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Abstract. For a general (real) parameter, let M, be the M-estimator and
M" be its one-step version (based on a suitable initial estimator M), It
is known that, under certain regularity conditions, n(M,\" — M,) = 0,(1).
The asymptotic distribution of n(M,\" — M,) is studied; it is typically

non-normal and it reveals the role of the initial estimator M,®.
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1. Introduction

Let {Xi: i = 1} be a sequence of independent and identically distributed
(i.i.d.) random variables with a distribution function (d.f.) F(x,6,) where
0o € O, an open interval in R Let p: R'x® - R'bea function, absolute-
ly continuous in @, such that y(x, 8) = dp(x, 8)/38 is absolutely continuous
in @ and satisfies some other regularity conditions (to be specified in
Section 2). We assume that Ey,p(X1, 8) exists for all § € © and has a unique
minimum at 6 = 6. A consistent estimator M, which is a solution of the
minimization

(1.1) 2 p(X, 1) = min

with respect to ¢ € R', is termed an M-estimator of 6. M, could be found
as a solution of the equation

*Work of this author was partially supported by the Office of Naval Research, Contract No.
N00014-83-K-0387.
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n

(1.2) 2 y(X,)=0.
2

Janssen er al. (1985) have proven that any sequence {M,} of roots of
(1.2) such that

(1.3) n"*(M, — 00) = O,(1)

as n — oo, admits an asymptotic representation

M, = 0o — (ny1(66))” El w(Xi,00) + Rn,

(1.4)
R,=Op(n’"),
where
71(0) = Epyr (X1,0) ,
(1.5) o p(x,0)
w(x,0)= R fed.

The specification of R, = Op(n ') is known as the second order representa-
tion of the M-estimator. For the single location model, Jure¢kova (1985)
and JureCkova and Sen (1987) have shown that under fairly general
regularity conditions, nR, (or n”’* R, for discontinuous y) has asymptotical-
ly a nondegenerate distribution (which is typically nonnormal). This second
order asymptotic distributional representation is analogous to the Kiefer
(1967) result for the sample quantiles.

It may often be difficult to find an explicit and consistent solution of
(1.2). On the other hand, we may employ an iterative procedure to solve
(1.2) (viz., Dzhaparidze (1983)). Starting with an initial consistent estimator

{9 we may consider the successive-step estimators as

n(k*l) lf ')’)y(zk_“:o
(16) M¥= :
S = 2 (X M) g0

for k =1,2,..., where we take
(L7) p=n Ly MY, k=0,1,2,....

It follows from Janssen ef al. (1985) that, under some regularity conditions,
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(1.8) n(M" - M) =0,(1), n(M®—M)=o0,(1), k=2
provided
(1.9) n2(M2 —0)) = 0,(1) as n—oo.

We shall concentrate on the asymptotic behavior of M,\". By (1.8) and (1.4)

(1.10) A = 00— (00" X (X, 00) + R
where
(1.11) W=0,(n") as n—oo.

Yet, (1.10) and (1.11) do not reveal the role of the initial estimator M,\".

On the other hand, as we have seen from numerical studies, there is a
strong dependence of the properties of M,\" on M,”, hence, this effect is
analytically studied here. The highest order effect of M,\” would appear in
the asymptotic distribution of nR,\", if such exists.

Along with the preliminary notions, the second order asymptotic
representation of M, is presented in Section 2. To derive that, we should
first find the asymptotic distribution of nR, corresponding to the nonitera-
tive M,. The proofs are relegated to Section 3.

2. Second order distributional representations for M, and M,\"

We assume that p(x, 8) is absolutely continuous and that w(x,60) =
dp(x,0)/d0 is also absolutely continuous in 6. Moreover, we assume that
the following conditions are satisfied:

(2.1) },(0) = EB(\W(X], 0)
exists for all # € ® and has a unique zero at 6 = 6.

2.2) ¥ (x, 0) is absolutely continuous in # and there
exist 6 >0, K; > 0 and K> > 0 such that

Eoly(X1,00 + 0P < K,  Ea|i(X1, 600+ 0)]* < Ko

for |¢| < 6 where
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) d
y(x,0) = 20 w(x,0), y(x0)= 20 ¥(x,0).
(2.3) 71(6o) ,

defined in (1.5), is non-zero and finite.

2.9 0 < Ea,p*(X1,0) <oo in a neighborhood of 6, .

(2.5) There exist a > 0, 6 > 0 and a function H(x, 6) such
that Eg, H(X, 60) < o and

[ (x, 60 + 1) — y(x,600)| < |1|" H(x,6b) ae. [F(x,60)]
for |t <.
THEOREM 2.1. Suppose that the conditions in (2.1) through (2.5)

hold, and let M, be the solution of (1.2) satisfying (1.3). Then, as n — oo,
M, admits a representation (1.4) with

(2.6) nRy 2 [&1 — (72(80)/ 271(80)) E2) &2
where
2.7 y2(0) = Epyi (X1, 0)

and (&,,&;) is a random vector with normal N>(0,S) distribution where
S = (sy)ij-1 and

S11 = (V1(90))_2 varg, ¥ (X1, 6o) ,
(2.8) 512 = 521 = (y1(6)) > covs, (¥ (X1, 60), w(X1,60)) ,

522 = (71(00)) " En (X1, 65) .

Remark. By Stadje (1983), the characteristic function of the limiting
distribution in (2.6) has the form

(2.9) b(1) = {1 = 2it[y1" cova, (¥(X1, 00), ¥ (X1, o))
— 12291)  Ea (X1, 00)] + (0703
— [y cova, (¥(X1, 80), w (X1, 60))
~7229)) Eay’ (X1, 00]7))

with
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ot = varg, (X1, o) + ¥3(2y1) 2 Es (X1, 60)
(2.10) = (y2/ 1) cove, (W (X1, 0o), w (X1, 00)) ,
022 = Eeowz(XlsOO)/yl .

Let us now consider the one-step version M," of M, defined in (1.6)

and (1.7) (for k = 1) with an initial estimator M,* satisfying (1.9). We shall
consider the class of initial estimators admitting the representation

@.11) O =+ 7 B B(X,00) + 0p(n )
with a suitable function @(x, 0) on R' x O such that

(2.12) 0< E, P (X1,0) <o

in a neighborhood of 6. Introduce the following notations. Let

(2.13) Un =n'" ( n 2 (X 00— 1(60) ) ,
@19 Us=n " 3y (X, 00,
(2.15) Us=n"" él D(X;,00)

and let U, = (Uni, Un2, Uns)’. Then, regarding the conditions (2.1)-(2.5) and
(2.12), U, is asymptotically normally distributed,

(2.16) U,Z U~ Ns3(0,8%)

where $* is a (3 x 3) matrix with the elements
st = varg, ¥ (X1,00), 5= Eq, VIZ(X1, 6o) ,
sh = B, @%(X1,60)

(.17 sty = sf1 = cove, (¥/(X1, 00), ¥ (X1, 60))

T = 531 = cova, (Y (X1, 6o), (X1, 60)) ,
S=2‘=3 Sgkz = COVg, (l//(Xx, Ho), (D(Xl, 00)) .

s

The following theorem provides the second order distributional representa-
tion for M,\".
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THEOREM 2.2. Let M\" be the one-step M-estimator and let U =
(U1, Uy, Us) be the random vector with the normal distribution defined in
(2.16) and (2.17). Then, under the regularity conditions of Theorem 2.1,
MV admits the representation (1.10) where

(2.18) nR" % U*
as n — o where
(2.19) U* =y Uo(Ur = (Usy2 (2y1)) + (Us + 71 U2/ (2917)
and
=710, y2=72(60).

Notice that the first term on the right-hand side of (2.19) coincides
with the right-hand side of (2.6). Hence, the second term on the right-hand
side of (2.19) reflects the contribution of the initial estimator. More
precisely, we have the following corollary:

COROLLARY 2.1. Under the conditions of Theorems 2.1 and 2.2,
2200  aMP = M) L ) QYN U+ 11 Us as n—oo.
Consequently,

@2.21) = My =o0p(n”")

if and only if either: (i) M,\" is such that @ in (2.11) satisfies
(2.22) D(x,0)= —y'y(x,0), (x,0)eR' %O
or (ii) if w and F are such that

(2.23) y2(60) = E6, 57 (X1,60) =0 .

Remarks. (i) (2.22) means that M,\" and M, are asymptotically equiv-

alent up to the order n” " if M\” and M, have the same influence functions.
(ii) The asymptotic distribution of n(M," — M,) is the central chi-
square distribution with one degree of freedom, up to the multiplicative
factor 6°y2/(2y1) where ¢° = E(U, + 31 Us)* = Ep*(X\, 60) + yiED* (X1, 6o) +
291 E(w (X1, 80) (X1, 00)). The asymptotic distribution is confined to the

positive or negative part of the real line according to whether y,/y; is
positive or not.
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(iii) The asymptotic relative efficiency of M.\'" to M, is equal to I.
On the other hand, the second moment of the variable on the right-hand
side of (2.20) may be considered as a measure of deficiency of M," with
respect to M,, i.e.,

3
(2.24) d(M\V, M,) = " a9y

with the same ¢ as above.

(iv) If k=2, then M,* and M, are always asymptotically equivalent
up to the order n” ' (see (1.8)).

(v) In the location model y(x,?) = w(x — 1) and F(x,8) = F(x — 0).
In the symmetric submodel where w(x) = — w(—x) and F(x) + F(—x) =1,
x € R'is y2=0and hence M," and M, are asymptotically equivalent up to
the order n '.

(vi) It is interesting to compare the second moment of the limiting
distribution of n'*(M,\” — M,) with the first absolute moment of that of
n(M\" — M,). If M\" and M, have the same influence functions, then (i)
applies. In the opposite case, we conclude, regarding (2.20), (2.11),
(2.13)—(2.15) and (1.4), that the ratio of these moments is y,/(2y;) and
hence independent of the choice of M,

(vii) In the case of the maximum likelihood estimator (MLE), we
have

d d
(2.25) w(x,0)= 50 log f(x,0), f(x,0)= Ix F(x,0).

The conditions (2.1)-(2.5) on y(x, #) may seem rather restrictive; however,
they hold for f(x, 8) of the exponential type, where we have

(2.206) w(x,0)=a(0)T(x) + b(0)

for suitable a(0), b(0) and T(x). Regarding that Eyw (X1, 0) =0, we have
ET(X)= — b(0) a(d), 0 € O and

y1(0) = — (b(0)d(8)/a(9)) + b(0)

2.27) ..

y2(0) = — (b(0)d(0)/a(9)) + b(0),
where a(0) = da(0)/d(0), d(0) = da(0)]d(8), similarly for b(0). If d@(6o)/a(bo)
= b(60)/b(60), then y2(fo) = 0 and the one-step version of MLE is asymp-
totically equivalent to the efficient root of the likelihood equation, up to
the order n ', whatever \/};—consistent estimator we take as the initial one.
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3. Proofs of Theorems 2.1 and 2.2

PROOF OF THEOREM 2.1. For notational simplicity, we denote y;(6o)
by v, = 1,2, and also suppress the index 6, in E(-), P(-), var (-) and
cov (-, +). Consider the random process Y, ={Y.(t),? €[ — B, B]}, defined
by

G 0= B+ ) -y (X, 001~ ',
l{|<B, 0<B<ow.

Y. belongs to the space D[ — B, B], and it plays the basic role in the proof
of the theorem. First, consider the following:

LEMMA 3.1. Under the hypotheses of Theorem 2.1, Y, converges in
law (in the Skorokhod Ji\-topology on D[ — B, B]) to a Gaussian process
Y={Y(?),t €[ — B, B]}, where
3.2) Y(1)= 15~ (2p) "', t€[ - B,BI,

B (< ) is fixed, and &, is defined as in (2.7).

PROOF. Foreveryte R', define

Za()) = 91" B [w(Xo 00+ 1" 1) = p (X, 00)],
(3.3) =
ZA0) = Zn(t) — EZa(2) .

Note that by (3.3), for arbitrary A = (41,...,4,)" and ¢ = (¢4,..., 1), p = 1,

(3.4) var {él A Za(t) } = y;? § 1:)1 Aid{nla(t;, te)}

j=1k
where

C"(tﬁ tk) = COVg, [W(Xl, 00 +n 1/2tj) - '//(Xli 00) B

(3.5) o
w(X,0+n 0) —y(X1,00)], jk=1,...p.

We shall show that

(3.6) nla(tj, te) — y%tjtksll
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as n — oo, uniformly in ¢, t: t;, tc €[ — B, B]. It is sufficient to prove (3.6)
only for j =1, k = 2. Denote

(3.7) An(X1, 1) = w(X1, 00+ n ) — w(X1,00), teR'.
Note that, for every ¢, € [0, B],

(3.8)  |E[An(X1,11) An(X1, 12) — 0 't102( (X1, 60))° 1|
< |E{[An(X1, 1) — 0 1 (X1, 00)] An( X1, 12)}]
+ | E{n hy (X, 0)[An(X1, 12) — 1”129 (X1, 00)1}]

-2y

sl E{fo" e, 60+ vyav-f] zl/'/(X1,90+w)dw}‘

+‘4E{n”ﬂn¢(Xb0@f; hﬁ:W(XL00+Uﬁwdu}

= — (K Kz)l/zn_3/21112(l1 +1).

N | —

Similarly,
(3.9) | EAn(X1, 1)+ EAx(X1, ) — 0" 't [Ey (X, 60)]°
<ttt + 1) O ) .
Combining (3.8) and (3.9), we arrive at
1 cov (An(X1, 11), An(X1, 12)) — t122 var (X1, 6) = O(n”?)

and this leads to (3.6). The cases where (71, 2) belongs to other quadrants
are treated analogously. Then (3.3), (3.6), (3.9) and the classical central
limit theorem imply that the finite-dimensional distributions of the process
Z) ={ZX1), t €[ — B, B]} converge to those of Z° = {Z°(s) = t£,, t e [ — B, B},
as n — oo, where &; is defined in (2.7). Note that, by (3.4) and (3.6),

var {jEill A Zn(1) } — su(Ae?

for every t;e[ — B, B], j=1,...,p. Therefore, for every ti,¢,¢ such that
—B<t<t<t < B, we have
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(3.10) E{|ZX1) — ZXt)| | Ze(t2) — ZA(D)|}
<{E[ZXt) ~ ZAt)])* + E[Z1)) — ZX(D])*}/2

— su[(t— 6) + (2 — 07]/2 < su(t2 — 1)*.

Consequently, by a modified version of Theorem 15.6 of Billingsley ((1968),
p. 128) (viz., Lemma 3.1 of Jureékova (1973)), we conclude that Z, is tight.
Then looking at (3.1) and (3.3), it remains only to show that

(3.11) EZ.(t) — n'*t — p) 'yt - 0,
as n — oo, uniformly in 7 € [ — B, B]. For this, it suffices to show that

(3.12) n|E{A.(X1, 1) — n "ty (X1, 00) — (1] 2n)) i (X1, 6o)}|

-0 as n—ooo.

Towards this, we make use of the compactness condition in (2.5), so that
the left-hand side of (3.12) can be bounded from above by

(3.13)  (£/2)+ |0 t|"E[H(X1,00)] = O(n™ ™), |t1|<B, a>0,

and this converges to 0 as n — c. This completes the proof of the lemma.
O

The main idea of the proof of Theorem 2.1 is to make a random
change of time: 1 — n'2(M, — 6) in the process Y, defined in (3.1). This
will be accomplished in several steps. First, we extend Lemma 3.1 and
establish the weak convergence of a two-dimensional process

(3.14) YF = (Y.} = (Ya(2), n"* (M, — 80)y, t €[ — B, B]},

where we may note that the second component of (3.14) is independent of
t.

LEMMA 3.2. Under the conditions of Theorem 2.1, the process Y.*
converges in law (in the Skorokhod topology) to a Gaussian function

Y* = {(t&+ () @y, &), t e[ — B, B]}
where &, and &, are defined in (2.6)—(2.10).

PROOF. By (1.4) and Lemma 3.1, Y,* is asymptotically equivalent (in
probability) to
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n ’
@15y v =y - v, -n it £ e 1= |

Now, the tightness of Y, (proved in Lemma 3.1 via that of Z?) and (2.4)
imply the tightness of ¥,)*. Further, the convergence of the finite dimen-
sional distributions of ¥, * follows along the same lines as in the proof of
Lemma 3.1, as the second component in (3.15) is also adaptable to the
central limit theorem. Hence, the details of the proof of the lemma are
omitted.

Returning now to the proof of Theorem 2.1, we define

(3.16) [als=al(— B<a< B)

for every real a and B> 0. Thus [a]z is equal to 0 outside the compact
interval [ — B, B]. Similarly, we define

G.17)  [¥i*1s= (Y] = {(Ya(0), [n"*(My — 00)1s)', t €[ — B, B]} .
Then, by Lemma 3.2, we obtain as n — oo,
(3.18) [Y:F]s 2 {(t&1 — @) '8, [E1s) t e[ — B, B},

for every fixed B (> 0); the right-hand side of (3.18) is Gaussian and has
continuous sample paths. At this stage, we refer to Section 17 of Billingsley
((1968), pp. 144-145), and conclude that by (3.18) and the random change
of time: 1 — [n"/*(M, — 60)]s, we have for every fixed B> 0,

(3.19) Yu(([n" (M — 60)]5)) — Ei([E2]8) — (2n1) 'v2([Eals)’
as n — oo. Now, (£1,&,)" has a bivariate normal distribution with a finite

dispersion matrix S, defined by (2.8)-(2.10). Hence, for every &> 0, there
exists a By > 0, such that for every B= By,

(3.20) P{l&ls# &Y <e  and PG #G[G]s) <e.
Similarly, by virtue of (1.2), there exists an no such that
(3.21) P{n'*|M,— 6| > B} <¢

for every B> By and n > no. Combining (3.19), (3.20) and (3.21), we obtain
that
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(3.22) lim P{Y,(n"*(M, - 05)) < y)
<lim P{Yo([n'""(My— 00)]s) < y} + ¢

= P{Gi[&s— ) (&)’ <y} +e
< P{&i&— 2p) '8 <y} + 3¢

for every y € R'. Similarly,
(3.23)  lim P{Y,(n"*(M, — 65)) > y}
< lim P{Y,([n"*(My— 60)]s) > y} + ¢

= P{&i[&ls— 2n) '8 >yt +e
< P{EE— (2p1) & >y} + 3¢ for every ye R a

PROOF OF THEOREM 2.2. By virtue of the assumptions made in
Section 2, we have

(24 n' £ y(X,00 =7+ o0,(1),

(3.25) n2(Pu— 1) = Ui + 92 Uns + 0p(1)
(3.26) n'*(Fa' = i) = — pEUn — 72/ YD) Uws + 0p(1)

G2 7" B (X, M)

= Un + 71 Uns + 0 Ut Uns + (12/ 2 U1 + Op(n”?) ,
hence,
(3.28)  nR"M = (32/2y) U + (2] 91) Una Uns + 71 Uni Unz + 05(1)
which gives the desired result.
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