8 —768.9+0.5
B —3337.0+5.9  —1814.9+25 —1339.6+£1.5 —1048.8+0.9 —769.4+0.6
—3351.846.5 —1810.743.6  —1332.6£1.4 —1047.6%1.1 —766.8+0.5
—3338.6+11. —1799.4+29  —1339.7+1.2  —1049.7+0.8 —768.3+0.5
log A —341.8+14. —280.8+4.1 —~258.3+2.3 —291.3+1.5 —424.7+1.2
—2197.7+2.1  —1865.2+1.4  —1576.1+1.5 —1338.0+1.0  —1192.5+0.9
—2195.5+2.2  —1863.2+1.9  —15733+1.3  —1337.1+1.1  —1194.2+1.2
B —2189.9+2.0 —1863.1+1.6 —1578.6+1.3 —1338.0+1.2 —1188.6%1.1
—2190.942.0 —1860.4+2.0 —1572.8+1.5 —1340.0&1.1  —1192.0£1.1
—2188.9+2.0 —1870.1+1.8 —1573.5¢1.3  —1337.5¢1.2 —1190.3%1.0

d
@ —1876.9+2.1  —1595.3+1.8  —1323.041.5 —1044.2+1.0 —~768.5+0.7
—1883.9+2.0 —1602.1+1.8 —13252+1.4  —1050.9+1.0 —~768.1+0.9
By —~1879.6+2.3  —1604.0+1.5 —1318.6x£1.2 —1048.1%1.1 ~768.840.8
—1880.3+2.3  —1597.5+1.6  —1321.4+£1.3  —1047.1%1.0 ~769.2+0.7
—1877.242.0 —1601.9+1.7 —1321.0£1.4  —1048.8+1.1 —767.0+0.7
log A —-313.0£3.0 —264.2+2.4 —253.0+1.9 —290.3+1.5 —423.2+1.3
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Fig. 3. ¢-functions in (3.8) and (3.9) of the Gaussian smoothing model (4.3) for each t: (a)
¢ for the prior and (b) ¢ for the posterior, respectively. Solid lines and + signs are the
same as those described in Fig,. 2.
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By and B, respectively, and the corresponding integral estimates are almost
within a few times of the standard error to each other, except when the
value of 7 is very small. To investigate the significant difference of the
integral estimates when 7 is small, the relation (3.11) is used: since the
values of A4; and B, agree very well with one another when 7= 4.0, the
average of A3’s and B’s for all experiments is regarded to be the true value.
Then, the theoretical values for other 7’s are calculated using (3.11). These
are —1877.0, —1599.8, —1322.5, —1045.2 and —768.0 for 7 =0.25, 0.5,
1.0, 2.0 and 4.0, respectively. Comparing these with the corresponding
estimates in Tables 1(a)-(d), the equidistant partition for the method by
way of (3.3) and the geometrical partition for (3.10) (that is, (a) and (d) in
Table 1) are recommended for the computation of the current model with a
limited number of nodal points. The maximum log Bayesian likelihood is
attained at 7 = 1.0.

In order to find the parameter 6 = (8;) which (globally) maximizes the
log posterior, or the penalized log-likelihood

(4.4) log L(6;Y) — Q(6;7) ,

but when it is not easy to use the standard nonlinear optimization
technique, a useful method will be Besag’s ICM (iterated conditional mode;
Besag (1986)). This is related to the Gibbs sampler (Geman, S. and Geman,
D. (1984)) in the current model. That is to say, a set of samples can be
simulated without any rejection using the Gaussian conditional transition
probability in such a way that the sample at any coordinate (i, j) is given by
the Gaussian random variable

YT + 20;0° o't
(4.5) N( 420 2P 420D )

where 0; = (1/4) « ? N Oun is the average of the nearest neighbours, and

Y; is the observed data at (i, j). In order to carry out the maximization of
the posterior, take an arbitrary coordinate (i,j) by turns, and then the
value @j; is replaced by the mean (Yy7* + 20;0%) /(7" + 206°) of the normal
conditional distribution in (4.5) on the nearest neighbours. This is continued
until the maximum of the penalized log likelihood in (4.4) is attained. Then
the eventual states {@;} are expected to realize the posterior mode.

Besides the ICM procedure for such a Gaussian model, we mainly
adopt the posterior mean (Bayes estimates) in (3.12), or (3.14), especially
when we consider a non-Gaussian model. The posterior mean is plotted in
Fig. 4 for 7=10.25, 0.5, 1.0, 2.0 and 4.0. It appears that the selected
estimate with 7 = 1.0 is reasonably smooth and suggests some discontinuous
jumps across the mid interior, despite the low signal to noise ratio in the
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data. Incidentally, the estimate of the pattern obtained by the ICM was
quite similar to the posterior mean in the present case. The difference
between this estimate and the true pattern seems to be almost inside the
estimated standard error based on (3.15).

Next, we consider the potential of the penalty function

s 2

2 i=l1j=1 (k,m)eR, T

where Rj is the same as defined in the above. This potential function aims
at the situation where a portion of the probability is allotted to outliers for
the discontinuity besides the smooth changes in the other portion, following
the success in Kitagawa (1987) where the Cauchy distribution was used to
recover a step function from a noisy data in a one-dimensional case. In a
similar manner to that previously treated in a Gaussian prior model, the
integral estimates are compared between the two types of potentials in (3.4)
and (3.6) for the posterior as well as (3.5) and (3.7) for the prior. The
figures related to the aboves are given in Figs. 5(a), (b), 6(a) and (b),
respectively, corresponding to those in Figs. 2(a), (b), 3(a) and (b). Table 2
provides a list of the integral estimates and the Bayesian log likelihood,
together with their standard errors. The corresponding values agree reason-
ably well with one another and they are also almost within a few times of
the standard error to each other, except when the value of 7 is small. The
theoretical values for 4; were calculated by the relation (3.11) in a similar
manner to that in the above Gaussian prior model: they are —1929.9,
—1652.6, —1375.4, —1098.1 and —820.9 for 7 =0.25, 0.5, 1.0, 2.0 and 4.0,
respectively. Comparing these with the estimates in Table 2, the geomet-
rical partition for (3.10) is recommended to be used here. The maximum
log Bayesian likelihood is attained at t = 1.0, but the values themselves are
not improved when compared to those in the Gaussian prior model. Also,
the estimated pattern of the posterior mean shown in Fig. 7 is not what I
expected from our potential for a Cauchy type distribution. It may not be
that 39 discontinuous jump among 400 random variables on a 20 x 20-
lattice can be treated as outliers expressed by the heavy tailed distribution
such as a Cauchy type.

Another type of modeling for the smoothing with some possible
discontinuity for the current example in (4.1) leads to the use of line
processes introduced by Geman, S. and Geman, D. (1984). Consider the
potential for the prior,

1 20 20 |

(47) Q(O, T) = ? 2 E Z ! vij;km(gij - ekm)Z + v;CR(V) 5

i=1j=1 21-2 (k,m) € R;
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(a) w'" for the prior and (b) w' for the posterior, respectively. Solid lines and + signs are
the same as those described in Fig. 2.
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Table 2. Integral estimates of a Cauchy type prior model: See Table I for another description.

T 0.25 0.5 1.0 2.0 4.0
Ai+A; —2244.0+2.1 —1904.3£1.9  —1626.6+1.6 —13958+1.2  —1230.3%1.1
(a) As —1925.2+1.6 —1644.5+1.2 —13743+£1.0 —1098.0+0.7 —820.74£0.5
log 4 —318.8+2.6 -259.84+2.2 —252.3+1.9 -297.8%+1.4 —409.6%1.3
A1+ A2 —2361.4+3.5 —1921.6+42  —1625.0+£2.6 —1393.44£2.3 —1235.7+2.1
(b) A; —1941.1+£2.6 —1656.3£1.9 —1372.4%x1.7 —1099.0+1.2 —820.6+0.8
log 4 —420.3+4.4 —265.314.6 —252.6+3.1 —294.416.7 —415.1%£2.2
B —22224%19 -1904.5+1.7 —1626.0+1.2 —1394.4+1.2 —1234.0%1.1
(© B, —1942.7%+2.5 —1677.0£2.8  —1378.5t1.3 -1100.0£1.3 —820.410.8
log 4 —279.7+3.1 —227.5+3.3 —247.5+1.8 —2944+1.8 —-413.6%£1.4
B —2214.4+1.4  —1902.7£1.1 —1628.6%1.1 —1395.2+1.0 —1234.7+£0.9
(d) B, —1934.7+1.4 —-1650.7+£1.2  —1377.4+0.9 —1095.4+0.7 —820.4+0.4
log 4 —279.7+2.0 —252.0+1.6 -251.2+1.4 —299.8+1.2 —414.3%1.0

-8 24
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Graphs of bird’s-eye-view and contour lines of the posterior mean estimates of the
Cauchy type smoothing model and those of their standard errors at every lattice points for
7= 1.0. where the Bayesian likelihood is the maximum.
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which is extended from the one in (4.3). Here, v = (vj.um € {0, 1}) is defined
on a set of cliques C, vjxm=0 and 1 stands for the discontinuity or
continuity, respectively, at the clique connecting (i,j) and its nearest
neighbour (k, m), and R(v) is the potential associated with the cliques. The
construction of a good potential R(v) is a considerable task in its own right
and also outside the scope of the present paper. Rather, we simply assume
here that the configuration of the discontinuous cliques in (4.7) is known
and fixed, so that we can ignore the second term of the potential in (4.7) as
a constant. Then we would like to see that the maximized log Bayesian
likelihood is significantly improved here, compared to any of the previous
analyzed models. A similar evaluation was considered by Akaike and
Ishiguro (1983) where vim = 0.1 was set as the discontinuity on the
requirement of the feasibility of the analytical calculation of ABIC for a
certain time series.

In a similar manner to that shown for the previous models, the
integral estimates are compared among the combination of two types of
potentials and the two distinct configurations of the nodes of the partition.
For t=0.125, 0.25, 0.5, 1.0 and 2.0, the estimated figures of ¢- and -
functions of the aboves are given in Figs. 8(a), (b), 9(a) and (b), respective-
ly, corresponding to those in Figs. 2(a), (b), 3(a) and (b). Table 3 provides
the list of integral estimates and the Bayesian log likelihood together with
their standard errors. The theoretical values for 43 were calculated by the
relation (3.11): they are —2133.7, —1856.5, —1579.2, —1301.9 and
—1024.7 for t=0.125, 0.25, 0.5, 1.0 and 2.0, respectively. The significant
discrepancies in the corresponding values for smaller t’s were seen due both
to the unsatisfactory number of steps for the simulation and to the design
of the partition for the trapezoidal formula: see the extremely large size of
the troughs in y- and ¢-functions in Figs. 8 and 9. Nevertheless, the
maximum of log Bayesian likelihood is attained at v = 0.5, the value of
which is significantly improved compared to that in the previously analyzed
models. The patterns of the posterior mean and its marginal standard
errors are shown in Fig. 10.

5. Concluding remark and discussion

The Monte Carlo method for the objective selection of the optimal
prior distribution is provided, where the integration of very high dimen-
sional functions is required to get the normalizing constants of the posterior
and even of the prior distribution for the implementation. The logarithm of
the high dimensional integral is reduced to a one-dimensional integration
of ¥ and ¢-functions with respect to a scalar parameter over the range of
the unit interval.

The theoretical error estimate for the integration is given, and two
distinct and rather independent methods for integral estimation are sug-
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" for the posterior and (b) ¢ for the prior, respectively. Solid lines and + signs are the
same as those described in Fig. 2.
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Table 3. Integral estimates of a Gaussian prior model with discontinuity: See Table | for another
description.

T 0.125 0.25 0.5 1.0 2.0
A+ A, —3819.5+£4.9 —2172.94¢29  —1806.7£2.0  —1538.2+1.8 —13155%1.3
(a) As —2343.8%+2.5 —1887.1£2.0  —1586.4%1.6 —1303.5%1.1 —1024.0£0.8
log 4 —1457.7£5.5 —285.8+3.5 —220.3£2.6 —234.7%2.1 —291.5%1.5
Ait+A; —3833.7+8.8 —2526.4+39  —1834.7+£3.7 —1546.7£3.0 —1314.5+2.2
(b) Az —2309.84+3.2  —1906.7+£2.3  —1604.3+2.4  —1311.0+1.6 —1023.2+1.2
log 4 —1523.9+9.4 —619.7+4.5 —230.414.4 —235.7+£3.4 —291.3£2.5
B —4016.9+6.1 —2077.9+£2.0 —1794.3£1.9 —1535.9+1.4  —1315.1%1.1
(c) B, —2168.6+2.3 —1998.7£2.0 —1584.7t1.9 —1303.0£1.1 —1026.5+1.0
log 4 —1848.3%6.5 —389.4+3.0 —209.6+2.7 —232.9+1.8 —288.6x1.5
B —10837.7+54. —3779.3+£3.5  —2005.5+£3.7 —1555.4+1.5 —1316.5+1.0
(d) B, -9139.7+15. —3377.1£8.3  —1777.1£3.4  —1325.2+1.4 —1025.0£1.0
log 4 —1698.0+56. —402.2+9.0 —228.4%5.0 —230.2+2.1 —291.5¢1.4

Fig. 10. Graphs of bird’s-eye-view and contour lines of the posterior mean estimates of the
model (4.7) with a known configuration of discontinuity and those of their standard errors at
every lattice points for T = 0.5, where the Bayesian likelihood is the maximum.
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gested to be used for the comparison of their outputs. To check the
reliability of the proposed procedure, illustrative artificial data of the
lattice system were analyzed by the suggested two integration methods for
a few models under two conditions of the integration. The improvement of
the integration’s accuracy is substantial in comparison with the conven-
tional crude Monte Carlo integration. Having decided the prior, the Bayes
estimate or the posterior mean is mainly used instead of the posterior
mode. All of these methods are based on the simulation of Gibbs distribu-
tions such as Metropolis’ Monte Carlo algorithm. An advantage of the
present method is that we have essentially no practical restrictions in
modeling the prior and the likelihood.

It was found that extremely deep troughs in y- and ¢-functions near
o = 0 cause the significant bias of the integrals under a limited number of
partitions. Needless to say, the size of the integrand reflects the size of the
integral, and consequently the size of the estimated error. For an objective
Bayesian procedure, we are interested in the accuracy of the ABIC value up
to an order less than 1.0. Therefore, on the one hand, for the optimal
design of the nodal points in the numerical integration, I hope that the
automatic adaptive routine (see Mori (1986), Chap. 12, for instance) will be
suitable for our integration, since it is crucial that the configuration of
nodal points should be properly designed, taking the variation of the
functions into consideration. On the other hand, for the reduction of the
size of w- and ¢-functions, I would recommend to find a proper function
fo(x), in Subsection 2.2, although I have not worked this out in the present
paper. For example, for the extended model (4.7), the model (4.3) would be
a good choice of fo(x), where the estimated integral is used in (2.13).
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