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Abstract. The M-estimate which maximizes a positive stochastic process
Q is treated for multidimensional diffusion models. The convergence in
distribution of the process of ratio of Q’s after normalizing is proved. The
asymptotic behavior of M-estimates is stated. We present the asymptotic
variance in general cases and in estimation by misspecified models.
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1. Introduction

Considering a parametric model of diffusion processes, we estimate
the parameter # from a realization X. It is well-known that the maximum
likelihood estimation with respect to the likelihood function is one of the
best methods for estimation (see Kutoyants (1984)). However, we can
hardly get clean data generated from the model in the strict sense, since it is
naturally practical to regard them as contaminated by some noises and
misspecification of the true model. One of the purposes of the present
paper is to investigate the asymptotic behavior of the maximum likelihood
estimators in the case where the true model does not necessarily belong to
the observer’s model. Lanska (1979) uses the M-estimation for one-dimen-
sional diffusion models and Yoshida (1987) shows the existence of the
optimal M-estimation using an influence function scheme. Then it is
important to investigate asymptotic properties of robustified M-estimators.
Thus, it is also in our scope. Bustos (1982) treats AR-models in such a
situation.

We treat multidimensional diffusion processes. Since pathwise re-
presentation of estimating equations with Lebesgue integrals is difficult, it
is necessary to define the estimating equation with “martingale” parts as
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well as bounded variation parts: our M-estimate &, satisfies

01, X, 0) = max Q(, X, 0) ,

where the positive stochastic process Q(¢, X, §) possesses a semimartingale
decomposition defined in Section 2. The minimum contrast method is
reduced to the M-estimation.

The ratio of likelihood functions, which is the Radon-Nikodym deriva-
tive dPy/dPp, plays an important role in investigating the asymptotic
behavior of the maximum likelihood estimator. In the ergodic case, the
likelihood ratio normalized by an appropriate function ¢r has locally
asymptotical normality: for u € R,

~ 1
dPs. 4] dPy= exp 3 (u, A7(0)) — EX (u, I(O)u) + Er(u, 0) |,

where Z{A1(0)| Ps} — Ni(0,1(0)), I(f) is a positive definite matrix and
&r(u,0) — 0 in Ps. Then one can show the asymptotic properties of the
maximum likelihood estimator not only for i.i.d. models but also for
dependent ones, LeCam (1960), Ibragimov and Has’minskii (1972, 1973,
1981), Inagaki and Ogata (1975), Ogata and Inagaki (1977) and Kutoyants
(1977, 1978, 1984). In our case it is also useful to consider the ratio of Q’s
about a particular 6, € @ defined by

Zr(u) = Q(T, X, 00 + dru)] (T, X, Oo) .

Even if the true model does not belong to some parametric model, the
expansion holds:

Z2(w) = exp | (.42 = - @ Tr + pr(e) |
&r— &, Ir—T
in probability
LA P} — L{®"*N}, N~ Nu(0,I) independent of (&, ,
pr(u) —0

in probability, where I” and @ are k X k positive definite random matrices.
Showing inequalities for the probability of large deviations, one can

prove that the random fields {Z7(-)} converge in law to some field Z(-),

which enables us to know very naturally the asymptotic properties of




M-ESTIMATOR FOR DIFFUSION PROCESS 223

maximum likelihood estimators, likelihood ratio test statistics and so on
(see Inagaki and Ogata (1975)). But it is sometimes difficult to verify them
for stochastic processes involving the calculation of Laplace transforms of
functionals on sample spaces. Here, we do not assume the large deviation
inequalities as in Kutoyants (1984). Instead weaker conditions are assumed,
of course ensuring convergence of estimators in the weaker topology than
his. However, the weak convergence of distributions of random fields
{Z1(+)} still holds under our assumptions.

In the following two sections we prepare notations and assumptions.
Section 4 gives asymptotic properties of M-estimators and convergence of
related random fields. As an application, Section 5 presents the asymptotic
behavior of maximum likelihood estimators based on misspecified para-
metric models. The last section is devoted to several examples illustrating
our results. Our argument is related to “non-ergodic” statistical inference.
For this notion the reader can consult Jeganathan (19824, 1982b), Basawa
and Scott (1983) and references in it.

2. M-estimation and notations

We discuss the problem of parameter estimation and the estimate of
the parameter 6 is based on the functional on C([0, 7] — RY

@.1)  O(T,X,0) =exp { fOTSi(X,, 0)dX, — % fOTR(X,, 0)dt ] ,

where Si, R are given functions defined on R?x @, and O is a bounded
convex domain in R*. We use the M-estimate § at which the functional
O(T, X, 0) attains its maximum in 6.

Let the true process X satisfy the stochastic differential equation

dXi= 3 VIX)dW! + Vi(Xydi, 1=i=d,
(2.2) "
Xo=1,

where W are independent standard Wiener processes. Even when we
consider a parametric model of diffusion processes, in general it is not
assumed that it contains the true one. To investigate the asymptotic
behavior of the M-estimator when the observed process X is generated by
(2.2), which does not necessarily belong to a certain parametric model, it is
useful to study that of the ratio of Q’s after normalizing about a certain
point 6:
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T S
2.3) Zr(u) = Zr(u, 00) = exp { J, 4saxi- =3 J, 4Ra } ,

where u € R*, A8i= Si(X, 00+ b""’u) — Si(X,0), 1 <i<d, AR= R(X, 6 +
b "’u) — R(X,8), and b= b(T) is a positive divergent function of 7. In
Section 4 we will study this.

Let us prepare the following notations. The summation sign is abbre-
viated for repeated indices unless otherwise stated.

(0) : an element of the probability space under consideration.

(1) 9:i=9/9x',6;i=29/36";9 =(d1,...,d4), d = (Jy,..., &)

Q) Va= Vidi, 07 (x) = Vi(x) Vi(x).

(3) L'=099;/2+ Vi.

(4) For a function f(x, 6) and u € R*,

A4f (x, 0., 0,) = Af(6:,02) = f(x,0:) — f(x,0)) ,
DV (0,u) = f(x,0+ b u) — f(x,0) — b U6 f(x,0) ,
DPf(0,u) = DV (0, u) — (2b) "Wt Ombnf(x,6) .

(5) Generator L= L9.. .
6) H=H(0)= H(x,0) = R(x,0)]2 — Si(x.0) V().

Remarks 2.1.
(1) Under (2.2),

T . T
oT; X,0) = exp | [ sviaws - [ v |

(i) L=L'9:=01"9:9;/2 + Vid.
For simplicity, the argument x and X, substituted for x of functions are
often abbreviated; e.g., Si(X:, 0) is often denoted by S; or Si(0).

3. Assumptions

This section gives some assumptions used later on. Assume that S; and
R are defined on R? x @, twice differentiable in @ and these derivatives are
continuous. Here {X} satisfies the equation (2.2). In the sequel we assume
for the true model (2.2) the existence of 8, € O satisfying all or some of the
following conditions.

CONDITIONS (B).
(BS0) sup I(l/b) fOT[si(X,,e) ~ 8Si( X, 0)[dX/ — Vi(X)dt]] — 0 in
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probability as T — oo,

T
(BH1) Cr:=sup ‘(l/b)fo O0H(X,,0)dt| are stochastically bounded,
0eO

Le.,

lim sup P(|C7| > A4)=0.
A=® 130

CONDITIONS (E).
(EH0) For each 8 € O, there exists an r.v. I'(0) such that as T — oo,

1 (T _
;fo [H(X.,0) — H(X., 6y)]dt — I'(6)

in probability. Moreover, I is attains its minimum zero in © only at 6o.
(EH2) There exists a random matrix I” = (I'ns) such that as 7 — oo,

Tt = — [ 680 H(X,, o)t — T,
mnT'_b o Ym¥n (t, 0) t—1mm,

in probability and I are positive definite a.s. .
(ES1) There exists a positive definite random matrix @ = (Pms) such
that, at 6o as T — oo,

T ..
Dyt = %fo (OmSi + 3iGm)(0S; + 9;Gr) v/dt — Dmn

in probability, where the functions G, are defined in the following condi-
tion (SOL). Put

I'r= (rmnT), Dr= (¢mnT) .

CONDITION (SOL). There exist functions Gm(x), m = 1,..., k, with
continuous differentials d:9; G, satisfying the partial differential equations

LGn(x) = omH(x,b0)
and

b2 Gu(X7) = 0
in probability as T — oo, m = 1,..., k.

CONDITIONS (T).
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(TS) For each &> 0, there exists a random variable § = d(g) > 0 a.s.
such that

1
lim P PE—
e [Iulsll3pb'/z 1+ |ul?

T . .
o DX, 60, w)d X! — Vé(X,)dt]‘ > ] =0.

(TH) For each ¢ >0, there exists a random variable 6 = d(¢) > 0 a.s.
such that

lim P} su
T~ [u| i T |u|

(Z)H(X,, 6o, u)dt ) > ] 0.

Remarks 3.1. (I) Conditions (E) are related to the law of large
numbers. If the underlying process X is ergodic, these conditions can be
easily verified.

(II) Conditions (B) and (T) are provided for regularity. For sufficient
conditions for Conditions (BS0) and (TS) with stochastic integrals with
respect to continuous martingales, the following lemmas are useful.

LEMMA 3.1. Let {fT(H) Oe F}, T=0, be a family of random fields
on F, a convex compact in R*. Suppose that there exist constants pandl
such that p > 1>k, and for any 0, 6, and 0,,

(1) E|fr(02) = fr(O)” = C|62 = Ou]',

@ ElfO)I’=C

(3) fr(0) — 0 in probability,
where C is a constant independent of 0, 0., 60, and T. Then,

sup | fr(6)] -0
Ge F
in probability.
In fact, (1)-(3) above ensure that { f7(6); 8 € F} converges in distribu-
tion to 0 in C(F) (see, e.g., Appendix of Ibragimov and Has’minskii

(1981)).

LEMMA 3.2. [If there exists a constant p > k such that for all a,m, n,
T . p/2
@) b_"E{[fO sup |0mSi( Xy, 8) VJ(Xt)lza’t] } —0,as T— oo,
8

2 T . . 5 p/2
) sup o[ [} sup 180,500, 0) Vi | < oo,
T 0
then, (BS0) and (TS) hold.

PROOF. Let K denote generic constants independent of 7. Let




M-ESTIMATOR FOR DIFFUSION PROCESS 227
T i i —
M(8) =], [546) - SO0[dX/ ~ Vidi], 0¢6.

Then, we have, with C-inequalities and Novikov’s moment inequalities for
stochastic integrals (Novikov (1971)),

Mr(0,) —

£l 5
. T . e
=5 pE‘fo ASi(01,02)[dX1' - Voldt]‘
_ T a0 1P
< Kb pZE{[fO 148461, 62) V| dt] }
_ T i p/2
< Kb'*10, - 01|pE{[f0 sup |0S:i(0) V| dt] }
0

<K|0,— 0,]"

and

—E‘ f ASi(0o, O)[dXi ~ Vodt]\

i
T . p/2
st"’E{[ J, sup 188:0) Vi dt] }
[4
~0.

Through Lemma 3.1, (BS0) can be shown.
Next for v € R* putting

1

_ b [Thog 112 i i
T J; DVsi(G0, b"0)d X ~ Vidd] ,

mr(v) =

for (TS) it is sufficient to show the convergence in distribution of the
random fields {mr(v); |v] <J} to 0. Let |vi| < |v2] <. Then,

I(1 + blva|*) "DV Si(6o, b202) — (1 + b|v1]?) ' DVSi(66, b 01)|
< |(1+ bloal )
{Si(0o + v2) — V70mSi(B0) — Si(fo + v1) + VT'0mSi(60)}|
+ {1+ blo) " = (1 + bloi|®) '}
{Si(B0 + v1) — Si(Bo) — VIOmSHB0)}] -




228 NAKAHIRO YOSHIDA
The first term of the r.h.s. is not larger than

(1 + blv2|*) oz = 01| |58 + &) — 5S5:(60)]
< (1 + blo2|®) o2 — 01]133S:(Bo + E)| | v2]

1
==b vy — v sup |368:(0)] .
4

The second term is not larger than
bllot]* = o2 (1 + blv2l*) (1 + blvi]*) ' |vi]? sup |55S:(0)]
2]

< b vy — vi| sup |65S:(0)|
[4

since

b(loi] + o)1 + blo2)) (A + bloi| ) o)

b1/2|02| b|01|2 -172 b|02|2 b1/2|01|

Sb—x/z
14 b|va)® 1+ bl 1+blw|* 1+bln)?

<b ',
Hence, for jui], |v2| <6
E|mr(v2) — mr(v)|? < K|v, — | .

Moreover,

LY 56800 + D) Vi

E|m(v)|” < KE [foT T+ b

2 p/2
dt ]
_ T N L
< Kb ‘”E[f0 sup [36S:(0) V| dt] -0.
0
Therefore, the weak convergence holds.
LEMMA 3.3. It is sufficient for Condition (TH) that

b [ sup |000H(X, O)ldr,  T=0,
g

are bounded a.s.
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The proof is easy and omitted.

(IIT) The partial differential equations in Condition (SOL) are
elliptic-type equations. The integrability concerning Condition (ES1) puts
restrictions on a choice of G.. If a parametric model in question is
correctly specified, Condition (SOL) can be eliminated for the maximum
likelihood estimator since d. H(X, 6o) = 0. A general procedure to get Gn
will be seen in an example of Section 6.

(IV) For many “non-ergodic” processes whose paths tend to infinity,
Conditions (E) are proven by a version of Doob’s martingale convergence
theorem for diffusion processes. Keller er al. (1984) proved this theorem
using convexity properties of coefficients of stochastic differential equa-
tions. To remove such convexity assumptions and to extend it to semi-
martingales are possible (see Appendix). This enables us to prove the
asymptotical mixed normality of likelihood ratios of semimartingales
within a general framework.

4. Asymptotic behavior of M-estimators

First, we show an in probability convergence theorem for M-estimators.

THEOREM 4.1. Suppose that (BS0), (BH1) and (EHO) are satisfied.
Then, as T — oo,

Or — 6,
in probability.

PROOF. Let

1 1

YT(e) = ; lOg Q(T, X> 0) - ; log Q(T3 X) 90) s
T . .

M(8) =, 4S(60,0)[dX! ~ Vid] and
T

N1(6) = [, AH(60,0)dt .

Then,
Yr(0) = - Mr(0) — - No(0

(0) = Mr b (0) .

For arbitrary 6,,6, € 0,
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1 N1(6,) — % Nz(0)) ‘

@.1) p

’ bf (5H,(03)dt‘ 16, — 61

= Cr(w)|0: - 6, ,

where {Cr(w)} is a stochastically bounded sequence of nonnegative r.v.’s,
independent of #,,6, by Condition (BHI1). The inequality (4.1) and that
Nr(6o) = 0 ensure that the family of distributions of {Nz(-)/b} on C(O)
with sup-norm is tight. Consequently, the limit 7'(f) are continuous
functions on @ with probability 1.

Let ¢ and # be any positive numbers. For any positive d, one can take
a finite subset {6,} in @ such that balls {# € @; |0 — 0,| < 5} cover O. For
each 6 € &, choose 0,4, which is one of the closest points to 6 in {6.}.
When J is small enough, we have

P(1CH sup 16~ unl > 013 ) <213
and

P sup 17@o) ~ TO1 > i3 ) =23
by continuity. Since

P ( z ’ % Nr(6) — T'(6)

>;7/3)§£/3, for large T,

4.2) P( sup
0e®

—I—NT(H)—f(H)‘ >;7)

b
1
< P( sup ’ b Nr(0) — — NT(9n<0>) >n/3 )
1 ~
+ P( sup | — N1(0uo) — I'(On0) | > 1/3 )
0e® b

. p( sup 17 (0u) ~ F(@)] > /3

<ec.

Therefore,
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4.3) sup

fed

1 _
+ Ni(0) - r(a)‘ —~0

in probability.
It is sufficient for the proof to show that for any neighborhood U of
o,

lTim P( sup Yr(f) — sup Yr(0) >0 ) =1.
el fe U*

OeU

Let ¢ be any positive number. For each w and T, there exists a 6, (w, T) € U°
such that

sup Y7(0) < Yr(0i(w, T)) + ¢ .
fe U’
Hence,

4.4) P( sup Yr(8) — sup Yr(6)>0 )
OelU e U

> P(— Yr(6i(w, T)) > ¢)
> P(F'(6\(w, T)) > 2¢)
- P(Yr(0i(w, T)) + T'(01(w, T)) > &)

< P(ﬂigjf f(0)>2g)
—P(zg[@) | Yr(0) + T'(6)] >£).

As we have from (BS0) and (4.3)

sup | Yr(0) + T'(6)|
GeO

1 ~
<sup ?MT(Q)’ + sup ‘ —II)—NT(H)—F(H) { -0
fe @ fed

in probability, by (4.4)
liminf P( sup Y7(0) — sup Y7(68)>0 )
T felU felU’

2P( inf,f(0)>28).
e U’
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When ¢ | 0, the r.h.s. of the above inequality tends to 1 as 6 is the unique
point at which I'(#) is minimum from (EHO). This completes the proof.

The asymptotic behavior of the ratio of Q’s after normalizing is given
by the following theorem, which is a generalization of locally asymptotic
mixed normality appearing in “non-ergodic” statistical inference.

THEOREM 4.2. Under Conditions (TS), (TH), (SOL), (EH2) and
(ES1), the following expansion holds: for each u € R,

1
log Z1(u) = u" Amr — > U u' Dy + pr(u)

where pr(u) — 0 in probability, (r,I't) — (9,I') in probability, Z{Ar, Pr,
I't|P}— Z{®"’N,®,I'} and N ~ Ni(0, k) independent of (D, T).

PROOF. By definition,
ZT(U) = Q(Ta X’ 00 + b‘l/Zu)/ Q(Ta X’ HO)

T S ) .
= exp {fo 485:(00,00 + b / w[dX; — Vodt]
T -1/2
~ ], AH(80,00 + b u)d }
Therefore, by using Ito’s formula, we obtain
12, i T i i
log Zr(u) = f SmSHONAX! — Vidi] + [, DV S0, ) dX — Vilds
W [ H(Bo)dt — (2b) ' [ Smn H(O0)
T
- fo D® H(6o, u)dt
=b"" fOTa‘,,, Si(Bo)[dX! — Vidi] — b U Gm(X7)
+ 5 U G(Xo) + b f 9 Gm(X)[dX! — Vidi]
. T T , )
— @by W [ S, H(B0)dt + [, DVSi(60, w)dX{ — Vildt

T
~J, DPH(@Bo,wdt (3 (SOL))
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m 1 m n
=uU Amr— 7u U Tnnr + pr(u)
where
i [T i i
Ar=b"" [ [6nS:(60) + 8, Gm( XI[dX: — Vidi] ,

Tonr=b"[ 6,6, H(G0)d.
mnT — o YmOn ( 0) t»
pr() = — b U Gu(X1) + b U Gl Xo)

T . . T
+J, D860, wldX: ~ Vidi] [, DPH (B, wdt .
For any positive ¢, let 6 = 6(e(1 + |u|*)™"), then since

P ( ’ [, DPH(6o, wyat ‘ > )

< P(|lu| > 8b"%)

1 T e
+ D® H(8,, &) dt ‘ >—),
P(.c?é‘a‘iw i o DVHO O | > s

by (TH)
[ D H (8o, wydt ~ 0
in probability as T — co. Similarly, by (TS)
[, DSi(00, wldX: - Vide]) - 0

in probability as 7 — oo. Therefore, Conditions (TS), (TH) and (SOL)
imply that for each u,

pr(u) =0
in probability. On the other hand, (EH2) and (ES1) yield that
(Pr, 1) ~ (P, T)

in probability. By a martingale CLT and the stability of the weak con-
vergence, we have Z{dr, &1, It} — L{D'’N,®,I'} and N~ Ni(0, L)
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independent of (@, ") (see Aldous and Eagleson (1978), Feigin (1985) and
Yoshida (1987)).

It is easy to show the convergence of finite dimensional marginals of

{Zr(-)}.

We now proceed to the distribution of M-estimators. Define

B.={ueR" |ul <c},
Br={ueR" |ul<c,b+b"ued} and

wr(d, ¢) = sup |log Zr(u2) — log Zr(wy)| .
luz=w| < )
wi,u2 € Ber

Then, for large T, B.r= B-..

LEMMA 4.1. Suppose that (TS), (TH), (SOL), (EH2) and (ES1) are
satisfied. Then, for each ¢ >0 and ¢ >0, as 6 — 0,

th—r{.} Pwr(d,¢)>¢€)—0.

PROOF. From Theorem 4.2,
[log Zr(uz) — log Zr(u1)|

2
< |w — il |41l + Bluz — wi| |Tr| + Z | pr(u)]

where B is a constant. Therefore,

P(wr(d,¢c) >¢)
< P(|47| > ¢/46) + P(|I'7| > ¢/4B5)

+2P( sup | pr(u)| >£/4).

ue€ Br

Using (TH) for 6 = d(e(1 + ¢*) '/ 16),

T
J, D H(00, wyd1 ‘ > ¢ 16)

P( sup

lul<c

< P(c>db"?)

) " DO H(06, w)dt ’ > ——‘-g—)
0 ’ 16(1 + ¢)

+P( sup (1+ |ul®)"
|u|<db"
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-0

in probability. Similarly, by (TS)

T . .
P( sup ‘ fo DM Si(6o, w)[dX! — Vidi] ‘ >e/l6)—» 0

{ul<c

in probability. Since

l}qrpw P( sup | pr(u)| >£/4)=O

ue€ B
by the above and (SOL),
lTi__xg P(wr(d,¢) > ¢)

< lTi__rg P(|47| > ¢]45) + ;1__:2 P(|T'r| >¢/4B5) .

The sequences of the r.v.’s 47, I'r converge in distribution, and so
%@01 lTl_rg P(wr(d,c)>¢e)=0.

LEMMA 4.2. Suppose that Conditions (TS), (TH), (SOL), (EH2) and
(ES1) hold. Then, for ¢ >0, as N — oo,

Eré P( sup |log Zr(u)| >N | —0.

ue Br

PROOF. As in the proof of Lemma 4.1, it is easy to show the
negligibility of pr(uw) by (TS), (TH) and (SOL). Conditions (EH2) and
(ES1) ensure the convergence of Ar and I'rin distribution, which concludes
the proof.

LEMMA 4.3. Under Conditions of Section 3 for each ¢ > 0,

limIﬁP(sup Zr(u)>c):O.

¢=® T-oo lul=c

PROOF. Since I is positive definite for a.s. w, for any & >0 there
exists an & > 0 such that P{A4(e;)} = 1 — &1, where

1
A(e) = I w; &|ul’ qumunfmn for all u € R* ' .
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Let
1 m_n
rr(u) = 5 U d (Ln — Donr) + pr(u) .

Then,
(L+ ul®) re(u)l
1 1
<— X | T — Donrl + = b 2| Gu( XD
2 mn 2 m
1
+7b 1/2§|G,,,(Xo)|
-1 | [T A i i
(U Y| [ DS, wldX: — Vidi]

T
+(1+ Jul®)! [fo DY H(6o, u)dt ‘ )

Conditions (EH2), (SOL), (TS) and (TH) yield that for any & >0, there
exists & = d(e3/4) such that l1m P(S(T,6)) = 1, where

S(T,g):{ w; sup (1+ [ul?) IrT(u)|<a3}.

lu|<db

Let &3 < &,. For w € S(T,0) N A(e2), when |u| < 5",
m l m._n
log Zr(u1) = 1 Amr — 5 WU Ty + re(u)

1
< umAmT* Tumun mn +£3(1 + |u|2)

< |u| |47 — e2]u|* + & .

Then

P{ sup  Zr(u) = exp (— &r’/2)

r<|uj<éb'?

< P{S(T,0)} + P{A(e:)°}

+P{ sup (|u||AT|—gz|u|)+83 —827’2/2]

r<lu |<
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< P{|47]| > 2e:r} + P{r|dr| —exr’ + &= — &2r%[2} + &1 + 0(1)
<2P{|{4dr| >erf/2 —&/r}+ e+ o(1).

Let ¢ and y be arbitrary positive numbers and let & = ¢/3. When r is large
enough so that

exp (— £2r2/2) <y

and
1;@ P{|41| > err|2 —e3/r}<e/3,
then
MP{ sup ZT(U)>)/}§8.
T—oo r<|ul<8b"
Now,

lTi_mP[ sup ZT(u)zy]
it i< ful

5h' < |u

- 1
=lim P[ sup Yr(@o+h)2——logy]
T-o =< Al b

= P[ sup (—f(00+h))zo]:0,
3= |h
in view of the proof of Theorem 4.1 and (EHO). Therefore, one has

@P[sup ZT(u)zy]Ss.

r<iul
This completes the proof (see also Section 84 of Strasser (1985)).

Let Co(R") be the Banach space of continuous functions on R*
vanishing at infinity with sup-norm. We extend Zr(u) to a function of
Co(R*) which has its maxima inside Br= {u; 0o+ b"*u e O}, using the
same notation. Using the weak convergence of finite dimensional marginals
of the random fields {Zr(-); v € R*} and Lemmas 4.1-4.3, the convergence
in distribution of the sequence can be proved.

THEOREM 4.3.  Under Conditions of Section 3,
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v . k
Zr(-)— Z(-) in Co(R") as T— oo,

where

1
log Z(u) = u"4,, — 5 "' o
(4n)=®'’N, (N is given in Theorem 4.2) .

The weak convergence theorem is available for investigating the
asymptotic properties of M-estimators and test statistics related to them.
Inagaki and Ogata (1975) mentioned to various applications including
likelihood ratio tests, AIC and so on.

Let Gr be a point at which Zr(x) is maximum in {u; 6o + b *u e @}
and & be a point at which Z(z) is maximum in R*. From the weak
convergence of the random fields {Z7(-)}, one has

ar--a=I"'4.
THEOREM 4.4. Suppose that Conditions in Section 3 hold. Then,

b0 — 00)| Py — LT 4},
A4=0""N,
N~ Ni(0,1)  independent of (®,I").

In particular, if ® and I’ are deterministic, the limit has the normal
distribution N0, '®I"™").

If we estimate 6 with a correctly specified model, it is possible to
eliminate Condition (SOL).

5. Estimation by misspecified model

In parameter estimation it is known that if the parametric model
contains the true one, the maximum likelihood method is effective; e.g., in
the sense that it is asymptotically minimax in some class of regular
estimators. So, if an observer assures himself that his parametric model is
correct after consideration, he should estimate unknown parameters
maximizing the likelihood induced from it.

As is well-known in the extensive literature of robust estimation, the
maximum likelihood estimator is sensitive to contamination of the data
and misspecification of the model. The aim of this section is to study how
the difference between the true model and the parametric model affects the
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asymptotic behavior of the maximum likelihood estimator. Let the
observer’s parametric model be defined by

dx; = ﬂ'zl ANX) AW () + ANX,O)di, 1<i<d,
(5.1) -
Xo =n.

Then the likelihood function based on the observation {X;;0<:< T} is
given by the following formula:

5.2 [T Absaydxi— [ diay b

(5.2) exp}J, AovaidX{ —5 ) Aoaij Asdt |,

where (aj) = (a”)" (the symmetric generalized inverse) and a’j:ﬁgll A} A,

Liptser and Shiryayev (1977). Since in our words this is Q(7, X, 8) with
Si=Afa; and R=Aja;A{,

we are ready to answer our problem. Though it is easy to extend it to more
general cases, we confine ourselves to the ergodic case for simplicity.

PROPOSITION 5.1. Let X be ergodic and stationary with invariant
distribution v(dx). Suppose that there exists a 0y at which

I j i i
0| 3 4O GAIO) - 4OV Vi
1 , . .
- ? A(l)(Ho) a,,A(’)(Ho) + A(I)(H())ay Vi ] dv(x)
has a unique minimum and I" with components

o= [ ymncdv(x)

where

Y = (Om A0(00)) @(5n A(6o))
+ (OmOnAb(Bo)) as[ A(6o) — V],

is positive definite. Moreover, suppose the following conditions:
(1) Vs, Va, aj and maxima of Ao and their derivatives up to the third
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order with respect to 8 belong to ﬂl IP(R v).
(2) There exist functions G such that (3;Gn)’ V" € L'(R% v) and

LGy = (6mAo(00)) as[ A§(60) — Vi] .
Then convergence of distributions of random fields Z+(-) holds and
LT (01— 60)| P} — Nu(0, T '0I™")

where @ = (D) with
B = [ (Om AB(Bo) aip + 3 GO Al(Bo) sy + 3, G v () .

If the parametric model contains the true one, (2) above is not
necessary as G, =0, and the maximum likelihood estimator is consistent
with asymptotic variance I' ', the reciprocal of Fisher information. The
integrability in (1) can be weakened.

Thus far we have used Ito stochastic integrals. Another approach is to
formulate our problem using Stratonovich’s symmetric stochastic integrals.
It is convenient when a stochastic integral is regarded as a limit of integrals
with respect to smooth stochastic processes (see Wong and Zakai (1965)
and McShane (1972, 1974)) and also when one treats diffusion processes on
manifolds, as in navigation problems. In ordinary cases the two formula-
tion are equivalent and it does not matter which integrals are used. But this
is not the case when the true model is misspecified. If the observer rewrites
(5.1) in the Stratonovich form, the estimate would be different from the
previous one because their estimating function differs under the true
model.

Consider a family of stochastic differential equations

dxi= 'zl AH(X) o dWHe) + AUX,O)dt, 1<i<d,
(5.1) -
Xo= v,

where o stands for the Stratonovich integral. In accord, let the true
process be described by

dx; = ﬁl ViX)odWt) + Vi(X,0)dt:, 1<i<d,
(2.2) “
Xo = n.

For the maximum likelihood estimator corresponding to
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T _ . 1 r7T _
O(T, X,0) = exp [ fo Si(X.,0) 0 dX! — ) fo R(X.,0)dt ]

with

= 1 - —.1_
v a (| A+ @b |a),
we have a similar result to Proposition 5.1:
LT (Or — 60)| P} — Ne(0,T '@ ")

where

Do = f o PiBVV(dx)
Fon =], (0 A GnA) a5 — [ L' — L'(00)[0m6n Abas]}o(d)

with 6, in place of 6,

o 1 - —
VoVa+ Vo, L'(0)=-——AgAs+ Ao .

L= 2

1
2
Here v?, a; and v are naturally defined and ¢ are functions satisfying

L'¢i= L'(6o)(0m A Ts) .

For details see Yoshida (1988b). In particular, if the parametric model
contains the true one, the asymptotic variance is I ' where

Fon =] (5 AL)(B0 Ad) agvi(dx) .

6. Applications

This section gives several examples to illustrate our results.
Non-ergodic models. Consider the following one-dimensional linear
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diffusion process
dX,= = {0X.dt+dW,,

where 6 is a positive parameter and { is a positive random variable
independent of o{W(r); t=0}. We observe (X,{) to estimate 6. The
maximum likelihood estimate is obtained by maximizing

O(T, X, 0) = exp { fOT— (OX,dX, — % forczozxfdz } .

The process X is ergodic for each given { with invariant measure v;(dx)
whose density is ((8/7)"* exp ( — (0x). If 6, is the true value,

¢

LT At 0yt — F= -4
T /o "’ " 46,

(0 — 6oy’

a.s. and consistency holds. The asymptotic distribution of the maximum
likelihood estimator is the mixture of norma! distributions N(0,260/¢) by (.
In this example the reader may have the property directly through the
explicit representation of the maximum likelihood estimator

br= [ txax, / INST3

If we do not observe the value of { and estimate 8 e.g., replacing by , the
mean of random variable {, the consistency fails.

Another example of a non-ergodic model is a non-linear diffusion
process defined by

dX;:[g(Xg)+0f(X1)]dt+dm, X02x0>0,

where 8 >0 is a parameter, g and f are uniformly positive functions such
that their derivatives up to second order are bounded, g’ + 6f” > 0 for large
x and

limg(x)/x=1 and lim f(x)/x*=1,

for some a, 0 < a< 1. As t - oo, X; — o with probability 1 (see p. 117 of
Gihman and Skorohod (1972)). Moreover, from Appendix it is known that
there exists a positive random variable K and X,/7, — K a.s., where #, the
inverse of the map
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X —»j:[g(u) + O0f ()] 'du .

See also Keller et al. (1984), where they show this with the convexity of
coefficient functions of stochastic differential equations. In this example,

T
bT:fO ”tzadts

r (60— 60)’K* and

1
2
I'=K*™.

S

Hence, the maximum likelihood estimator has consistency and asymptotic
mixed normality with random variance I' ' = K .

Robust estimation. Consider a one-dimensional ergodic and station-
ary diffusion process defined by

dX, = a(X)dW, + f(X,0)dt

Xo = X0,
where @ is a parameter in a bounded interval @ of R'. The coefficients f
and o are smooth, o is positive and W is a standard Wiener process. Let X
be stationary and ergodic with stationary distribution v(dx, ) when 8 is

true. To construct the robust estimator, we may use the M-estimate with
the estimating equation

T
M(T,0) = [ w(X,0)di =0,
where y has to satisfy
f: w(x,)v(dx,0)=0

for Fisher’s consistency. The integration of M(T,0) with respect to 6
corresponds to the logarithm of Q:

10g Q(Ta X3 9) = _fOTH(Xh e)dt s

where H(x, ) :=f0 w(x,8)deo.

Let the true realization X be generated by
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dXt = Ul(Xt)dm + UO(Xl)dt .

Xo:xO.

Let v be the stationary distribution of the true model, whose density is
proportional to

201 %(u) exp (B(u))

where B(x) = fox 201 (1) vo(u) du. Then 6, is a solution of the equation

| w(x.0)v(dx) =0
Set
G(x,0)= =] exp (= BO)dy | 20, 0)v1w) exp (Bwy)du,
Gi1(x) = G(x,60)

satisfies the equation

1
( vo(x)d + > vi(x)d’ ) Gi=y(x,6).
The functions " and @ are given by

r={" 6y(x,00)v(dx)

and
@ =] 190G\ (0 uix)v(dx) .

The asymptotic variance of our M-estimator is @/I"".

An approach to robust estimation is to construct a bias robust
estimator for contaminated stationary distributions. Considering the infini-
tesimal contamination of v(-,#) an influence function is defined as

IF(x, . v(+,0) =T "y(x,0) .

Our task is then to seek for a function ¥ under boundedness of influence
functions so that its asymptotic variance is not bad compared to the
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maximum likelihood estimator even for data free from contamination. One
can construct a robust ¥ from f and o as in Yoshida (1988a).

Parameter estimation with a one-dimensional diffusion model observ-
ing data generated from a two-dimensional diffusion model. Let realiza-
tion of a process be governed by a second-order stochastic differential
equation

Xz +aX,+ bth: I’I/t

where a and b are positive constants, f° = b> — a’/4 >0, and W is a white
Gaussian noise. Let

X1t X 0 -1 0
X = = ( .1, K= ( X and B= ,
X2t X: b a 1

it is equivalent to the first-order vector stochastic differential equation

To illustrate the case where the degrees of the true model and the
observer’s parametric model are different, we now assume that the observer
will fit a one-dimensional diffusion model

(2) dXz = - thdt + th 5

to realization, where @ is a positive parameter.
Let

o1 - A 0
C:( ) M(t):C‘l(eXp( ! C
1 0 exp (— A1)

and

1 —exp (—241) 1 —exp(— (A +42)0)

4 24 At A .
Z@=C ¢,
1 —exp (— (41 +42)0) [ —exp (= 240)

A+ 225

where A, =a/2 +if and A =a/2 — if are the eigenvalues of K. Then the
transition probability density of the two-dimensional process defined by (1)
is given by
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- -1/2 1 -1
pi(x, ) = 2n) | 2] exp { — 5 = M@OXZ@) (v - M()x) ] :

The degenerate diffusion described by (1) is ergodic (see Arnold and
Kliemann (1987)), and its invariant measure has a density, the limit of

pi(x,y) as t — oo,
-1 -12 1 1
p=(y) =Q2n) "|2] ' exp —5y2 Y
where
(1/2ab2 0 )
o 126)

Our observer may estimate the unknown parameter 6, for example,
with the M-estimator corresponding to

(T, X,0) = exp { - %for(ﬂzx%, — B)dt } :

which is an asymptotically equivalent version of the maximum likelihood
estimator derived from (2) if it does generate data. A simple calculation
yields that 8, = ab’. To obtain G, consider the Neumann function

NG, =], [pix,») - pe())d

Then

Gi(x) =) _ | N(x,y)0H(y1, 00)dyidys
=¢o+ Cnx:f' + ciaxi1x2 + szxg ,
with

—a* +24°b* + 8b°
165%ab* ’
a' - 3d’b* — ap*
88° ’

c2= —a and

Co =

Ci11 =
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Cn = — 1/2 s
satisfies
2.2
LG, =ab X1 — 1/2 .

where
1
L= b) (52)2 + x201 — (b2x1 + ax))d, .

It is easy to show the degree of concentration

-2

f:f: [92G1 ()] P (x) dx1dx2 {fif_(: Xipw (x)dx1dx;
=2ab*(d" + b*) .

Testing hypotheses. Consider a test H:0 =6, against K:0 =0, +
b "*u, ue U, where U= {u e R*; Au= &} for fixed fullrank matrix 4 and

vector ¢. The map f— sup f(u«) is continuous on Co(R"). By the continuity
uel

theorem, if 6, =60, and Q(T, X,8) is a likelihood function of a correct
model, the log likelihood ratio statistic

ar=2log | sup O(T, X,0: + b™%)/ O(T, X, 61|

uel
converges to

sup2log Z(u) = AT 'A — (A4 — EY(AT ' A’y (AT '4 = &)

uelU

in distribution under Ps. Locally asymptotic mixed normality and conti-
guity argument yield that under Py, 7= 6o+ b "*h, h € U, gr converges
weakly to

(4 +ThYT" (4 + Th)
— (AT "4 + Ah — EY(AT'AY (AT '4 + Ah — &) .

Constructing likelihood ratio tests of asymptotically size-a and calculating
the Pitman power are easy using these results. A similar argument is
possible for nonlinear restrictions. For other applications of convergence of
the likelihood ratio fields including AIC, see Inagaki and Ogata (1975).
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When misspecified models are treated, likelihood ratio tests may have
no asymptotic property. Consider diffusion processes with deterministic
drifts defined by dX; = fa,dt + dW, and testing H:0 =0 against K:0r=
T "?u, u+ 0. If the true model is dX; = b,dt + dW,, then it is easy to give
cases where the likelihood ratio statistic Q(7, X, 67)/ Q(T, X, 0) converges
to 1, o or no value.

How does misspecification of the true model influence the size-a
likelihood ratio statistic testing H: 0 = 0 against K:0 =6, + b *u,ue U, a

subset of R*, when 6 = 6,? Since gr converges in law to sup 2 log Z(u),
uelU

P{ sup 2 log Z(u) > c. } is an error of the first kind, where ¢, is determined
uel

by Py, { lﬁg gr > Cq } = @. This differs from a, of course. As an example, let

the true model be ergodic with invariant measure v satisfying
dX,=[C(X,,00) + D(X))dt + dW,

where 0 is a scalar parameter, and let the parametric model used for testing
be

dX; = C(Xz, e)dt + sz .

Here assume that D(-) is orthogonal to the linear span of the family
{C(-,0)} in L*(R,v). Then g7 has asymptotically y*(1)-distribution under
Py, Let ¢, be its a probability point. On the other hand, for the true model
gr converges to I’ '@N? in distribution, where

r=[@c@yydv, &=[(5C()+ G dv,

G is a solution of Lu= — DJC(f) and N is a standard normal random
variable. The error of the first kind is asymptotically P{y*(1) > I'® 'c.}.

It is also possible to calculate the Pitman power for tests with
M-estimators.
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Appendix

Here we state an a.s. convergence theorem which serves to show
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convergence of conditional Fisher information in non-ergodic statistical
inference.

Let (2, F, P) be a complete probability space with filtration (F), t = 0.
Let X = (X(¢), F), t = 0, be a continuous semimartingale defined on it with
canonical decomposition

X()=X0)+ A1) + X(2)

where X ¢ is the continuous martingale part of X and A4 is a locally
bounded variation process. Set C, =<(X*),. Consider the following condi-
tions.

(Al) There exists a function b of class C'((0,%0) x [0, ) — (0, )
such that A(1) = [ b(X(s), 5)ds.

(A2) X(0)=x0=0.
Set

G, 1) = b7, ) du

(A3) G(oo,1) =00, t €0, o).
The mapping p: (x,t) — (G(x, t), t) is one-to-one and let p™'(z, 1) = (H(z, 1), {)
be its inverse. We borrow the notation of Keller et al. (1984), i.e., for a
function f(x, £), f is defined by

fan=1(p"'z1).

(A4) There exists a non-negative measurable function a(x,f) on
(0,0) x [0, %) such that dC, = a*(X(s), s)ds.
Let Bi(z,t) =[a/b] (2, 1), B:(z,1) = (1] 2)[bid*/ b*T (2, ©) and K(x,s) = G/(x, 5)
= Ba(x, s).

(AS) Xlsigcno K(x,s)=0.

(A6) B is bounded and there exists a positive constant do (0 < do < 1)
such that

limsup sup |Bi(x,s)/ Bi(0x,s5)| <o,
X, 5= do<d<l
and if g = (1 + 50)/2,f0 Bi(gs, s)dx < oo.
(A7) There exists a positive function L such that L is regularly
varying with a finite exponent, extremely monotone, f L(x)dx < and
| K(u,s) — K(v,s)| < L(u A\ v)|u — v| for large u, v, s.




250 NAKAHIRO YOSHIDA

(A8) fol K(s, s)ds converges as t — oo.
(A9) l%r_n H(z,t) = ce.
Let A(?) be a positive function, %1_m h(t) = oo, and let

P(h) = {II; IT be defined on (0, ) x [0,o0) and for any non-
negative function a(¢) such that r = lim a(¢)/ h(£) > 0
exists, lim I7(a(2), )/ (h(¢t),t) >0 exists and this
becomes a function of r} .

If we treat functions which are independent of ¢, P(h) is properly larger
than the class of functions that are regularly varying with finite exponents
and extremely monotone.

(A10) b(x,1) belongs to P(z).

THEOREM A.l. Suppose that (A1)-(A9) are satisfied and l,ifn b(x, 1)/

x = A. Then X(t)]u(t) converges to exp (AW) a.s. on {X(t) — =} as t — oo,
where W is a random varia~ble and u(t) = H(1,t). Moreover, if . =0 and
(A10) holds, [ X(2) — u(0)]/b(t,t) converges to W a.s. on {X(t) — oo} as

t — oo.

For its proof and a general version for semimartingales see Yoshida
(1987).

Remarks. (1) In (A6), “ sup” can be replaced by “limsup” and the
[2

h=o<1 atrl
second inequality by fo sup Bi(x,s)dx <o. If B, has only the space-
520

argument and decreasing in it, (A6) is satisfied.
(2) For (A9) it suffices that

liminf inf b(x,2) >0 .

{—oo Xo=X
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