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Abstract. In a randomized block design MANOVA model, for intra-
block as well as aligned rank tests for homogeneity of treatment effects
against some restricted alternatives, asymptotic optimality is studied by
reference to the corresponding restricted likelihood ratio tests. Tests
based on aligned ranks are better than intra-block rank tests when the
error distributions are homogeneous across the blocks.
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1. Introduction

Consider a (multi-response) randomized block design with n blocks of
p plots each, and let X;; = (X,}-”,..., Xi?Y be the response (vector) of the j-th
treatment in the i-th block, j=1,...,p, and let vec X; = (X4,...,X}), for
i=1,...,n. Assume that vec X; has a pg-variate continuous distribution

function (d.f.) F'", where
(1.1) F''y)=F(y—vecp), yeE" for i=1,..n,

vec B=(Bi,....B), Bi=(B",....5?Y, j=1,...,p, and for each i, the d.f. F; is
assumed to be symmetric in its p compartments (each being a g-vector).
Thus, we consider independent blocks and exchangeable intra-block error
vectors. In (1.1), the B stands for the treatment effects (vectors) while the
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block effects may not be additive (may even be stochastic). The null
hypothesis of no treatment effect is framed as

(1.2) Ho:vec p=0,

i.e., pi = =B, =0. For this usual MANOVA model, a global alternative
relates to the non-homogeneity of the f, i.e., vec B# 0. In the current
study, we shall be mainly interested in some restricted alternatives. For the
univariate model (i.e., g = 1), the most common form of such a restricted
alternative is the so-called ordered alternative

(13) H<Zﬁ1§ﬂ2§'“5ﬁp,

with at least one strict inequality. A general account of rank tests for
ordered alternatives in randomized blocks is given in Chapter 7 of Puri and
Sen (1971). Later on, De (1976) extended the methodology of Sen (1968)
by effectively incorporating the union-intersection (UI-) principle of Roy
(1953) to form an aligned rank test for Ho against H~ when the Xj have
i.i.d. error components. Boyd and Sen (1984) used the concept of locally
most powerful rank (LMPR) tests along with the Ul-principle, although
the issue of asymptotic optimality of their proposed tests has not been
addressed properly. For the ordered alternative problem, Araki and
Shirahata (1981) and Shiraishi (1984) constructed some rank tests (for
g = 1) based on the usual likelihood principle, and these may also be
characterized as UI-LMPR tests. The main objectives of the current study
are the following:
(i) For a general g =1 and a general form of restricted alternative

(1.4) H*: Bel'={Be EP": Avecp=0,A4 € C(a,pq)},

where C(a,pq) is the set of a X pg matrices of rank a: 1 <a<pgq, we
characterize that the UI-LMPR tests have the same asymptotic optimality
properties as the restricted likelihood ratio tests (when the scores are
chosen appropriately). Note that (1.3) is a special case of (1.4).

(i) We establish the asymptotic power-superiority of the ranking
after alignment procedure to the intra-block ranking procedure, for a
general class of restricted alternatives when the errors are homogeneous
across the blocks.

UI-LMPR tests based on intra-block and aligned rankings are con-
sidered in Sections 2 and 3, and a relative picture of their asymptotic power
properties is presented in the concluding section.
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2. UI-LMPR tests based on intra-block rankings

We consider here an extension of rank MANOVA tests proposed by
Gerig (1969). Let Ry be the rank of X{© among X{°,..., X\, forj=1,..., p;
k=1,.,9and n=1,...,n, and let

R{Y o R
2.n R = : : : , for i=1,...n.
Ri(III) ng])

Let R* be the reduced rank matrix obtained from R; by permuting its
columns in such a way that the top row is in the natural order, for
i=1,...,n, and let S(R**) = S(RF,...,R}) be the set of [(p!)"] matrices
which are (column-) permutationally equivalent to R** = (R¥,...,R5).
Since the Xi,..., X, are interchangeable r.v.’s (under Ho), the conditional
(permutational) distribution of (R\,...,R,) over S(R**) is (discrete) uni-
form over the (p!)” possible realizations, and the corresponding probability
measure is denoted by %", For each N = np, let us consider the linear
rank statistics

2.2) Ti=N"" 2 a(Ry).

forj=1,...,p;1=1,...,q, where
(2.3) a(r)=S{f53(U)}, r=1,.,p, I=1,.,q,

Ua),..., Uy are the ordered r.v.’s of a sample of size p from the d.f. Fiy with
the corresponding p.d.f. fi5, and f;5(-) is the usual log-derivative of fj;
and is defined as in (4.6) of Tsai and Sen (1987). Then, we may easily verify
that

(2.4) E{Tna| "}y =0, j=1,..p; I=1,...q;
(2.5) Cov { TN, Trjr | PV} = (0 —p Howr ,

i =1...,p; LI"'=1,...,q, where J; is the usual Kronecker delta and
Va1 = ((var)) is defined by

2.6) our=| & £ a(Rar R |[in(p - 1)

LI’=1,...,q. Thus, writing Tn1 = vec Tv’, we have E{Tn:|%\"} = 0 and
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(2.7) E{TmTin| Py =V Q I, —p 'bl)=Zm, say,
where & denotes the usual Kronecker product.

We consider now a sequence {Ky:f= N '“y,y fixed} of alternative
hypotheses, so that under Ky we have foreach i (=1,...,n),

1/2

(2.8) Fn(x) = Fpulx— N0, j=1,..,p; I=1,..,q;
(2.9)  Fpw(x y) = Fuu(x— N0y = N0, vl

Moreover, we assume that the following limits exist:

(2.10) Fin() = limn”* £ Fiu)
@.11) Fian(x, ) = lim ' £ Fuar(x, ).
We let

2.12) =L | U= a0

[ = fiu) iy E e (x, )

where f{.1/(x) denotes the derivative of p.d.f. fi1/(x). Then, under Ho as well
as {Kn}, following Lemma 7.3.10 of Puri and Sen (1971), we have

(2.13)  Vam— Vi=(()), inprobability, as N— oo,
(2.14) Tmi—; Dpe(-; T, %), A=vecy, (under{Kn}),

where @,,(-; XiA, 1) denotes the normal distribution with mean vector X;4
and covariance matrix X;, with

1
(2.15) 21:V1®(1p—;1,,1;,).

Based on T, we then can derive a suitable test statistic for testing Ho
against H* defined in (1.4). First, we note that the set I'* = {§; =0} is
positively homogeneous in the sense that for every yeI'™ and 6 >0,
dyeI'*. So for a given y > 0, by mimicking the proof of Theorem 4.2 of
Tsai and Sen (1987), the LMPR test for testing Ho against H,: = dvy, vy
being fixed, is based on NB(En1)En Tan, where B(En) denotes the block
diagonal matrix of Xy;. Namely, we have
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(2.16) B(Ex) = Diag Van ® (1,, - 1,1 ) ,

where Diag Vi is the diagonal matrix of Vi, and Zxyl stands for the
generalized inverse matrix of Xni. Furthermore, for every y € I, we may
write

(2.17) Tn(y) = AB(En)EniTa | {VB(En)ENIB(En) A} .

By noting that H* = UrHy and making the use of the Ul-principle, the
Y€

overall test statistic for Ho versus H* is granted as

(2.18) Owmi =sup {Tw(y),yel'}.

For the computation of Qn: in (2.18), we need to maximize A'B(Xn1)
. Zni T subject to A4 =0 and AB(Zx)EviB(Zn)A = 1. If we let h(A) =
— MB(En)EniTn, hi(A) = — AL and ha(1) = VB(En)EniB(Ew)A — 1, then
for this non-linear programming problem, the Kuhn-Tucker-Lagrange
(K.T.L.) point formula theorem can be used to arrive at the following
result: Let

(2.19) Uni = AB™'(Zy)Twm
and
(2.20) Ani = AB™ (Ev)EZnmB (En)A’ .

Also, let J be a subset of &% = {1,...,a} and J’ be its complement. For each
of the 2 sets J, we partition Uy and A (following rearrangements, if
necessary) as

and

UNI(J) k(J)
(2.21) Uni =

Uy | k)
Anian Anwar
Ay =

Anyyy  Ann

where k(J) denotes the cardinality of set J. Also, for each J (& < J € Ao),
we let

-1
(2.22) Unig.ry = Unmy — AmunAnienUnay ,

-1
2.23) Anr.ay = Aniun — Anmun Anun Asay .
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Then, we have

(2.24) Ot = TinZniTni — Uk AniUnn
, -1
+ @g;gu {UN -0y ANgs.0) Uniaa}

H{Un.ry > 0, AxiyUnin < 0}

where 1(B) stands for the indicator function of the set B.

It is well-known (viz., Robertson et al. (1988)) that for restricted
alternatives, optimal tests are hard to construct (in general); the likelihood
ratio test (for restricted alternatives) in general has good power properties,
although tests which are asymptotically most stringent (and somewhere
most powerful) may not agree with such a likelihood ratio test. By
restricted likelihood ratio test (asymptotic) optimality (RLRTAO), we
mean the optimality properties enjoyed by the restricted likelihood ratio
test in such a testing problem. Then, following the general results in Tsai
and Sen (1987), it can be shown that within the class of intra-block rank
tests, with the scores defined in (2.3), Owm in (2.18) has the RLRTAO
property for the general class of (contiguous) restricted alternatives of the
type in (1.4). This RLRTAO property also applies to the ordered alter-
native problem as a special case.

3. UI-LMPR tests and ranking after alignment

In intra-block ranking, because of the lack of information from the
inter-block comparisons, the tests are generally less efficient (when the
errors are homogeneous) than the aligned rank tests which incorporate the
inter-block information through the alignment procedure. For the standard
MANOVA model in two-way layouts, Sen (1968) formulated aligned rank
tests based on general scores and studied their asymptotic efficiency in a
unified manner. Here, we extend the results to test against general forms of
restricted alternatives (as in (1.4)) and show that under fairly general
regularity conditions, aligned rankings lead to more efficient tests for such
alternatives too. To do this, we need to eliminate the (nuisance) block
effects by simple alignment procedures, namely, we substract suitable
estimates of the block effects (vectors) from the respective X, and on the
residuals, we make an overall ranking (ignoring blocks) of all the treat-
ments (in a coordinatewise manner). We may use any translation-equi-
variant estimator of the block effects; for simplicity, we take them as the
block averages. Thus, we define the aligned random vectors as

1 2
3.1 Yi=X;—— XXy, i=1,...m j=1,...,p.
p i1
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For convenience, we assume that ¥; has a g-variate continuous c.d.f. Fy,
Vi=1,.,n,j=1,..,p. Let S,ﬁ” be the rank of Y,-,(-” among the N (= np)
observatlons Yl({), 1‘?, Y,i},) forj=1,...,p,i=1,...,nand /= 1,...,q. Thus,
corresponding to the ahgned observation Y;, we have a rank vector
Si=(S",..., 8, i=1,...,n,j=1,..., p. We also define the rank collection
matrix Sy by (Si,...,S»). Note that under Ho, Yiu, Ya,..., Y, are inter-
changeable random vectors, so the joint distribution of ¥y = (¥1i,...,
Yi,,..., Y;p) remains invariant under the finite group <&, of transformation
{g5} (which maps the sample space onto itself). Thus, for any g5 €&, there
exists ¥,¥ = gn¥n which is permutationally equivalent to Y. If we denote
S% the rank collection matrix corresponding to ¥%, then S¥ = gnSy and is
permutationally equivalent to Sy. Thus, under Ho, the conditional distri-
bution of Sy over the (p!)" realizations {S% = g2Sw; gv € &,} is uniform,
each realization having the conditional probability (p!)™"; we denote this
conditional probability measure by 27>, Also, as in (2.3), we define the
scores aw(r), r=1,...,N, I=1,...,q with the only change that here
Uy),..., U stand for the order statistics of a sample of size N from the d.f.
Fu. Then, the tests to be considered are based on statistic T, = vec T
with

(3.2) TH=(N" Z Zyak(a) )

where Z }\5&, =1 if the a-th smallest observation among the N values of Y}

is from the j-th treatment and /-th variate and Z§)y =0, otherwise, for
a=1,..,.N,j=1,..,p and [ =1,...,q. Define Vnz, Xn2, Un2, An: and Qm
the same as in VNl, Zni, Uni, Ay and Qi respectively, with T being
replaced by Tn,. Furthermore, consider a restricted (contiguous) alternative
{Kn}, then we have

(3.3) Fini(x) = Fiyu(x — N~
and
(3.4) Finur(x, p) = Fiar(x — N™0, y — N7

Finally, we define V> and X, the same as in ¥, and X, with Fi.;(x) and
Firur(x, y) being replaced by Fi.; and Fiqu(x, ), respectively. Then under
parallel arguments as in the previous section, we have

(3.5) TNz ~ Do+, 224, E2) .

Then, for testing (1.2) against (1.4) (under {Kx}), the UI-LMPR test Qxz is
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RLRTAO within the class of aligned rank tests at the respective level of
significance. As a result, this RLRTAO property remains ascribable for the
special case of the ordered alternatives in (1.3).

4. Asymptotic power comparison of Q% and Q%

Note that the optimal properties of Qi relate to intra-block ranking
methods which sacrifice the inter-block informations to a greater extent.
The test based on QR is based on the aligned ranks, and hence is expected
to perform better than QOi. For testing against global alternatives, the
usual power superiority of aligned rank tests to the intra-block rank tests
has been studied by a host of workers (viz. Sen (1968) where other
references are cited). In the current context, we have a general class of
restricted alternatives (which are not describable in terms of linear restraints)
where the conventional techniques (described in Chapter 7 of Puri and Sen
(1971)) may not work out neatly. In the following theorem, the power
superiority of the QA test to the Qa test is established for a subspace of
the restricted parameter space under {Ky}. Note that over the comple-
mentary subspace, although the same picture is likely to hold, the current
method of attack may not work out.

THEOREM 4.1. Suppose that the critical levels X0 k= 1,2, satisfy

@.1) }}ggop{gﬁk>xgk)|Ho}=a O<a<l), for k=1,2.

Define Ax= lim E{Anc|Ho}, M = AB '(Z)ZiA, k=1,2, and let p =
At and Bi(y, Bo) = lim P{Q = x| Kn}, for k =1,2. Then

4.2) Bi(r, &) < Ba(y, X2)

whenever p® = p'" and y € Qo N I, where
1
(4.3) Q={p"e E" " > £ x'2 j=1,...,a

OUTLINE OF THE PROOF. For every i ( = 1,...,n), let us define
(4.4) A= Var (Xil | Ho) and Az = Cov (Xil, X,‘2| Ho) .

Note that by (2.10) and (2.11), the following limits exist:

4.5)  Ai=lim l n' 21 Au ] and  A;=lim { n' X Ay l :

n—oo n-—oo
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From (2.14) and (3.5), we have then
-1
V] =A— A and

Vil=p (p— (A - Ad);
L=p'(p-1DX, A=(p-1)"pA; and

(4.6)

4.7
m=mn=1, say.

Next, we define
4.8) Qi= " {Zio Ao} 1 Zroiry > 0, Ay < 0)

for k= 1,2, where Zy ~ @,(-;n, A1), k= 1,2.

The first two terms on the right hand side of (2.24) cancel whenever
Rank (4) = pg (i.e., a = pq). For a < pq, this difference is asymptotically
independent of the last term (sum), and under the sequence of local
alternatives, it has asymptotically a noncentral chi square distribution with
pq — a degrees of freedom and a noncentrality parameter, say ©:; let us
denote this asymptotic r.v. by Z*. We define Z;* similarly for the same
component of Qi» (the aligned rank statistic), so that Z* has asymp-
totically a noncentral chi-square distribution with pg — a degrees of free-
dom and noncentrality parameter @,. It is easy to show that @, =
p '(p — )0, so that @, < O,. Hence, Z;* is stochastically larger than Z*.
Thus, to establish (4.2), we need to show that

(4.9) P{O} + Z = x} = P{Q} + Z¥ = x.},

where Z* is independent of Qf, for k = 1,2. Note that the Z* and Qf are
all nonnegative r.v.’s and further, Z;* is stochastically larger than Z*.
Hence, to verify (4.9), it suffices to show that if P{Q¢ = x¥|H,} = a,
k=1,2, then P{Qf > x"|Kn}< P{Q7 = x{’'| Kv}. Without any loss of

generality, we assume that A; = I, and note that

(4.10) P{Q; = x?|Kn} — P{O = x"| Kn}
_ (P )" :
B @uzuﬁ[ Bzu)dqj"(z’ ( p—1 ) "’I) _fB,(J>dd)“(z’ "’1)]

where

4.11) Bi(J)={ze€ E%z;r<0,z;> 0, ||z/]|* = x¥}
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V k = 1,2 with || - || denoting the Euclidean norm. Since P{Q¢ = x| Ho} =
a, k= 1,2, it is clear from (4.10) and (4.11) that x{"" = x!”. Furthermore, we
write xi = x, and 7’ = 7+ 8, where 6 > 0. For ne Qo N T,

(i) ifa=1, then we have

@12) % [ a0 ) - du(z )]
1 1/2 — .02 — — 2
:(E) Uzso[e A2 _ g2y g

-(z=nV2 _ z-n)2 -0 -
+ Z>\/)_(n[e e ldz i =0;

(i) if @ =2, by regrouping the sums and symmetric arguments, we
have

(@.13) QQJQAufBu(J)[ddj“(Z; né’l) - d(pa(Z; n,1)]
\/X”7 ! ~N2=62 5
e L [ e

—h ’Ilz_éz _ 2
_f f eV 2g dz,
—6 Y -

-m

Vxa— 12 —hm 2
+f f_w e llzl /2d21d22

Vxe—=6:-m2

i/ ~m=d 2
- 2
[ e gy g, }
—6 Y -

-
+ a nonnegative quantity
>0,
where the nonnegative quantity corresponds to J = {1,2}. Thus, by induc-

tion, we obtain that for every a = 1, (4.10) is nonnegative for y € Qo N T,
and hence, the proof of the theorem is complete.

Remark. For a=2, let Q={u" e E*; pui" = (x")"?/2, i <0} U
(Ve E% i <0, 18" = (x")'"?2) U {uV € E% iV <0, 18" < 0} U Q, then
under parallel arguments as in (ii) of Theorem 4.1, we have

(4.14) Bi(v,Z) < Ba(7, 5,

whenever p'* = p" and y € Q N I'. A generalization of (4.14) for the case of
a = 3 constitutes an open problem.
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