Ann. Inst. Statist. Math.
Vol. 42, No. 2, 331-343 (1990)

ESTIMATING THE COVARIANCE MATRIX AND THE
GENERALIZED VARIANCE UNDER A SYMMETRIC LOSS

TATSUYA KUBOKAWA®* AND YOSHIHIKO KONNO
Institute of Mathematics, University of Tsukuba, Tsukuba, Ibaraki 305, Japan

(Received February 20, 1989; revised August 28, 1989)

Abstract. For estimating the power of a generalized variance under a
multivariate normal distribution with unknown means, the inadmissibility
of the best affine equivariant estimator relative to the symmetric loss is
shown, and a class of improved estimators is given. The problem of
estimating the covariance matrix is also discussed.
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1. Introduction

Suppose that X (p xr) has the normal distribution N(&,2 & I,) and
that S (p x p) has the Wishart distribution W,(n,~), where n > p and the
matrix { of mean vectors is unknown. Assume that X and S are indepen-
dent. The first problem we consider is to estimate the a-th power of the
generalized variance |X]” under a symmetric loss given by

(1.1 Ld, |2y = d]|Z]" + |2]"]d - 2,

where a may be positive or negative. Every estimator is evaluated by its
risk function R(8, d) = Es[ L(d, | Z]%)] for 8 = (£, X), unknown parameters.
The affine equivariant estimator under the transformation (X,.S)
— (AXH + B, ASA’) for any nonsingular matrix 4 (p X p), any orthogonal
matrix H (r X r) and any matrix B (p X r), is defined by d(AXH + B, ASA’)
= |A|*d(X, S), and it must be of the form a| S| a > 0. The inadmissibility
of the best affine equivariant estimator has been shown by Shorrock and
Zidek (1976), Sinha (1976) and Sugiura and Konno (1987) for squared
error loss; by Sinha and Ghosh (1987), Sugiura and Konno (1988) and
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Sugiura (1989) for entropy loss. Some of them are multivariate extensions
of Stein (1964) and Strawderman (1974). Recently, Pal (1988) proposed the
loss (1.1) as a combination of two entropy losses and called it convex
entropy loss. He also pointed out that under (1.1), the loss of the estimator
d for the generalized variance |X| is equal to that of the estimator ' for
the generalized precision | X', that is, I(d, | Z|) = I(d"', |Z~"|). Therefore,
we shall call it a symmetric loss. The best affine equivariant estimator
relative to the loss (1.1) can be shown to be

(1.2) do = a(0)| S|*

where n — 2|a| —p+ 1> 0 and

<o sl ol

is a constant given by the p-variate Gamma function I,(x) = n*#""/*.
14
gf(x— (i—1)/2). It is noted that {a(a)} ' = a( — a). In Section 2, it is

shown that the best affine equivariant estimator dy is dominated by

(1.3) ds=[min {a(||)|S|'", b(|a])|S + XX’|“jp= @

where sgn (@) =1 fora>0; =—1for a <0, and

e e

with {b(a)} ' = b( — @). This is an extension of Pal (1988). From Lemma
A.1 given in the Appendix, it should be noted that a(|a|) > b(|a|). Section
3 provides a family of improved estimators.

Section 4 treats the problem of estimating the covariance matrix X
under the loss

(1.4) LS, 2)=tr (60X '+ 26— 2p.
The best affine equivariant estimator is of the form
(1.5) do={n(n—p-D}"s,

and it is demonstrated that o is dominated by Haff type estimators when
p=2andn—p-1>0.
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2. Inadmissibility of the best affine equivariant estimator for powers
of the generalized variance

We shall prove that the best affine equivariant estimator do, given by
(1.2), is dominated by ds, given by (1.3), under the loss (1.1). From
symmetry of the loss, it is sufficient to show the case of a > 0. Put

(S+ XX’ S(S+ XX'Y'"* when r=p,

(2.1 T= B
- X' S+XX)' X when r<p.

Note that | 7] = |S|/|S + XX’| in either case. Also put ¥ =2 (S + XX’)
-2 72 Then the estimators do/ | Z|“ and ds/ | 2| are expressed as

do/ |12]" = a(@)| T*| V|*,

(2.2)
ds/ | 21" = min {a(a)| T|*| V|, b(a)| V' |} .

Let f(|T|)=1 for |T| = {b(a)/a(a)}"'% =0 otherwise. Using the mixture
representation for the distributions of ¥ (noncentral Wishart) and T
(noncentral Beta) by Shorrock and Zidek (1976) or by Lemma 2.1 in
Sugiura and Konno (1987), we can write the risk difference as

(2.3) 4= R(6,ds) — R(6,ds)

1
= E[{a(a)| T\ Vi|® + ——-—a(a)l ETZE
- W@V 1"~ G PUT)
I EIVIFGON)IK BLAIT)ITICU ~ T)ix]
- EA["(“) Eo[Co(V)Ix] E[Co(I— T)Ix]
+ oyt BTG BLAITIT "G = Dix]
E[Co(V)x] BLCAI— T)Ix]

B[IVI"CG(M)Ix] ELAITDCM ~ T)|x]
Eo[Ce(V)]x] E[C(I - T)|x]
1 B[V *G(M)|x] Eo[ TN G — T)|x]
E[Ce(V)x] E[C(UI-T)x] I’

— b(a)

— b(a)

where Ey[-|x] stands for the conditional expectation for given x at
A=¢X'¢=0 and Ei[ -] stands for the expectation with respect to the
random partition k = {ki,...,kp} ranging over ordered partitions of non-
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negative integer k = ||k|| = k1 + --- + kK, with k; = --- = Kk, = 0 having prob-
ability mass etr( — A4/2)Cc(A4/2)/k!. Here Cc(Z) denotes the normalized
zonal polynomials of the positive definite matrix Z of order p corresponding
to partition k = {ki,...,kp} so that forall k =0,1,2,...,

(tr2= X Cu2).

ikl =k}

The precise definition and the properties of the zonal polynomials may be
found in James (1964) and Muirhead (1982). For given x, V has the
Wpy(n + r,I) distribution and T has Beta,(n/2,r/2), the p-variate Beta
distribution with parameter (n/2,r/2) if r = p, and has Beta,((n +r —p)/2,
p/2) if r < p. They are conditionally independent for given k. The constant
A(a) 1s given by

(24) A(a)= Ef| V|*C(V) k]| Ef Cc(V)]| k]

st el

where the multivariate hypergeometric coefficient is defined by

p
(a)K:g(a— G-D/a+1-0G-1D/2)-(a+Kxi—1—-(i—1)/2),
(a)o =1.
Then from (2.3), the risk difference 4, is rewritten by

GU-DATh
E[C.(I-T)|x]

4, = EZ[Eo[ {a(a)| T\ — b(a)}

]|

| T “A( - a)]

1
'{A(“) " @b

Here we observe that

T IREI St [ a N eat [ 3

n+tr

< 2‘“?1“,,( - a)/rp(fgi + a) ={b(o)},

so that A(a) — {a(a)b(a)| T1*} 'A(— a) = A(a)| T|"*{| T|* — b(a)/a(e)}, which
implies that 4, > 0. Hence we get
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THEOREM 2.1. The best affine equivariant estimator do is dominated
by the estimator ds given by (1.3) relative to the loss (1.1) when n — 2|a|
-p+1>0.

3. Aclass of improved estimators

Consider a class of estimators for | X|“ of the form
3.1 do=dofl — (I TDITI}",

where the random matrix 7 is defined by (2.1). Strawderman (1974) and
Sugiura (1988, 1989) treated another type of estimators whose forms are
different in two cases a>0 or a<0. Here ¢=2|a] and ¢(|T|) is a
nondecreasing function of | 7’| satisfying 0 < ¢(| T'|) < D for some constant
D>0. Let

£ for 0<|al=1,
(3.2) A={ D(1 - D)
ﬁhﬂc for |a|>1,

and define C,(4,¢, a,n,r) and K,(¢, a,n,r) by
1
B(n/2+A+e—a,r/2)

By(n/2— a,r/2)
(3.3) \Bo(n/2 + a,r/2)

CGd e a,nr) =

B,(n/2+ A+ a,r/2)

—B(n/2+A—-a,r/2);,
Ky(e,a,n,ry=Qaje)B,(n/2 — a,r/2)]B,(n/2 + a,r/2),

where B,(a,f) = I,(a),(f)/I,(a+ B). By Lemma A.2 in the Appendix,
Cp(4,&,a,n,r) is positive.

THEOREM 3.1. Assume that §(|T|) is nondecreasing in |T| with
&(|T|)< Dand

1

(3.4) (T—W

-1
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min {C,(4,¢, |al,n,r), Ky(e, |al, n,r)}
- for r=p,
min {C.(4,¢, |al,n+r—p,p), K&, |a|,n+r—p,p)}
for r<p.

Then the estimator dy given by (3.1) dominates the best affine equivariant
estimator dy under the loss (1.1).

PROOF. From symmetry of the loss (1.1), it suffices to consider the
case a>0. We first observe that {1 —¢(|T|)|T|°}*<(1 - D|T|") "
<K|T|*+ 1for K=(1- D) *— 1. From (2.2) and (2.3), the risk difference
is written as
(3.5) 4:= R(8,do) — R(0,d,)

=E[{1 - -¢(TDITH} a(a)| T|*| V"
—a(—a)(ITIVD (A= THITI?)

= E[{1 -(1 = o(|TDIT)} fa()| T V|

—a(—a)([TIV]) “KIT|"+ 1)}]

_ g AC 0a(—a)
T B[C - T)Ix]

FE[k(1TDITI " g(I TGl ~ T)IK]],

where A(a) is defined by (2.4), and for0 <t < 1,

k(ny={1-(1 - @)},

(3.6) )
g(t) = {a()} {A(a)| A(— )} — K — 1.

Here we shall demonstrate that k(7) is nondecreasing in t when 0 <t < 1.
Observe that (d/dr)flog k(1)} =0 if A < h((2)r)) for h(s) = aes(l — 5)* /{1
—~ (1 = 5)“}, 0 <s < D. Further, it can be seen that A(s) is nondecreasing in s
when 0 < @ <1 and A(s) is nonincreasing when a > 1. Hence we have that

lsipgh(s):s for O0<a<l,
0<i£1§th(s) - D(1 - D)a‘l
llanl h(s)zmm for a>1,

which, by the definition of A, gives that k(¢) is nondecreasing. Also it
follows that the derivative of g(¢) is positive under the conditions ¢ > 2|q|
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and (3.4), that is, g(¢) is nondecreasing. Since g(#) changes sign at most
once from negative, we have

A(— a)a( — a)
E[C(I—- T)|x]

37 4= E,'f[ kEHE[IT| “g(ITHC(I - T)|K]] ,

where ¢* = sup {£|0 < ¢ < 1, g(¢) <0}. When r = p, we put

B(a) = ES[|IT|*Ce(I - T)|x]/ Eo[C(I — T)|x]

] e S

Hence from (3.7), the risk difference 4, is nonnegative if

(3.8) {a(a)}{A(a)/ A(— a)}B(A+a)— KBA+e—a)— Bl —a)=0,
namely, K < C(x) where

C(x) = [{a(0)}'{A(@)/ A(— 0)}B(A + @) —~ B~ )]/ BA + £~ 0) .
It can be easily shown that C(x) = C(0) = Cx(4, ¢, a, n, r), which implies that
the inequality (3.8) is guaranteed by the condition (3.4). When r <p,
replace B(a) in (3.8) with

B*(a) = Eo[| T|°Ce(I — T)|k]/ B[ Cc(I — T)|k]

_(ntr-p p\(n+tr n+r—p p\(ntr ]
R [ N e [t AR

and note that

which can be derived by the relation

3.9 F,,(%+x)/]"p(—n—;i+x):ﬂ(m#+x)/F,(n;r +x).
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Then we can get the desired result and the proof of Theorem 3.1 is
complete.

Example 3.1. In estimation of the generalized variance |X| (a=1),
we shall find the Stein type truncated estimator belonging to our class.
Setting ¢c(¢) = max {0,z (1 — ¢/1)}, 0 < ¢ < 1, in (3.1) yields the estimator

dy. = min {a(1)| S|, ca(1)| S + XX'|} .

Let ¢ = ¢/(1 — ¢). Then we can see that ¢.(7) is nondecreasing for 0 < <1,
and that ¢.(¢) < lzifrll¢‘(t) =1 — ¢. In the case of r = p, the condition (3.4) is

written by
' <=min{GCole, e 1,n7r), Ko(e, 1,n,r)}.

Since B,(n/2 — 1,r/2)/ B,(n/2 + 1,r/2) > 1, it is clear that ¢ ' < K, (¢, 1, n,r).
Also observe that l_i}}:Cp(s,c, 1,n,r)=B,(n/2—1,r/2)/B,(nj2+ 1,r/2)

— 1> 0, which shows that
(3.10) ' < Colee 1,m,r)

holds for large ¢, or ¢ close to one. Hence for the constant ¢ (close to one)
satisfying (3.10), our improved class can include the Stein type truncated
estimator dy. The case of r < p is similarly shown.

4. Inadmissibility of the best affine equivariant estimator for the
covariance matrix

Now we consider the problem of estimating the covariance matrix 2.
By developing the minimax estimators, James and Stein (1961) and Olkin
and Selliah (1977) have shown the inadmissibility of the best affine
equivariant estimator for entropy loss and quadratic loss, respectively. Haff
(1980) has obtained other improved estimators under both losses as the
empirical Bayes procedure. Of interest is to investigate the inadmissibility
under the symmetric loss (1.4). We can easily get the best affine equivariant
estimator

4.1) do=c¢S for c={nn—p-D}y".
For improving on do, the Haff type estimator we consider is

t

(4.2) ao—{s+;§74y
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where 7 is a nonnegative constant. Then we prove

THEOREM 4.1. Assume thatn — p — 1 >0 and p = 2. Then the estima-
tor &(t) given by (4.2) dominates the best affine equivariant estimator Jo if

(p-DH@n-p)
pn(n—-p)

4.3) 0<t<s

PROOF. Letting diag (/,,..., ,) = diag () = H'SH for some orthogo-
nal matrix H, we observe that
H{S+ (t/tr SHI}V'H=diag ({li+t/tr ST'}h
. 1 t t 2}
=d —1{1 - - -
lag(li{ litrSl+(litrSl) )

_ el 4 -2 t Ve
—HS—trS-lSJr SH,

which yields that

t -1 -1 14 -2 2 —3}
r( trSlp) tr{S trSlS (r )S

Hence the risk difference is written as
4.4) A3 = R(6, d0) — R(H, (1))

_ _ _ t -
=E[ctrSZ "+l S 12~ctr(S+;—FI,,)Zl
I

-1
—c'tr (S+;II,,) E]

tr S

L, tr ST tr2' Lt 87X

> E|c 't T —c——-c'r -
[C st “ust sy

-2 ~1
_ 2 tr X _

ZE[clttrS1 —ctr _l—c12 P ],
tr § tr § n—p-1

since E[tr S Z/(trS™ )] < E[tr S 2 tr S 'Z/(tr S < E[tr ST'Z]=p/(n—
p — 1). Here, if the inequalities

[tr 3!

4.5
(4.5) tr 7'

]Sn—p+1,
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4.6) [trS'Z]> n-—1

trS' T (m-p-1D(n-p)’

are valid, then combining (4.4), (4.5) and (4.6) gives that

Az in-D{in—p—Dn-pl—cn-p-1)-c'fpjn-p-1),

which is nonnegative under the condition (4.3). Hence, in order to complete
the proof, we only need to show (4.5) and (4.6).

To prove (4.5) and (4.6), Haff’s identity is useful. For any p x p matrix
V = (v3(S)) and S = (sy), define Vi, = (v) where

’

Vi for i=j,
Uy =

cvoy for i#j,

and D = (d/ds;)qs2). For a real-valued function A(S), Haff (1979) obtained
the following identity:

ENY
+(n—p— DE[AS)tr S 'V].

(4.7)  E[A(S) tr V"1 =2E[A(S) tr (DV)] + 2 E[tr {ah(S)_ }]

Putting /(S) = 1/tr S"" and ¥V = I'in (4.7) yields

(4.8) [trz 2E[tr(aast ; )]+n—p—l
=2E[tr S /(tr S ] +n-p-1
<n—-p+1,

since

d - 1y O =2 -2

4.9) g(trS yl=—(tr s 3s —tr S ' =(tr S8y,

which can be derived based on Lemma 3.2 in Haff (1979). Hence we get
(4.5). For (4.6), put A(S)=1/tr S"' and ¥ = S$™'Zin (4.7). Then,

(4.10) 1= 2E[%§:;Z)] + 2E[tr {( ;S‘ TS )(S 12)(1/»”

f - p—l)E[trS E]
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Here Lemma 3.1(iii) in Haff (1979) gives that tr DS 'Z=—(1/2) tr $7°%
— (1/2)(tr §"")(tr $7'X), so that from (4.9) and (4.10), we have

tr §7°X tr §7°% .
l=(n—p- - El————F|- E[tr s™'Z
(n—p 2)E[ tr s ] [(trS 1)2 [tr ]
tr §7°X p
< — —
—(n p)E[ trS—l] n_p_17

which implies (4.6). Therefore Theorem 3.1 is completely proved.
By symmetry of the loss (1.4), we get

COROLLARY 4.1.  The best affine equivariant estimator ;' for £~ is
improved on by {6(1)} ' relative to the loss (1.4) under the condition (4.3).

Remark 4.1. Sinha and Ghosh (1987) established the domination by
a Stein type truncated estimator for entropy loss. It is interesting if we
could show the improvement of Jdo by a Stein type estimator under the loss
(1.4).

Remark 4.2. One may consider the class of orthogonally invariant
estimators as in Dey and Srinivasan (1985), that is, of the form R¢(L)R’
where § = RLR', L =diag{l,...,L}, Iy > --- > I, are eigenvalues of S, R is
the matrix of normalized eigenvectors, ¢(L) = diag {¢(L),..., d,(L)} and
¢ L)’s are functions from L to (0,0). But we could not derive superior
alternatives (e.g., an orthogonally invariant minimax estimator) to the best
affine equivariant estimator (4.1) under the loss (1.4) since it is difficult to
evaluate the expectation of the form tr S{R$(L)R’} .
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Appendix

LEMMA A.l. For constants a(a) and b(a) given in Section 1, the
inequality a(a) > b(a) for o> 0 holds.

PROOF. Put Gi(n,r)=1I,(n/2—a)[,(n+1r)/2+a)/{I,(n/2+ a)-
I,((n + r)/2 — a)}. Then the inequality a(a) > b() is equivalent to Gi(rn,r) > 1.
Letting f; = (n — i+ 1)/2 — a, we can see that
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Gi(n, r)l"[[r(f)rp+2a+ )/[T(jp%fld)f@ )}]
=11 (E[Z*"Y{ELZIELZ TN,

where E; stands for expectation with respect to the probability measure P;
given by Pi(A) =fA 2/l ?dz| I(f;). Since both Z** and Z"” are increasing,
E[Z*"* > E[Z*]E[Z"*], which shows that G,(n,r) > 1.

LEMMA A.2. The constant Cy(A,¢,a,n,r) given by (3.3) is positive
forr=p. Also C,(4,¢,a,n + r — p, p) is positive for r < p.

PROOF. We shall consider the case of r = p. Put

Ga(n,r)

S L A L Y P

Then Cp(4,¢,a,n,1)>0 if and only if Ga(n,r)> 1. Denote E*[-] is the
expectation according to the probability measure P* given by P;*(A)
=[, 2701 = 2y"*"'dz| B(fi,r|2) for fi=(n—i+1)/2— a. G:(n,r) is repre-
sented as

N L L ey LA L s |

=1 [E*[ 2 EAZEA 2]

which is greater than 1 by the same arguments as in the proof of Lemma
A.l. Similarly, we can prove the case of r < p.
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