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Abstract. In this paper, the author studies a Broyden-like method for
solving nonlinear equations with nondifferentiable terms, which uses as
updating matrices, approximations for Jacobian matrices of differentiable
terms. Local and semilocal convergence theorems are proved. The results
generalize those of Broyden, Dennis and Mor€.
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1. Introduction

Broyden (1965) described a method

Xk+1 = Xk — E}E lf(xk) 5
(1.1 By = Bi + (tx — Busi)si/ sksk

Sk = Xke1 — Xk, te=f(xu1) = f(X1)
for solving the equation
(1.2) f(x)=0, xeDCR",

where fis a Fréchet differentiable operator defined in a domain D of R".
Furthermore, Broyden et al. (1973) and Dennis and Moré (1977)

derived local and superlinear convergence theorems of (1.1). Dennis (1971)

gave a semilocal convergence theorem under Kantorovich-type assumptions.
In this paper, we shall consider the equation
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388 X. CHEN
(1.3) F(x)=f(x)+g(x)=0, xeDCR",

with nondifferentiable operator g: D C R" — R”, and a Broyden-like method
for solving (1.3):

Xee1 = Xk — Be'(f(xn) + g(x0))
(1.4) Bis1 = Bi + (tk — Busi)sk/ sksk ,

Sk = Xk+1 — Xk, 142 :f(ka) _f(xk) .

Note that the matrices By do not satisfy the quasi-Newton equations,
Biv1(xk+1 — x1) = Fxxe1) — Flxx), k=0,1,2,....

We shall analyze the convergence of the iteration (1.4) by considering
it as a Newton-like iteration

(1.5) xeer = — ACk) ' (f(xe) + g(x), k=0,1,...

applied to (1.3), where A(x) denotes a linear operator which approximates
the Fréchet derivative f’(x) of fat x € D. Convergence analysis for the case
where A(x) = f’(x) has been given by Rheinboldt (1968), Yamamoto (1987)
and Zabrejko and Nguen (1987). Furthermore, in Chen and Yamamoto
(1989), Yamamoto and Chen (1990), Yamamoto and the author have
studied the local and semilocal convergence of (1.5) for the equation
f(x) + g(x) =0 in a Banach space, under some conditions. Although the
results there have had a rather theoretical character, our analysis in this
paper will bear a practical character.

In Section 2, we shall first give a local convergence theorem and,
under an additional assumption, derive a superlinear convergence property.
Next, we shall use majorant techniques to obtain a semilocal convergence theorem
under Kantorovich-type assumptions. Finally, we shall show that the
iteration (1.4) is globally convergent if the operator f(x) is linear. The
results generalize those of Broyden er al. (1973). In Section 3, we shall give
some numerical examples to illustrate our results.

2. Convergence analysis

Throughout this paper, we shall use the /, vector and matrix norms,
and denote || ||2 by || ||. Let S(xo,r) be the open ball with center x, and
radius r in R" and let S(xo, r) denote its closure.

LEMMA 2.1. Let s € R" with s's = 1, then

1I—ss'|=1.
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PROOF. See Dennis and Moré (1977).

THEOREM 2.1. Let x* € D be a solution of (1.3), and f'(x*) be
nonsingular. Suppose that for any x € D the following hold

I/ =PI = Klix—x*, 0=K,
/(%) (g(x) — g™l <ellx —x*Il,  0=<e<1/3.

Then for any matrix By such that

£ /() (B = f/(x™)Il = b=4(1 - 3e)/ 27,
any
Sx*,nC D, r<21-3e)/27K

is an attraction ball of iteration (1.4) and

1
Ixk+1 — x*]| =5 llxx — x*I|, k=0,1,....

PROOF. From the Banach Perturbation Lemma, B, ' exists and
1B ("I <1/(1—-b)<27/23<1+q,
where g = 1/2. From xo € S(x*,r), we have
llx1 — x*|| = [|x0 — Bo ' (F(x0) — F(x*)) — x*||
< ||Bo f (") ”f ’(X*)‘l((Bo —f1(x*)) (x0 — x¥)
LG+ txo = x%) = £ ()dixo — x¥)
- g~ 20|

<(1+q)(b+e+ Kr/2)|xo— x*||
< 3(5 + 12¢)/ 54| x0 — x*|| < gllxo— x*|| .

Hence, x; € S(x*,r). From Lemma 2.1 and the relation
Bi — f'(x*) = By — f'(x*) + (to — Boso)so/ 050
= (Bo — f"(x™)( — 5080/ $050)

+ (o — f(x*)s0)s0/ 5650
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we have
ILf7x*) (B = £ ()
< 1/ ' (Bo = £/ + K|l x* = (x0 + #(x1 — xo))|
<Sb+ K| x*—xl <b+ Kr<2b,

where 7 € [0, 1].
We shall now prove that for any £ = 0,

QD N CH) B M <26 and  |xer — x*|| = gllxe — x¥||

The proof is done by induction on k. Suppose that (2.1) holds for k <j — 1.
By the same technique as above, we obtain

1f ) B = £ DI < N C*) (B =D+ Klx® = x|
<b+ Ki;;llx* - xil|
<b+Kr/(l1-q)=b+2Kr<2b
and
lIxe0 = x| = |3 — B '(Fg) = F(x*)) — x*||
< 1B /M) Hf ’(X*)_l((Bj =[N — x¥)
[+ 1 - )
£ = ) st) - )|
<(1+q) b+ Kr/2+ e)llx — x*|| < qllx — x*|| .
Hence, (2.1) holds. (I
Remark 1. 1f g(x) =0 and e =0, then Theorem 2.1 implies a local
convergence theorem for Broyden’s method obtained by Broyden et al.
(1973).

LEMMA 2.2. If Eis an n X n matrix and s € R", then

Jefr= ) e~ (5
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where || ||F denotes the Frobenius norm.
PROOF. See Broyden (1970).

COROLLARY 2.1. Suppose that the hypotheses of Theorem 2.1 hold
and

2.2) o IO (g0 — gD _
ke k1 — Xk}

Then {xi} converges superlinearly at x*.

PROOF. Let Ei=f'(x*)""(Bi —f'(x*)). From Lemma 2.2 and the
inequality

V- <a-Qay'f, (a=p=0, a#0),
we have

| Ecerllr < 1| Ee(I = susé sesi)ll 7+ K1 x* — xll

< | Eellr — QUE R (Il Busll 11 sell)* + Kllx* = x| -

From || Ex|| <2b, we have that there exists a constant ¢ such that
¢ < (2|| Ex||»)"". Hence, we obtain

(|| Exsill [ 1scl)* < | Eell 7 — 1| EenllF + Kl X* — x|
This implies

¢ Z (Nl Esill/llsill)* = 1 Boll e + K Zg11x* = xoll < || Eoll + 2Kr

and

. Erskll
Iim———=
k= |||

0.

Furthermore, we have

f L (fe) + I

0
ko [P+ 1 — Kkl ’

since
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Exsi = f'(x*)"(Be — [1(x*)) (xee1 — xi)
=) (o) — g(x) — f1(x*) (et — X))
= £ (et = (00 = (%) (1 — x0)
— 1) (S + g(x¥))
—f1*) (g(xn) — g(x¥))

From Theorem 2.1, we have that for any ¢ € (0, 1), there is a ko= 0, such
that if k = ko, then

£ fee) + gD
|IXk+1 - X*H
< llxeer = XL (fen) + g(x*)
—f(x™) = g(x™) — f(x*) (1 — X))

1

K
5_2—||Xk+1 - x*| <e.

Hence,

LSO S xer) + ()l

0 =lim
k—oo [| XK1 — xk||
- %
> lim (1 — &)l xk+1 — X¥||

ke e — X+ [l — x|

= lim (1 = &)/ (px + 1),
where pi = [|x+1 — x*||/ || xx — x*||. Therefore lim p,=0.0

Remark 2. 1 || f"(x*) '(g(x) — g(*DI| < e(D)llx — x*|I, r=[lx — x*||
and lig)l e(r) = 0, then the assumption (2.2) is satisfied.

In fact, we have
llxke1 = xull = 11 B '(f(x) + gox) — f(x*) — g(x*)|

>

B[ (Be+ /(6% + 1 — 1)

= f'(¥) + £1(x*) = Bodt(xi — x*¥)

= 1B S LS x*) (g — g*)|
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* £ %12 %
= [l ="l = (1 + @) =l — X7l = 2b(1 + g)llxx — X7

— (1 + g@)e(ri)llxe — x*||
=4 (say),

where r« = ||xx — x*||. Hence, for sufficiently large k,

/(") (g(xi) — g

I|Xk+1 _Xk”

_ elln—*]
Ay

_ e(ry)

X :
L= +q)2b—(1+q) 5 llx— X*I = (1 + g)e(re)

It follows from this that

o LG () — gL _

koo [| Xk+1 — Xkl

0.

A simple example satisfying the conditions of Corollary 2.1 will be
given in Section 3.

We shall now give a Kantorovich-type semilocal convergence theorem
for the Broyden-like method (1.4), on the basis of the techniques used in
Dennis (1971), Chen and Yamamoto (1989) and Yamamoto and Chen
(1990).

We assume that a matrix By is nonsingular and for any x,y € D the
following hold

1Bo (/") =" O = Kllx=yll, K=0,

and

\Y
o

| Bo '(g(x) — gyl < ellx = pll, e=

We put

b=11B5'f (xo) — Il a=1Bs"(f(x0) + gxo)l ,
x(N=a—(1-3b-er+2K’, wr)=1-2b—5Kr/2.
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Let
1-3b—e>0 and a>0.

If y(R) < 0 for some positive number R, then 8Ka < (1 — 3b — ¢), and
x(r) has a zero

F=(1-3b-e)(1-\1-8Ka/(l—3b—e))/8K
in (0, R], since x(r) is strictly convex. We define a scalar sequence {rx} by
(2.3) =0, ra=rn+wr) yrn), k=0.

LEMMA 2.3. Let Xo,...,Xk+1, Bo,..., Bx+1 be generated by iteration
(1.4). If {x}2d C D are distinct, then

_l ’ 3K k
|Bo (Bi+1 = f'(xxs )l < b+ — Z|xie1 — xi| .
2 i=0

PROOF. See Dennis (1971).

THEOREM 2.2.  Suppose that y(R) <0 and S(x0, R) C D. Then the
equation (1.3) has a solution x* in the ball S(xo, t¥), which is unique in

s S, R)  if y(R)<O0 or x(R)=0 and t*=R
\S(x,R)  if y(R)=0 and *<R.

The iteration (1.4) is well defined for all k=0, xi € S(xo,t*) and {xi}
satisfies the estimates

(2.4) [ xk+1 — Xkl < res1 —ra
and
(2.5) Ix*—xll<*—r, k=0,

where {ri} is defined by (2.3).

PROOF. Since y(0)=a >0, y(t*) =0 and x(r) is strictly convex, the
scalar sequence {r«} is monotonically increasing and converges to #*.

We shall now prove that the sequence {xi} defined by (1.4) satisfies
(2.4). The proof is done by induction on &: for k = 0, we have
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[|x1—xoll =a=r—ro.
Suppose that (2.4) holds for £k <j— 1. From Lemma 2.3, we have
|1 B5'(B; — Bo)l
< ||Bo (B — f"(x) + f"(x) — f"(x0) + f"(x0) = Bo)l
,1 3K ]7]
=2{[Bo (Bo — f"(x))|| + 3 izzollxiﬂ = xill + Kllx — xol|

<2b+ 5Kr;/2
<2b + 5Ki*/2
—2b+5(1 —3b—e) (1 — /1 —8Ka/(1 - 3b — ¢))/8

<l-b—-e<l,

since 5(1 — V1- 8Ka/(1 — 3b —¢)*)/8 < 1. Hence B; ' exists and
1B ' Boll < (1—2b—5Kr;/2) "= w; "',
where w; = w(r;). Furthermore,
X1 = ]
= 1B Fx)l
< w; 'l Bo '(F(x) = B-1(% — x-1)
— Flg-1) = (f "(x-1) = " (x5-1)) (5 = x- )}l
o K
= le{ > X = x-1]*

3K i2
+ (b 0 ,;) [|xie1 = xill Yl 25 — xi-1]| + ellx; — x;-11

< w}‘{ x(r}) = x(ri-1)

SK
+ (1 =2b) (r; — r-1) — Krjrj-1 + T,}?_l

+ == (- = 1 = 1)

2
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< w'{ x(r) — x(ri-1) + (1 = 2b) (r; — rj-1)

SK , 3K
= Kty + 5 e
Therefore, we have
1 —xll <rmei—r and  |[x010 — Xoll < e .

This implies that the iteration (1.4) starting from xo is well defined for all
k =0, and {xx} converges to a solution x* € S(xo, t*).
To prove the uniqueness of the solution in §, let y* be a solution in S.
Then it is easy to see that
1y* = xoll —a
< [ly* = xll

= {1y = xo + Bo'(F(x0) = F(x™) + (f"(x0) = f (x0)) ()* = x0))

= || &[0 = [ o+ 100 =

=7 Cod] 0% = 30 = (60") - gt

K

== ly* - xoll” + b1y* = xol| + elly* — xol|
5K

= lly* = xoll® + 3bI1y* — xoll + elly* — x| ,

from which we obtain y(||y* — xo||) = 0. This, together with y* € S, implies
[ly* — xo|| < *. Next we shall show that the inequality

(2.6) I —xll<t*—rm, k=0,

holds. The proof is again done by induction on k: For k=0, (2.6) is
obvious. Suppose that (2.6) holds for all £k <j. Then

y* = xyall = B,-“((Bj — N - x)

[+ 107 = %) = S - x)
~ (g0 - g(xj)))H
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_ 3Kid
s w; l{(b t EOHXM - x,-ll)lly* = x|

K
Y 1* = xl1* + elly* — lel]
< w () = X} + 1 — =15 =

This implies y* = x*, the uniqueness of the solution, so that x* € S(xo, *)
and (2.5) follows from (2.4). [

Remark 3. By using the techniques in Chen and Yamamoto (1989)
and Yamamoto and Chen (1990), we can show that if instead of xo and Bo
we begin (1.4) with yo and B,, such that

a +(1—3b—e)2
(1-b) 8K -b)

lyo — xol| = 5

and
| Bo'(By, — Bo)ll < 5Kllyo — xoll /2 + 2b ,
then the generated sequence { i} converges to x*.

Remark 4. 1f we take g(x) =0, e = 0, then Theorem 2.2 reduces to an
affine invariant version of Dennis’ theorem (Dennis (1971), Theorem 3).
Furthermore, Remark 3 implies that

§ = {xlllx ~ xoll < (a+ (1 - 36)"/4K)/2(1 = b)}

is a convergence ball of Broyden’s (1965, 1970) method, that is, starting
from any point of S, Broyden’s method converges to a solution of the
equation (1.2).

COROLLARY 2.2. Suppose that D = R" and f(x) = Ax, where A is an
n X n nonsingular matrix. Then, starting from any xo € R", the iteration
(1.4) converges to the unique solution x* of the equation (1.3).

This follows from Theorem 2.2 and Remark 3 by taking y(r) =a
~(1-3b—-e)y, R=a/(l —3b—e).

We can also give a simple, straightforward proof as follows: Since
1y = Asi; and
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Bis1— A = Bi — A+ (tx — Busi)sk/ sks
= (Be — A) (I — sksi)/ ks + (tx — Asi)sk/ sksk ,

we have

1By (B = Al < 11 Bo (B = Al < b
and

| Bo '(Bi+1 — Bo)|| < || Bo ' (Bis1 — A)|| + || B '(Bo— A)|| <2b< 1.
Hence Bi': exists and

| Bii1Boll < 1/(1 — 2b).

Therefore,

| Xk+2 = X1 ]
= || Bes1( — Axrr — g(xk+1) + Be(xee1 — xi) + Axi + glxe)) ||
< | Bis1Boll (Il 4 — Bell llxes1 — xill + ellglxas1) — g(x0)11)
s +e)/(1 —2b)l|xk+1 — x| -

Since 3b + e < 1, it follows that (b + €)/(1 — 2b) < 1. Hence, Corollary 2.2
holds.
3. Numerical examples

In this section we shall give numerical examples illustrating our
results. We first consider an example satisfying the conditions of Theorem
2.1 and Corollary 2.1.

Example 1. Consider the single equation
Fx)=¢"" +02x|x -1/ - 1.05=0.
This problem has a solution x* = 0.5. Let f(x) = ¢ > and g(x) = 0.2x|x — 1|

— 1.05. Then we have K = 1.65 and e(r) = 0.2r in [0.1], since f'(x*)"' =1
and

g(x) — g(x*)| = 0.2](x — x* — (x* = x*))|
=0.2|(1 — (x + x*) (x — x*)| =0.2|x — x*| |x — x*| .
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If we choose Bo such that || Bo— 1]| < b = 4(1 — 3e(r))/27, then S(x*,#) is
an attraction ball of iteration (1.4), where #=2(1 — 3 % 0.2 * 0.1)/27 * &'
=(0.063. We solve the equation by iteration (1.4), and choose Bo = f"(x0)
and the stopping criterion || F(xx)|| < 10 7. The results of numerical computation
are shown in Table 1, where xo is the initial value, k is the iteration number
and % is the approximate value for x* = 0.5. The superlinear convergence
of (1.4) for xo= 1.0 is shown in Table 2, although it is almost equal to

linear convergence.

Table 1.
Xo 2.0 1.0 0.6 0.4 0.0
k 62 16 6 200 20
£ 0.5000001 0.5000001 0.5000000 0.5000031* 0.5000001
*Stopping criteria were not satisfied.
Table 2.

k Xk F(xk) Pk

0 1.0000000 0.5987213 0.2737143

I 0.6368572  0.1429184 0.3660067

2 0.5501727 0.5094931E — 1 0.3840817

3 0.5192704 0.1938308E — I  0.3899238

4 0.5075140 0.7531057E — 2 0.3920927

5 0.5029462 0.2948839E — 2  0.3929231

6  0.5011576 0.1158071E —2 0.3932353

7 0.5004552 0.4553262E —3  0.3933263

8  0.5001791 0.1791028E — 3  0.3932888

9 0.5000704 0.7046536E —4  0.3930629

10 0.5000277 0.2772386E —4  0.3924813

11 0.5000108 0.1090817E — 4 0.3909701

12 0.5000042 0.4295704E — 5 0.3865522

13 0.5000017 0.1682770E —5 0.3783302

14 0.5000006 0.6658424E — 6 0.3498170

15 0.5000002 0.2619884E — 6 0.2686837

16 0.5000001 0.9935910E — 7

Example 2. Consider the Dirichlet problem

dx

ad

—i(p(x,y)%)——a*y—

ulx,y) = u(x,y), (x,)€dQ,

d
(q(x,y) —a%) §20u] =f(x)),

(x,y) eQCR’,
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where

ple,y)=x(1—y), q(xy)=p1-x),

S, =Q-x=p»)' =200 -0 1 -»-05-(1-x(-y),
o(t,0)=v(0,)=05-1¢ v, )=0v(,0)= —0.5 0<t<I,
Q=(0,1)x(0,1).

This problem has a solution u(x,y) = (x — 1) (y — 1) — 0.5.

We discretize the elliptic partial differential equation by the standard
five-point difference formula, and obtain a system of nonlinear algebraic
equations

Fu)=Au+g(u)=0, wueR".

We put f(u) = Au and By = A. Then we have K =0, b= 0 and e = 24°||4”"|
=2h*/8 sin® (n/2h <1, for h=<0.5 (see Gregory and Karney (1969)), where
h is the square mesh size of the side. Hence the conditions of Theorem 2.2
are satisfied. We solve the system by the Broyden-like method (1.4).
Iterations were stopped after the condition || F(x:)|| < 10™° was satisfied.
The results of computation starting from 4" = 30(-1),i=1,2,....n are
shown in Table 3.

Table 3.
n 9 49 81 225
h 0.25 0.125 0.1 0.0625
4 —0.2500029 —0.2500142 —0.2500189 - 0.2500582
t 0.13 2.78 7.50 57.30
k 18 17 17 16

n: interior mesh number (h = 1/(\/2 +1)).
h: square mesh size of side.

4: approximate values of u.

t: total computing time (sec.).

k: iteration number.

Exact solution: 1(0.5,0.5) = — 0.25.

Computations were carried out on the Apollo DOMAIN 3000 at
Department of Mathematics, Ehime University, Japan.
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