Ann. Inst. Statist. Math.
Vol. 42, No. 2, 269-279 (1990)

A CLASSIFICATION OF THE MAIN PROBABILITY
DISTRIBUTIONS BY MINIMIZING THE WEIGHTED
LOGARITHMIC MEASURE OF DEVIATION*

SILviu GUIASU

Department of Mathematics, York University, 4700 Keele Street,
North York, Ontario, Canada M3J 1P3

(Received June 13, 1988; revised May 25, 1989)

Abstract. The paper reanalyzes the following nonlinear program: Find
the most similar probability distribution to a given reference measure
subject to constraints expressed by mean values by minimizing the
weighted logarithmic deviation. The main probability distributions are
examined from this point of view and the results are summarized in a
table.
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1. Introduction

As it 1s well-known, some main probability distributions have been
reobtained by maximizing the Shannon entropy or by minimizing the
Kullback-Leibler number subject to constraints expressed by mean values
of some random variables (Kullback and Leibler (1951), Jaynes (19574,
1957b), Kullback (1959), Ingarden (1963), Ingarden and Kossakowski
(1971), Guiasu (1977, 1986), Preda (1982a, 1982b)). To give only one
example, if the mean u and the variance ¢ are given, then on the real line,
in the class of all probability distributions compatible with x and ¢, the
normal distribution N(u, ¢°) maximizes the Shannon entropy. Thus, as the
Shannon entropy is a generally accepted measure of the amount of
uncertainty contained by a probability distribution, we see that the normal
distribution N(u, %) is the most random, or unbiased, probability distribu-
tion subject to the given constraints x and ¢”.

Generally, we are dealing with two types of constraints: a) Constraints
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of type 1. mean values, or moments, as global indicators imposed on a
probability distribution; b) Constraints of type 2: the rough shape of the
probability distribution as sketched by a reference measure.

The object of this paper is to summarize the constraints under which
the main probability distributions may be obtained by minimizing the
weighted logarithmic deviation from a reference measure.

2. The weighted logarithmic deviation

Let (2, 98) be a measurable space, w and Q two o-finite measures on
9B, and P a probability measure on &, such that P= Q= w, where =
means “equivalent to”. Throughout the paper, w is the weighting measure
and Q the reference measure. Let

p=dP/ldw and qg=dQ/dw
be the corresponding Radon-Nikodym derivatives. Suppose that 0 <p <
+o and 0<g< +oo almost everywhere. We write w=1 when Q is
countable and we have w({w}) =1 for every w € 2. On the real line, m,

denotes the Lebesgue measure.
The logarithmic deviation of P from Q weighted by w is

@.1) D(P:Q;w)=[pn (p/q)dw .

If Q is a probability measure, then D(P: Q;m;) on the real line, or
D(P: Q;1) in the discrete case, is the Kullback-Leibler number. Also,
— D(P: my, mr) on the real line, or — D(P: 1;1) in the discrete case, is the
Shannon entropy.

PROPOSITION 2.1. If Q is a finite measure, then
2.2) D(P: Q;w)=1n Q(Q)
with equality if and only if P is similar to Q, namely P= Q[ Q(£2).

PROOF. Inequality (2.2) is an immediate consequence of the inequality
(2.3) tlne=t—-1, (@>0),

with equality if and only if £ = 1.

Proposition 2.1 tells us that the logarithmic deviation of the proba-
bility measure P from the finite reference measure Q cannot be smaller
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than the non-negative number In Q(£). The lower bound is obtained when
P is in fact the probability measure Q/ Q(£2) induced by the finite measure
Q. If Q is a probability measure itself, then D(P: Q; w) = 0, with equality if
and only if P= Q.

Let = (1,60,,...,0,) be a numerical vector from R™! and let us denote
by h=(1,hu,..., h,) a vector whose components are measurable real func-
tions defined on (£2,98). The inner product in R""" is denoted by (-, ).
Suppose that the functions A; (j = 1,...,n) are P-integrable. We are inter-
ested here in the following non-linear program:

Program A: m}n D(P: Q;w) subject to:

2.4) 0=[hdp .

PROPOSITION 2.2. The solution of Program A is
(2.5) p=qe "

where the numerical vector t= (10, T1,...,7s) € R""' of Lagrange’s multi-
pliers satisfies the vector equality

(2.6) 0 =thef(”")dw .
For this solution we get

2.7 D(P: Q;w)= —(1,0).

PROOF. For any t, using either (2.3) or the simple inequality In x <
x — 1 (with equality if and only if x = 1), we get

(2.8) D(P:O;w)= —(5,0)+ 1 — [ge " Maw

with equality if and only if (2.5) is true. The right-hand side of the
inequality (2.8), as a function of 7, attains its minimum if (2.6) holds; but
(2.6) is immediately obtained by introducing (2.5) into (2.4). Finally, (2.5),
(2.6) and (2.8) imply (2.7).

Remark. The number n is called the order of classification.
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3. The classification of the main probability distributions

The method of minimizing the weighted logarithmic deviation from a
reference measure subject to some given moments may be used in order to
classify known probability distributions. The attached tables summarize
the constraints under which the main probability distributions may be
obtained by this optimization method. Each probability distribution
mentioned in the tables is viewed as the solution of the nonlinear Program
A subject to the constraints of type 1 (moments) and of type 2 (reference
measures). For each probability distribution, the tables give the domain of
definition £, the order of classification n, the measurable vector A whose
mean vector 6 represents the constraints of type 1, the density g of the
reference measure Q, and the weighted measure w. The row RBP contains
the relationships between the parameters involved (the mean values 6;, the
Lagrange multipliers 7;, and the standard parameters of the probability
distribution). The last row gives the expression of the minimum logarithmic
deviation D(P: Q;w) in terms of the standard parameters of the respective
probability distribution P of density p.

The evaluation of the integrals and series involved in the applications
of equalities (2.4)—(2.7) to the different probability distributions examined
in the tables follows the standard techniques from calculus (see Gradshteyn
and Ryzhik (1980) for useful standard formulas). As far as the special
functions are concerned, according to the usual notations, I" is the gamma
function, y is the psi (digamma) function, i.e. w=1I"/I, B is the beta
function, and { is the Euler-Riemann function. When € is the real line or
an interval on the real line, the corresponding measurability is taken in
Borel’s sense.

For each probability distribution, the tables give the classification
corresponding to the maximum order » and, in some cases of interest, even
for a smaller value of n. The order n of classification cannot exceed the
number of parameters of the corresponding probability distribution. Any
probability distribution with an analytical expression for its density has a
classification of order 0. The order of classification of a probability
distribution essentially depends on both types of constraints (the mean
values and the reference measure). Program A has been solved for some
constraints as simple as possible, but they are not the only choice. A simple
classification uses a reference measure and elementary measurable func-
tions {A;} that are independent of any external parameter, in which case the
mean values {6i} completely characterize the standard parameters of the
respective probability distribution.

In order to be more explicit, let us show, briefly, how the results
mentioned in the attached tables are obtained. Let us take the second order
classification for the gamma distribution (the first column of Table 2). In
this case
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Probability distributions

Normal Normal Exponential
p(x) (27[02)7 1/zev(ij’/(2n:; (2710'2)7 l/Ze*(x—u)Z/(ZUZ] ae ™
(¢>0) (6>0) (a>0)
Q (=00, +0) (=00, +o0) 0, + )
n 2 1 1
h(x) h(x)=x; h(x)=x hi(x)=x
ha(x) = x*
9 i 1o !
w mg me mr
RBP T = *01/(92“912); = ‘01/0'2; Tn=1/0y
= l/[2(82 - 012)], u= _0'21'1; a=1,
r= - n/2n) 70 = In [6(2m)"*] + 47/(267) = —Ina
o’ = 1/(272);
70 = In [0(27)"?] + 17/ 267)
Min dev —1In[c(2m)"1 - (1/2) —In[62n)"] + 4/ (26%) Ina-1
Table 2.
Probability distributions
Gamma Gamma Maxwell-Boltzmann
P) BT@) x'e™ [Fr@] s @fn)p e
(@>0,>0) (@>0,>0) B>0)
Q (0, + o) 0, + ) 0, + )
n 2 1 1
h(x) h(x)= —Inx; h(x)=x h(x)=x"
ha(x) =x
q(x) x—l xa—l xZ
w mr mr mL
RBP Tft2 =0y T =a/b; 71 = 3/(261);
Int—y(n)=05; =1t B=1
a=1 o=aln f+ InI'(a) 0= In (z'/4)
B=1/1 -@3/2)Inp
wo=alnf+InI(a)
Min dev ay(a)—a—InI(a) —alnf-Inl(a)—a In (4/7'*)

+(3/2)Inf—3/2
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=0, +), mx)=-Inx, h(x)=x,

g(x)=x", w=my.
The solution of Program A, given by (2.5), becomes
(3.1 pl)=x""le "™,

Denote a = 71, f = 1/72. Using (3.1), the constraints (2.4) become

1=/ p(x)dx = e pT(a),

0 = —fom Inxpx)dx=w(a)—Inp, 6, =f0mxp(x)dx =af .

There are numerical tables containing the values of the function
In x — w(x) (see Abramowitz and Stegun (1970), for instance). The mean
values 61 and 6, uniquely determine the parameters a and 5. We get

w=alnf+Inl(a),
and (3.1) becomes the gamma distribution
P =[FT(@] 'x e
The minimum deviation (2.7) is
DP:Q;w)= —to—1h — 26 =ay(a) —a—InT(a).

Looking at Tables 1-7, we can see that the constraints of type 2 are as
important as the constraints of type 1. The Cauchy distribution, for
instance, has no finite moments; therefore we cannot consider the mean
value of any polynomial as a constraint of type 1 and the only natural
classification for it seems to have the order zero.

As the optimization criterion for obtaining a probability distribution is
the same, Tables 1-7 allows us to see similarities and differences between
the main probability distributions by simply examining what kind of
constraints have been imposed in each case. Thus, the analogies between
the Rayleigh, Weibull and Maxwell-Boltzmann distributions are evident.
Also, we can easily notice the analogy between the negative binomial
distribution and gamma distribution (in the first order classification).

The minimization of the weighted logarithmic measure of deviation
does not only allow us to classify the main known probability distributions
but also opens the possibility of obtaining new probability distributions
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Table 3.

Probability distributions

Chi-square Beta Beta
p(x) R7Te21 e (1= 0" B(a, f) (1= 0" B(a, f)
(v> 0, integer) (@>0,>0) (¢>0,>0)
Q 0, +) ©,1) 0, 1)
n 1 2 1
h(x) h(x)= —Inx hi(x)= —In x; hi(x)= —Inx
)= —In(l~x)
q(x) x e [x(1—x)]" X1 = x)f!
w my my mL
RBP w(t)= —6—1n2 w(t+ 1) —w(t) =6 vt +pB)— w(t) =6
V=21 w(t + 12) — w(n) = 6 a=T1;
0=/2)In2+InT'(v/2) a=1; f=13 70 = In B(a, )
70 = In B(a, f)
Min dev v/ 2)w/2)—InI(v/2) —1In B(a, ) + ay(a) —In B(a, )
—(a+ Hy(a+p)+ py(p) ~ay(a+f)+ ay(a)
Table 4.
Probability distributions
F-distribution Weibull Rayleigh
ﬁ E -1 ﬂ w2 ni2-1 ( ﬁ )—1v|+v;)/2 a-1 -p°* —px*
p(x) [3(2,2)] (VZ) x l+v2x afix” e 2fxe
(v1 >0, v, >0, v, integer) ((Z >0,5>0) B>0)
Q (0, + o) (0, + ) (0, + )
n 2 1 1
h(x) hi(x)= —Inx; hi(x) = x° h(x)=x
ha(x) = ln( 1 +3x)
V2
q(x) 1 X! x
w my mp my
RBP y(—tu—-D)—y@m+1)—InW/v)=46; 71 =1/0 ‘51:1/01;
w(n)—w(t—t—1)=0y B=r1 B =1
n=2(t+t1);, n=2n—-1u-1); 7= —In (af) 0= —In (28)
o= In B(vi/2,v2/2)
+ (V1/2) In (Vz/ V|)
Min dev —1In B(i/2,v2/2) — (1 = vi/2)w(v1/2) In (af) — 1 In(28) -1

= [(v1 + v2)/ 2]w{(v: + v2)/2}
+ (1 +v2/2)y(n2/2) — In (v2/ 1)
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Table 5.

Probability distributions

Student-T Cauchy Pareto
P (14w v B(v/ 2,1/ 2)] A2 + x)] akx !
(v > 0, integer) “A>0) (a>0)
Q (=00, +0) (=00, +0) [k, + o)
n 1 0 0
h(x) h(x) =1+ xv)
g(x) 1 A+ x !
w my my mr
RPB w(t) —y(t—1/2)=0; 70 =In (7/4) = —lna—alnk
v=27 -1,
t0=(1/2)Inv+1In B(v/2,1/2)
Min dev —In B(v/2,1/2)—(1/2) Inv In (4/n) Ina+alnk

=[O+ D/ 2My{(v + D)/ 2} — w(v/2)]

corresponding to different constraints. It is striking in some sense that very
few constraints suffice to determine the main probability distributions.
Obviously, the class of such constraints, of both type 1 and type 2, may be
diversified. Let us notice, for instance, that with one exception (the beta
distribution), all the reference measures used in Tables 1-7 are unimodal.
But the present approach, based on the nonlinear Program A, enables us to
construct multimodal probability distributions as well. The relative modes,
if known, cannot be included among the constraints of type 1, but they can
be incorporated in the shape of the reference measure. To give only a
simple example, according to (2.5), the closest probability distribution (in
the sense of the logarithmic deviation D) to the bimodal reference measure
g(x) = 4x’(1 — x’) + 1, subject to the mean value 6; of hi(x) = x, has the
form

p(x) = [4x(1 — x*) + 1]e @™

where 7o and 7, satisfy (2.6).

4. Conclusion

By minimizing the weighted logarithmic deviation we can construct
the probability distribution which is the most similar to a given reference
measure subject to given mean values of some random variables. The main
probability distributions may be classified from this point of view. While
almost all these main probability distributions are unimodal, the procedure
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enables us to construct multimodal probability distributions as well, subject
to given mean values.
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