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Abstract. Precise asymptotic behavior for mean integrated squared
error (MISE) is determined for sequences of kernel estimators of a
density in a broad class, including discontinuous and possibly unbounded
densities. The paper shows that the sequence using the kernel optimal at
each fixed sample size is asymptotically more efficient than a sequence
generated by changing the bandwidth of a fixed kernel shape, regardless
of the kernel shape. The class of densities considered are those whose
characteristic functions behave at large arguments like the product of a
Fourier series and a regularly varying function. This condition may be
related to the smoothness of an m-th derivative of the density.
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1. Introduction and theorem statements

The kernel estimate of a density is given by
” 1 =z
Ja(x) =— 2 Ken(x — X5)
n Jj=1

where Xi,..., X» is a random sample from f and the kernel k, integrates to
one. We are here concerned with the efficiency of £, and the choice of an
efficient sequence of kernels. This is a matter of practical concern and has
seen frequent discussion (c.f., e.g., Epanechnikov (1969), Wahba (1975),
Sacks and Ylvisacker (1981) and Miiller (1984)). Generally, the discussion
has been limited to sequences of estimators generated by a fixed kernel
shape, that is, to estimators using kernels of the form

(1.1 Kn(X) = ank(anx) .
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The bandwidth, A, = 1/a,, is often chosen by cross-validation in order to
ensure optimal convergence (Stone (1984)). (We restrict our attention to
kernel estimators, but analogous results are possible for others, such as
Fourier series estimators.)

Using the mean integrated squared error

MISE (/) = E[f_i(ﬁ(x) —f(x))zdx]

as our measure of fit, we set J, = min MISE ( f,). If we specify that x, be

generated by x (as in (1.1)), we set M, . = MISE (£,). Our objective is to
provide the precise asymptotic behavior of J, and M, . for each density in a
broad class and to show that even for the best choice of x, one usually has
’11ir2 In| My < 1.

We emphasize that the efficiency 4 = lim Ju/ My, depends on the

individual density f. This contrasts with the work of others (Bretagnolle
and Huber (1979), Ibragimov and Khasminskii (1983), Stone (1983) and
Efroimovich (1985)) who define minimax efficiency criteria for classes of
densities and show that full efficiency is possible for those classes. Similar
minimax results for the class we define below can also be argued; we intend
to do so in separate work.

The approach here (first used by Parzen (1958, 1962), and by Watson
and Leadbetter (1963)) will use Fourier analysis techniques having the
advantage that precise results are obtained. It applies to densities which are
discontinuous or which have discontinuous first derivatives, cases not
ordinarily dealt with. Their discussion, however, is limited to densities with
algebraic characteristic functions, a restriction that excludes many densities
having characteristic functions with oscillatory behavior. In this paper, we
extend the results to allow such densities (see Definition 1).

Our results also extend and simplify the work of van Eeden (1985) and
Cline and Hart (1987) who determined the asymptotic behavior of £, in the
case, for some m, £ has unknown simple discontinuities. The class of
densities studied allows for countably many discontinuities at unknown
locations. Other papers have considered the efficacy of boundary kernels in
cases of known discontinuities (e.g., Gasser et al. (1985)).

The early paper by Watson and Leadbetter (1963) determined the
kernel which optimizes MISE. This kernel is not of the form (1.1) but has
Fourier transform

neoo(t)
1+ (n—1Do(t)’

(1.2) ya(t) =
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where ¢o(7) = |$()|* and ¢ is the characteristic function of the density. The
minimum MISE is

1= @)1 — (D)
(1.3) = [

=T+ (n - Do) -

Watson and Leadbetter (c.f. also Parzen (1958)) demonstrate that when ¢o
is algebraic of order p (i.e., }1}2 ¢o(2) = ¢ > 0), then for a, = (cn)"”,

| e )
(1.4) Jim 2 Jn:—Z;f_m(lnthl") dr .

n-oo a"
Under the same condition, they also show, one may choose the
generating kernel’s transform to be yw(t;p)=(1+ |71”)"", so that the

sequence of generated kernels is fully efficient relative to J.. That is,

n

lim

n—-o gy

| e )
nK = N + 7y ! .
M= |+ ey ar

(To see heuristically that w(z; p) is efficient, note that for large n,

nd)o(t)
1+ (n— Ddo(?)

wal(t) = ~(1+|t/al’)" = y(t/an;p) )

The result (1.4) cannot be extended without modification, however and
indeed it is not generally true that M, ./J, will converge to 1.

The kernel for w(z;p) is easily expressed when p is an even integer;
otherwise one might use the equivalent Fourier series estimator (Wahba
(1981)). Wahba (1981) and Hall and Marron (1988) provide results similar
to (1.4) and discuss a cross-validation approach to choosing p. Hart (1988)
also considers algebraic tail behavior and its effect on the MISE of
ARMA-type estimators of a density.

We begin by extending the class of Watson and Leadbetter (1963). For
example, let f; be the standard gamma (@) density and

)= % 1B B =)

Then one may easily determine that for large ¢

o0 ~[ 2 65 exp (i) | 7.
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which factors into an algebraic component and an oscillating component.
This suggests the following definition.

DEFINITION 1. A probability density fis a member of &, if
(1) lim [6(5)/{(D) = x ()| =0,
where (ii) { is nonincreasing on [0, %), p > 0 and for all y > 0,

(1.5) lim {(y0)/{(1) =y,

and (ii1) x is the Fourier series for a bounded summable complex function g
over a countable set & of real numbers.

When (1.5) holds one says that { is regularly varying at « with
exponent — p/2. Algebraic variation is a special case.

Although the definition of &, is in terms of ¢, it actually represents
a smoothness class for f. The class is more specified than, say, the Lipschitz
class considered by Ibragimov and Khasminskii (1983) and by Stone (1983)
but with it we obtain precise asymptotic results and not just bounds. A
density f will satisfy Definition 1 (see Cline (1988b)) when, for some m > 0,
Vs absolutely continuous for j < m, £ is discontinuous and there exists
a set of singularities @ at which £ " (or the distribution function if
m = 0) varies regularly in a uniform sense. Specifically, for each x € @7,

lim o[V + 1) = fN@0]/E) = g ()
lim 7 "[ £V (x) = " x - 9]/ = g-()

10
In this case, a = p/2 — m and
g(x) =T (1 + a)i"["gu(x) + & ™ g (%)].

The function g thus measures the magnitude of the roughness at the
singularities of £ " while p measures the index of smoothness. When £
is simply discontinuous at x € &, then we may choose g to be the function
of jumps, a to be 1 and {(z) to be asymptotic to ct™ ', ¢ > 0.

The case that g is zero at all but one point x demands special
attention. This occurs when £~ is relatively smooth at all points but x.
Then ¢ is regularly varying itself and has no periodic oscillations. Watson
and Leadbetter’s (1963) results apply only to such an example.

We are now ready to describe the asymptotic behavior of J,.
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PROPOSITION 1.1. Suppose f€ F,n, p> 1. Let x, the Fourier series
for g, be as in Definition 1, let yo = |x|*, g0(0) = % lg(x)|* and let a, satisfy

(1.6) lim ngo(0)|{(an)|* =1.

1
Then there exists 4= lim J, Lro(tw)g0(0)| " du < 1 and

n A o=
lim —— J, == [ (1 + |¢) dt .
lim == g =—— [ (14 J1")

Furthermore, A = 1 if and only if g is nonzero at exactly one point.

Watson and Leadbetter’s result is an example of the special case A = 1.
The definition (1.6) for a, effectively inverts the function {, which will be
necessary for any convergence to hold. Condition (1.5) entails that a, =
1(n)(go(0)n)"”, where I(yn)/I(n) — 1 for y > 0, and thus the optimal conver-
gence rate will be I(n)n"" . (If £ is simply discontinuous, then we may
choose /(n) = 1.) We will further discuss the convergence rate in the second
section.

We provide the exact limiting behavior of M, , when the kernel is
chosen from an appropriate class, defined next. As tradition suggests and
Cline (1988a) demonstrates, we may limit the discussion to symmetric
kernels.

DEFINITION 2. A bounded symmetric kernel x, with Fourier trans-
form y, is a member of H,, p > 1, if

V(k) :f_z K(x)dx = %f_‘: Y (1) dt <

and |7|””*(1 — w(#)) is bounded. In this case, we define (see also Lemma
3.9)

| L
(1.7) B,(<) = | 11171 = y ()

For k € &2, p/2 is called the order of the kernel. If k is bounded,
integrates to 1, has moments up to order p/2 and the integer moments with
order less than p/2 vanish, then k € &, (see, e.g., Lukacs (1983), p. 23).
However, some proposed kernels, while in K, for all p, are not even
integrable (e.g., the kernel for the Fourier integral estimator investigated by
Davis (1977)).
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The definition for B,(x) relies on knowledge of . In Lemma 3.5,
however, we will provide an alternative definition involving integrals in .
We now state the asymptotic behavior of M, ..

PROPOSITION 1.2. Suppose fe F,, and k € F,p, p> 1. Let a, be
defined by (1.6), cu = can and kn(x) = cak(cnx). Define accordingly, M, .. =
MISE ( f). Then, locally uniformly in c,

(1.8) lm — My e = cV(K) + ¢ "B (x) .

n-—oo an

Furthermore, the limit in (1.8) is minimized if and only if k has Fourier
transform w(t;p) = (1 + |t|”) " and ¢ = 1. In this case,

n 1 =
lim — M, .= — 1+ 7)) 'dr .
im o= I a+ ey ar

n-—oo aVl

The parameter 4 in Proposition 1.1, therefore, represents the asymp-
totic efficiency of a sequence generated by the optimal kernel of Watson
and Leadbetter (1963) relative to the optimal sequence. In fact, a similar
argument verifies that A also represents the asymptotic ratios of the
integrated variances and of the integrated squared biases of the two
sequences. Interestingly, A depends only on g and p. In the next section, we
will give several examples and show that A can be arbitrarily small.

When kernels other than that of Watson and Leadbetter are used, an
optimal choice for ¢ minimizes (1.8). A corollary to Proposition 1.2
describes how this choice is related to the bandwidth which optimizes
MISE for a fixed sample size n.

COROLLARY 1.1. Let ¢ =[(p — 1)B,(x)/ V(x)]'"” and let M, ..o be as
in Proposition 1.2. Let M. = MISE ( f,) when the kernel sequence is given
by ka(x) =x(x/hy)/hy and hY is chosen so that MISE ( fr) is minimized.
Then

0
.
lim a,h=1 and lim 0 _ PV
= a, (-1

As Cline and Hart (1987) show, using results by Stone (1984) and
Marron and Hérdle (1986), the limiting behavior of the MISE given in
Corollary 1.1 also applies to the integrated squared error (ISE) when cross-
validation is used to choose the norming constants. Indeed, the cross-
validated bandwidths will be asymptotic to ).

The remainder of the paper is organized as follows. The next section
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presents a few comments on the convergence rate, on examples of densities
and on efficient practical estimators. The third section covers preliminary
results which are needed for the propositions, especially results involving
the tail behavior of ¢o. The final section demonstrates the proofs of the two
propositions and the corollary.

2. Comments and examples

In this section, we will discuss the convergence rate for J, and M, «
and how it relates to the optimal convergence rates described by other
authors. We also present several examples and calculate the efficiency
parameter A given by Proposition 1.1 for each. In addition, we briefly
consider possible data-based methods and the possibility of full efficiency.

2.1 Rate of convergence

When ¢o = |¢|” is algebraic of order p, Watson and Leadbetter (1963)
have shown that the optimal convergence rate of MISE is n'' . Our
results show that if ¢ damps according to a regularly varying function, the
rate is n'' ?”I(n) with slowly varying I(n). If m is the smallest integer
strictly greater than p/2, the density f therefore has m — 1 continuous
derivatives with """ being Lipschitz of order a = p/2 — m — ¢, for every
small positive ¢. (This follows from Cline (1988b).) If it exists, FAGET
discontinuous and possibly unbounded.

If one assumes, as is common, thatf"") be square integrable, then one
must have a=1/2. Taking the least smooth case, a=1/2, the optimal
convergence rate has exponent (1 — p)/p = — 2m/(2m + 1), and this agrees
with the optimal convergence rate obtained by Bretagnolle and Huber
(1979) and by Miiller and Gasser (1979).

Ibragimov and Khasminskii (1983) and Stone (1983) have determined
the uniform optimal rate of || f, — f ||, for classes of densities with f‘m_”
being Lipschitz (), a = p/2 — m. The class used by Efroimovich (1985)
assumes a generalized derivative f?"?? which is square integrable. In
either case, the optimal rate for MISE is n”*”¥"" slower than the
Watson-Leadbetter rate. The distinction, apparently, is in the function
class. For """ € Lip («) with bounded support, we possibly may have

lim o f" P x + 1) = TN < oo
T

but for f also in F,;; we will have

lim < S+ 1) = TN < oo
T

Thus the rates of decrease for the characteristic functions can differ
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(Titchmarsh (1948), Theorem 85) and so may the convergence rates for
MISE.

2.2 Examples

Watson and Leadbetter consider the gamma (v) density. The squared
modulus of the characteristic function is ¢o(¢) = (1 + £*)”, which is clearly
algebraic of order p =2v. Because ¢ is regularly varying, A= 1. More
generally, 4 = I anytime the density is algebraic near one point and smooth
everywhere else.

To obtain an example which oscillates, let { be a characteristic
function such that |¢|? varies regularly with exponent — p. Let ¢ be the
characteristic function for the location-scale-reflection mixture

8() = %, 5 exp (L)L (1/5)

For this example one has }1}2 |(2)/{(t) — x(©)| =0, where

N
x(0)= 2 g exp (itx) .

The value of 4 depends on { only through the value of p. The density for ¢
has just one singularity contributing to the rate p while fis a mixture and
has N such singularities. In fact, f needs only to behave like such a mixture
near the singularities and to be smooth elsewhere.

In a particular case, take N =2 and f; = ff> = 1. Then f has exactly two
singularities of the same order and

xo(2) = (g1 + g2) — 2g1g2 cos (|x1 — x2[1) .

One can easily show that only the value of p and y = 2g1g2/ (g% + g3) are
relevant in determining A. That is,

1 (=
/'Lz-;fo (1 —ycosw)”du.

This achieves its maximum (1.00) at y =0 (i.e., when /"™ has only one
discontinuity) and its minimum (.900) at y = 1.

For another example, assume f has N equally spaced and identical
singularities. Thus, gi= N "' and (without loss) x; = 2j. Then yo(2) =
[sin (Nt)/(N sin £)]’, go(0) = N " and for some finite A,

2ffr/2 sin’ sin” (N)

dtsAN“‘”’/”.
N sin’ ¢
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This example demonstrates that the efficiency parameter can be arbitrarily
small for any value of p > 1.

As a final example, let f be the (m + 1)-fold convolution of a uniform
density. Then ¢o(z) = (sin 7/1)*™** which satisfies Definition 1 with p =
2m + 2. Therefore,

I3/ (m+3/2)
- I'(m+?2) ’

_ I 2m+2
go(@) =), Isin ul™ du
1 (o 2
— -1 : -z -1/
7= go0)" o= [, Isin uldu = g0 (@)

This value is least when m is large (A =~ .63662).

2.3 Practical and efficient estimators?

Several authors have suggested data-based methods to achieve the
efficiency of the optimal generated sequence. Wahba (1981) offers a
Fourier series estimator which essentially uses the optimal transform
w(t; p) and which adaptively estimates a, and p (see also Hall and Marron
(1988)). This would be fully efficient if ¢y is regularly varying. The Fourier
integral estimator of Davis (1977) is another which does not require prior
knowledge of p, but it would sustain some loss of efficiency relative to
Wahba’s estimator. Efroimovich (1985) provides a minimax efficient esti-
mator (for a different density class) which likewise requires no prior
knowledge of the underlying class parameters.

More generally, the optimal kernel given by (1.2) depends on f and
therefore must itself be estimated. Thaler ((1974), p. 91) suggested an
adaptive Fourier series method, but found that as tail estimation of ¢ was
very poor, efficiency was not assured.

Consider, however, the kernel whose Fourier transform is

nxo(1){o(?)

O = (0 o)

and the corresponding estimator f,(x). Using the methods described in the
proof of Proposition 1.1, one may show lim MISE (f)/J. = 1. Of course,

Wn(?) still requires knowing the tail behavior of ¢o and for that reason,
practical versions may not be possible.
3. Preliminary results

The method of proof used by Watson and Leadbetter (1963) to obtain
(1.4), relies on the assumption that ¢y is algebraic. In fact, all they really
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require is that ¢o is regularly varying, i.e.

. ¢’0(yt) — P
111}2 $o(D) Yoo

for all y > 0. Since p > 0, this requires that ¢, oscillate very little: a strong
assumption. However, we will demonstrate that, whenever fe€ &, the
behavior for M, . depends on a sort of average behavior of ¢o. In addition,
if U has a bounded density o, then n(tU) ¢o(a.tU) will be shown to have a
limiting distribution for each ¢ and this will be exploited to determine the
behavior of J,.

For the following discussion, let (o= [{]%, xo= |x|* and go(y) =
% g(x)g(x — y) with support @, (g denotes the complex conjugate of g).

LEMMA 3.1. Suppose { satisfies condition (i) of Definition 1, with
p >0, and a, is chosen according to (1.6).
(1) Uniformly on compact subsets of (0, ), lgm ngo(0)o(ant) = 1*.

(i) For each ¢ € (0, p), there exists no such that for all n= ny and all
t>0, ngo(0)o(at) = (1 + )" +1°77).

PROOF. The first statement follows directly from (1.5) and (1.6) (c.f.,
Seneta (1976), p. 2) and the second from Cline ((1989), Lemma 2.1). I

LEMMA 3.2. Suppose y satisfies condition (ii1) in Definition 1 and o
is a bounded probability density, symmetric about zero. Then

%i}g f: o(w)yo(tu)du = go(0) .

PROOF. Let s be the characteristic function of 4. As t — oo, s(f)
vanishes. Therefore, by Parseval’s relation and Lebesgue dominated
convergence,

tim [ o(upzo(u)du =lim T s(0x)g0(x) = £0(0) - 0

LEMMA 3.3. Suppose y is as in Definition 1. Let U be distributed
with bounded probability density a, symmetric about zero. Then yo(tU)/
g0(0) is uniformly integrable and there exists a probability distribution H,
independently of o and with mean 1, such that yo(tU)/go(0) converges in
distribution to H, as t — oo. Furthermore, H is degenerate if and only if yo
is constant (i.e., if and only if g is nonzero at exactly one point).
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PROOF. Let g&’ be the j-fold convolution of go with itself. Since

0= L g |

X€ U

it follows that g&/(0)/(go(0))’ is the J-th moment of a unique distribution H.
In particular, H has mean 1. By Lemma 3.2,

}1}2]: a(u))(é(tu)du = g(0) .

And by the Frechet-Shohat theorem, we conclude that yo(1U)/go(0) con-
verges in distribution to H and the sequence is uniformly integrable.
Finally, H is degenerate if and only if g&*(0) = P |go(x)]* = g8(0), which

requires go (and hence g) to be nonzero at exactly one point. [J

LEMMA 3.4. Suppose f € F,, and define a, by (1.6). Let H and U be
as described in Lemma 3.3. Then, for each t >0, &,(tU) = n(tU) ¢o(ant U)
converges in distribution to H, as n — o, and is uniformly integrable.

PROOF. By assumption, and since |¢o/{o— yo| < [@/L —x|* +
20/ = xl,

lim [¢o(tU)/Lo(1U) = xo(tU)| =0,

almost surely. However, from Lemma 3.3, yo(aatU)/go(0) converges to H,
as n — oo. Thus ¢o(antU)/(g0(0){o(antU)) also converges to H. In addition,
by Lemma 3.1(i),

l&rg ngo(0)lo(atU) = (tUY ,

almost surely. We thus have that &,(:U) =n(tUY ¢o(atU) converges in
distribution to H.

Furthermore, ¢o/{o is bounded so that, from Lemma 3.1(ii), there
exists 1o and S such that

sup n[(tUY"" + (tUY “1¢o(antU) < S,

nzng

almost surely. Since u ‘o (u) is integrable for small enough ¢, it follows that
&a(tU) is uniformly integrable. O

Our final lemma provides an alternative definition for B, (k).
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LEMMA 3.5. Suppose k € 5, p > 1, with Fourier transform y, and
B, (k) is defined by (1.7). Let q, = 2I'(p) cos (pr/2). Assume K is integrable

andf_m |x”" 'k (x)|dx < o0. If p is not an odd integer, then,

Bw=q' [ [ (x=y" = Ix" = Iy Y x)x()dxdy .

If p is an odd integer, then B,(x) = (2/ 1) B,-1(k).

PROOF. By assumption, (1 — w(?))* is the Fourier-Stieltjes transform
of the finite signed measure K; = (6 — K)*(d — K), where K has density
and ¢ has mass 1 at 0. Calculating with Lebesgue convergence and
Parseval’s relation,

Lo Q= = 1P = P () dxdy
=[" 1% Katdn)
= lim I 1xlP e Ka(adx)

el0

=lim % f: cos (p arctan (¢/))(e* + ) *(1 — w())’dt

| B
=20 (p) cos (pn/2) | 111"(1 — w(®Y'ar

When p is not odd, the result follows from the definition of B,(x). When p
is odd, we note that the above impliesf_w |x|”~' Ka(dx) = 0, so that

B,(x) = lim sq;lgf:(IXIp‘s_l — |x|”™")/ eKa(dx)
- © a2 2
=[xl (p) sin (pm/2T'(1 = ) [, 131" e2(d) = = Bra() . O

In case, p is an even integer, the above result also follows from the
work of Cline and Hart (1987) combined with Proposition 1.2.
4. Principle results

In this section, we prove the two propositions and the corollary. As
Proposition 1.1 is more involved, we leave its proof until last.
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PROOF OF PROPOSITION 1.2. Assume k € S, with Fourier trans-
form y. Following Watson and Leadbetter (1963), M, . may be written as
the sum of two parts, the integrated variance,

_ L = _
Vi=— ) wte)(l = do(0)ydt,

and the integrated squared bias,

l ©
B, = E]_w(l — w(t] ) bolt)dr .
Clearly, since ¢, — oo,

4.1) lim —— ¥, = lim i I v = go(entyde = cV(x) .

n—oo n

Furthermore, this clearly holds uniformly for ¢ in a compact subset of
(0, ).

On the other hand, applying Lemma 3.4 with o(¢) proportional to
|2](1 — w(£))’, which is bounded and integrable,

(4.2) lim —— B, = lim é I (1 = w@)ndo(cand:

n-—oo an
1-p

¢ ® 24 (7
=10 -y yH@y)

=c'B,(x) .

That (4.2) holds locally uniformly is a consequence of the uniform
integrability of nt’¢o(cant) with respect to o(z). Equation (1.8) and its local
uniformity follows from (4.1) and (4.2).

Parzen (1958) and Watson and Leadbetter (1963) demonstrate that
w(t;p) = (1 + |¢|”)"" is the Fourier transform of a minimizing kernel. It is
also easy to show it is the unique minimizer. [

PROOF OF COROLLARY 1.1. From Proposition 1.2, we have locally
uniformly in c,

(4.3) lim —

n-« a,

M= CV(K) + Cl‘po(K) .

The limit is minimized by ¢° and therefore
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lim —— Moo = [p V()] (p — 1) .

n—oo an
Note that My, = My ...,z Let j, be increasing integers such that

(4.4) lim 4}/ a. = I’ € [0,0] .

Since (4.3) holds locally uniformly,

. 0 1°V(k) + (1% 7 B(x)
lim M)/ M .o=
wn M [ Vol (o - 1)

=[p-DI+1""Yp=1.

Since in fact the limit must be no more than 1, we conclude /= 1. This
being true for any convergent subsequence satisfying (4.4), the result holds
for the sequence itself. Both limits in the corollary statement follow. (1

We next demonstrate the asymptotic behavior of the minimum MISE,
Jﬂ-

PROOF OF PROPOSITION 1.1. Let H be as in Lemma 3.3. Since
p > 1, it readily follows from Lemma 3.3 and Jensen’s inequality that

A =1tim [, Lro(eu) o)) du = [ " H(dy) < 1

Indeed, 4 < I except when H is degenerate at 1 or, equivalently, when g is
nonzero at exactly one point.
We have from (1.3),

no = $o(h) _ néi(n
an J"_Zna,,f‘”lenqbo(t)[l 1+(n—1)¢0(t)]d"

Since a, — oo,

f“' no (t)

= (15 no))1 + (1 — Do) =

limsu
n—oo p 27[(1;,

1 e
< lim —— -0.
im ma, f_w bo(t)dt =0

n-—oo

Thus we need only consider the limiting behavior of
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S dt,

ey B

2na,” = 1 + neo(t) L+

where &£,(2) = nt’po(ant). We have

dudlt

E()+ ¢

(L+6) (= 1+ &)
=—=/"/ Ty 4 7

Consider the inner integral in this last expression. By Lemma 3.4 and
the fact that &, is symmetric,

4.6) fim [ e [ Y

n-eo g Y1 E(tuy+ 10

S H@).

In addition, for large enough n,

1 rl+e én(tu) - L1 e
fl En(tw) + 1 du < min [ 1,1 - fl én(tu)du]
<(1+e¢min(l,r").

Applying (4.6) and Lebesgue convergence to (4.5),

= limsup Q, = (”8) I f 5 H(dy)dr

n—o

Since ¢ is arbitrary,

hmsup — J,, <— f f H(dy)dt

n-oo +z"
ey © -1
_;fo YPHEy) [T+ ) dr
l el 71
=;f0 (1 + ") 'dr .

By a similar argument, the limit infinum obtains. O
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