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Abstract. This paper deals with the derivation of an exact expression of
mean characteristics of planar global Gibbsian point processes having
pair potential functions. The method is analogous to that of the Mayer
expansion of grand partition functions, i.e., the reciprocal of the normal-
izing constant of Gibbsian distribution (well-known in statistical physics).
The explicit infinite series expansion of a logarithm of a class of mean
quantities with respect to the activity parameter z is derived and the
expression of its coefficients is given. The validity of this expansion for a
range of z is also shown. Examples of mean characteristics to which this
expansion can be applied are given. Finally, a simple numerical example
is given in order to show the usage of this expansion as a numerical
approximant of mean characteristics.
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1. Introduction

Statistical analysis of spatial point patterns has made an impressive
advance as summarized in the book of Stoyan et al. (1987). This is mainly
based on the progress of the theory of spatial point process as an abstract
mathematical framework. Through these researches the importance of the
Gibbsian point process as a model construction principle has been widely
recognized. Besides the fact that it has a long history as a genuine physical
model, the attractive feature of the Gibbsian model is that it can offer a
variety of complex point patterns starting from simple potential functions
which are easily interpretable as attractive and/or repulsive forces acting
among points. Formally, a Gibbsian process is defined by giving its
(conditional or unconditional) likelihood explicitly. Although this likeli-
hood is apparently very simple, it includes a considerable combinatorial
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complexity. This complexity is indispensable in a sense, since the likelihood
must represent all of the mutual dependencies among points, but presents
difficult theoretical as well as numerical problems. As to the partition
function =, i.e., the reciprocal of the normalizing constant of the likeli-
hood, physicists have developed a method to derive a series expansion of
log & called the Mayer expansion; i.e., the expansion in powers of the
activity (fugacity) parameter z, which is feasible for numerical evaluations
in several cases. Ogata and Tanemura (1984) applied this expansion to
compute the maximum likelihood estimator of potential functions.

On the other hand, in the second order statistical analysis or the
nonparametric analysis of the Gibbsian process, one sometimes needs to
compute various mean characteristics of the process or its Palm distribu-
tion. Presently almost all these quantities are calculated as corresponding
sample quantities of simulated point patterns, since theoretical computa-
tions are laborious or, simply no such methods are known. Without doubt,
the simulation method is flexible and indispensable in the practical analysis
based on Gibbsian models. But, at the same time, we cannot forget that the
generation of a Gibbsian point pattern is asymptotic in nature and is a
delicate technique. A useful, though possibly not easy, way of assessment is
to compare simulated quantities with corresponding theoretical ones.

In this paper we will show that Mayer’s method is also applicable to a
certain class of mean quantities and will derive expansions of their
logarithms. It is important to distinguish between the fugacity or activity
expansion and the Mayer expansion of a quantity f. The first means the
expansion in powers of z of fitself and the latter is the expansion in powers
of z of the logarithm of f. In some cases the Mayer expansion has a simpler
structure than the corresponding activity expansion and, hence is more
suitable to numerical works. Our result is particularly applicable to mean
characteristics such as nearest neighbor distance distribution functions and
spherical contact distribution functions, which are basic in stochastic
geometry; their theoretical expressions for the Gibbsian process have not
been known. Also we will give a complete concise expression of all
coefficients in terms of certain cluster integrals associated with block
graphs of arguments. Higher order coefficients may be of little practical
importance, but still have some theoretical interest.

The idea of the activity expansion (or the virial expansion which is
closely related to it) of mean characteristics, especially of correlation
functions important in physics, is never new in physics. For example,
Ruelle (1969) discusses a special calculus on formal series and derives the
activity expansion of correlation functions. However, this is not the Mayer
expansion but the expansion of a correlation function itself. Coefficients of
this expansion are not explicitly given and seem not to be simplified
further. Westcott (1982) applied the underlying idea of the activity expan-
sion to get bounds on the distribution function of the minimum nearest
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neighbor distance of hard disk systems on the surface of a sphere. The
virial expansion of some characteristics such as a radial distribution
function can be derived from that of a pressure using a physical relation
(see Grandy (1987), Chapter 9). This also leads to an expansion of a
characteristic, but not of its logarithm. An exception is the remarkable
paper of Minlos and Pogosian (1977). They considered an expansion which
is essentially the same as the formula (3.4) below, but without taking into
account the conditioning by outer configurations. Also they neither discus-
sed its relation to mean characteristics nor gave its explicit expression.
Finally, it must be stressed that all existing results deal with means in
the physical sense. In physics it has been the custom to take first expecta-
tions with respect to a Gibbsian process on a bounded region and then take
their limits as a region expands (thermo-dynamical limits). This is concep-
tually very different from ours, that is, expectations being taken with
respect to global Gibbsian processes from the first. Although our intuition
suggests that two viewpoints yield the same objects under appropriate
conditions, this change of viewpoints is never a mathematical pedagogism
and requires an additional analysis. Many basic concepts in stochastic
geometry can be defined and justified rigorously only when we take
account of stationary or motion-invariant, hence necessarily global, proc-
esses. An example is the nearest neighbor distribution. It can be defined
rigorously only with respect to the Palm distribution of a stationary point
process. Furthermore, we will show the validity of expansion with respect
to global Gibbs distributions for a certain range of the activity parameter.

2. Hard-core Gibbsian point process

Let B and B, be Borel sets and bounded Borel sets of R”, respectively.
The set of locally finite (i.e., intersections with every sets in By are finite)
subsets of R is denoted by .#. .# is endowed with the o-field & generated
by functions Ng(u) = #(u N B), B € Bo. Also let g, G € B, be the sub-o-
field of & generated by functions N, Be B, and BC G.

Let @: [0, + o©) — ( — oo, + =] be a measurable function (a pair poten-
tial function) which satisfies the following conditions:

(Al) Hard-core condition: There is a constant ro such that @(r) = + o
forO=r=r,.

(A2) The following integral exists:

oo — D
Co:fo le ®" — 1|rdr .

(A3) There is a non-increasing function @o(r), r=ro, such that
|®(r)| = Po(r), lim r’®o(r) = 0, and




206 SHIGERU MASE
a1 =f’ r&o(r)dr <co .

Using the constant ro above, we define the space .# of subsets of R’
every two points of which are apart at least ro. We will need the following
estimate in the sequel.

LEMMA 2.1. If{x.} € . and R = mnin | Xn| = ro, then the inequality

‘El ®(|xa]) ‘ < e2®1(R)

holds, where ¢; = n/((n]3 — \/3/4)r3), R = m>1p | xn| and

®.(R) = R*®o(R—0)+2 ] rdo(r)dr.

PROOF. Consider two disks D;={x; |x| <s}, s=ro and D,. The
radius of D, is ro and its center is on the boundary of D,. The intersection
D: N D, is divided into two parts D{ and D3 by the segments combining
two intersection points of boundary circles. Assume the center of D; is in
Dj. The area of D{ has the minimum value (/3 — V3 /4)r§ when s = ro. Let
T(s) be the number of points x, which are in D;. From the preceding
remark 7(s) < cas” for s = ro and T(R) = 0.

Let R’> R be a point of continuity of @,. Fix a sequence R = s, < 5,
< - <sp= R’, then

n-1
S = iz Z{D(Ixal)l; 8i < | Xn] <5041}

_ =

< 'S Bo(s)[T(sien) — T(s)]

t

—_ =

= X [Po(si-1) = Po(s)] T(si) + Po(sn-1) T(sn)
n-1
< s @o(si-1) ~ Po(s)] + c25:Po(sn-1) -
Since this is valid for all {s;}, S’ is majorated by

e [ R®y(R) — [ Sdo(s) ] .

Applying the integration in parts formula for Stieltjes integrals (see, e.g.,
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Saks (1937), Chapter 3), and letting R’ — oo, the assertion follows.

The interaction U(x) and the mutual interaction U(y;v), u,v € # are
defined by

1
U(u) = 72{¢(|x—y|); X,y €U, x#y},

U(u;v) = Z{D(|x — y|); xeu, y e v}.

Empty sums should be taken to be zero. From the preceding lemma the
interaction U satisfies the stability condition, that is, for every finite u € 4,

2.1 Uw = — bip,

where the stability constant b can be taken to be ¢;®i(ro)/2, for example.
Note that U(u) = e if u ¢ .#,. Furthermore, if u € .# is finite and v € .#,
then

(2.2) [U(u;v)| < 2bBu .

This estimate (2.2) follows if we apply the estimate of the last proof on
each sum 2 {®(|x — y|); yev}, x €.

Note that U(u;v) = oo if either u ¢ .#o or R < ro. Denote {xi, x2,..., Xn}
by (x)» and dxidx::--dx, by d(x).. Also we will use notations (x); =
{x2,..., xn} and d(x); = dx;--- dx,. Define functions

y(w) =exp (- U(W),
w(u;v)=exp (— U(w;v)),
w(ulv) =w(@Ww(wv).

For V positive z, V G € By and V u € .#,, the grand partition function
Z 1s defined by the formula

23) E=E@z26uNG)=1+ % [ y(@uN 6)d@n,

which has a finite value because of (2.1) and (2.2). Actually, = is a
polynomial in z because of the hard-core condition. Now we can state the
definition of a Gibbsian point process.

DEFINITION 2.1. (Preston (1976) and Nguyen and Zessin (1979)) A
point process P =P, . on (#,% ) is a Gibbsian point process corre-
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sponding to the potential @ and the activity z if the conditional probability
P(A| ) is given by

@4 =1+ £ 2L (@U@ 6Dp@nln 0 69do

P-as. uforV GeBoand V A € &. Equivalently, P is Gibbsian iff, for all
measurable, non-negative functions a(x, u),

@5) [, Z he P =z, h(x U s (331 deP ()

A point process P is said to be stationary (resp. rotation-invariant) if
P(A), A € &, is unchanged for every translations (resp. rotations) of 4. If
P is both stationary and rotation-invariant, it is said to be motion-
invariant. The existence of motion-invariant Gibbsian point processes for
every z = 0 and @ with conditions (A1)-(A3) is proven in Preston (1976).
Also it can be shown that these P are supported by .#, because of the
hard-core condition (Al).

Remark 2.1. In literature, the activity is also called a fugacity (see
Grandy (1987)). Also the constant — log z is called a chemical potential
(Grandy (1987)), or a chemical activity is Stoyan et al. (1987).

3. Mean formula for Gibbsian point process

In the following the symbol x4 denotes both an element and a random
element in .#. Many mean characteristics of a Gibbsian point process are,
or contain as parts, expectations of the form

3.1 E[ IT g(x) } .

Xep

Our aim is to express this expectation in terms of @ and z so as to obtain a
numerically calculable formula. This will be done by applying Mayer’s

device to conditional means in place of the unconditional one E{ IMg(x) }
H"

itself. The function g(x) should satisfy the condition (A4) below and can be
fairly arbitrary. Several important examples will be given in the last
section.

Let ¢, and ‘@, be the sets of all labeled graphs and all labeled
connected graphs on {1,2,...,n}, n=> 1, respectively. With each H € L;J@,,

we associate a real number, a weight, W(H). Let F, be the sum of W(H)
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for V H € <6, and f, be the sum of W(H) for V H € “@,. The next lemma,
the first Mayer theorem, enables us to express F,’s in terms of simpler f,’s.

LEMMA 3.1. (Uhlenbeck and Ford (1963)) If a weight W has two
properties:

(1) W(H)) = W(H.,) if Hi and H, are equivalent up to labeling and

(2) W(H) =11 W(C) where the product goes over all the connected
components C of H, then

oo n

Z = Z
1+ X F”;!—:eXp(Elf"E)‘

In another word, F, = Y.(fi, f2,..., fn) where Y, is the n-th (complete
exponential) Bell polynomial. Bell polynomials have the generating function:

n n

i t >t
exp ( n; Xn ;) =1+ n§1 p~y Yu(x1,e..y Xn) .

Also we will need partial exponential Bell polynomials B, which are
defined by the generating relation:

o n

{ A
CXp ( u Z Xn _) = 1 + E _{ Z uan’k(x],..., xn—k+l) .
n=1 n! n=1 p! { k=1

As to the definition of Bell polynomials, see, for example, Comtet (1974).

Denote exp ( — @(}xi — x;])) — 1 by ¢; and let ¢pu(x), be the product of
¢y for all edges (i, j) of a graph H € ¢&,. Define the weight W, for each
U € My by

WuH) =], b0y (()n; 120 G)d()n

Also let ¢(x). be the sum of ¢x over all H € @,. It is easy to see that W,
satisfies conditions of the first Mayer theorem and, hence,

(3.2 logZ=v gl rz"

where v is the area of G and r, = r.(®, G, N G°) is given by

1
(3.3) ] # (n 1 O GY
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Next, let g(x) be an arbitrary function with the condition:
(A4) there is a bounded and non-increasing function go(r) such that

1£6) — 11 = goIx]), lim go(r) = 0 and [, rgo(r)dr <=

Under this condition, ¢3 :f: |g(x) — 1|dx < oo. Also, we can show by the
same argument as in the proof of Lemma 2.1 that rfel |g(x) — 1] 1s absolute-
ly convergent and bounded for V u € .#,. Hence l;[;(x) is a.s. well-defined

and bounded. Corresponding to the previously defined =, we consider
Ep=E(D,z,G,u N G°) given by

1+3 % [ Mgy (lu N G,

which has a finite value and is a polynomial in z. The appropriate weight
associated with = is

WiH) = [, () bn(x)ny (Dn: 1N G (),
and the first Mayer theorem gives the expansion
3.9 log Z;=v §1 rmZ",

where r;, = ri(g, @, G,u N G°) is given by

1

3.5) !

J - M) (s 11O GY ()

THEOREM 3.1. The conditional expectation of I;IGg(x) given Hg
"

for every G € By has the Mayer expansion
(3.6) E{ 0l g(x)|ggc}=e)<p( 3 532—)
unG n=1 n!
P-a.s. u, where 6y = 5(g, @, G, N G°) is given by
6 8L et - 1] 6@ (@ un 69den.

PROOF. Note that, from (2.4), this conditional expectation is the
ratio =/ =. Hence (3.6) follows from (3.2) and (3.3). Also the relation (3.7)
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follows from (3.3) and (3.5).

Let &%, and o, be the sets of block graphs on {I,2,...,n} and
{0, 1,2,...,n}, respectively. Recall that a graph H is a block iff H as well as
all the subgraphs with n — | vertices are connected. The set of tree graphs
on {1,2,...,n} is denoted by Z,. Also, we will need the set @, consisting
of connected graphs on {0, 1,2,...,n} whose restrictions to {1,2,...,n} are
still connected. Denote g(x;) — 1 by g:.. It is convenient to denote g;: by o
and to extend the definition of ¢u(x). for graphs H on {0, 1,..., n}. Define
three quantities &y = en(g, @, G, u N G°), 70 = y(D, G,u N G°) and B =
BAD, G, N G°) by

J & [ u, Su(x)n ] W (s 1N G)d(x)n
1
‘U‘fGn¢(X)n!//((x)n; “N GYA(X)n

e[ #n [ v w0 690,

respectively. We should consider 7! to be 1.

THEOREM 3.2.  The limits
bo=timdt [ [ 2 b | dn,
en=limer =] [ L, ul), ] d(x)n ,
yn = lim py ZfRM [ HEZ% Du(X)n ] d(x)n,
pu=lim =] .. [ Lz, $ulon } d(x),

as G t R’ exist and are independent of uforV e #o, hence, for P-a.s. .

PROOF. We will give the proof of the case of J, since others can be
similarly proven. Let ||g|| = sup |g(x)|. Then ||g|| = 1. The inequality

(3.8 Mgt~ 1] = £ gl st < gl £ e
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is valid. The following estimate is known (see Duneau et al. (1975)),

(3.9) [Pl <" 2 T |yl

HeZ, (i,))e H

From (2.2) we can show that |y ((x).; # N G°)| is bounded by ¢*”" and
is convergent to 1 as Gt R? for each (x),. On the other hand, since
#Z,=n"", we have

(3.10) Jolgd T T ¢yld(0. = n" 200 e

HeZ, (i,j)e H

Hence J, = lim 6, exists from the dominated convergence theorem. It is
obvious that J, is independent of u € .#;. Hence the assertion has been
proven.

Although integrals which define J,’s are numerically calculable in
principle, their integrands involves too many summands as soon as n
increases slightly. Hence it is desirable to express them by relatively simpler
quantities such as &,’s and f,’s. This will be done by employing the idea of
the second Mayer theorem. Define auxiliary functions:

Cx) = Zmd'nl, B = I puin,
R(x) = xC'(x), S(x) = B'(R(x)) .

THEOREM 3.3. (Second Mayer theorem) The following relations
hold.

(3.11) R(x) =xexp (S(x)),
(3.12) 3 5,,"—’:: 3 e x—':exp (nS() = 2 = (R
n=1""pl a1 pl n=1 pl

PROOF. The first equality is the so-called second Mayer theorem and
enables us to express y,’s in terms of f,’s. Its proof is given in Uhlenbeck
and Ford ((1963), Chapter 2). Also a simpler proof is given in Harary and
Palmer ((1973), Chapter 3 and Theorem 3.1). Although the last proof is
given for the particular weight W= 1, i.e., the labeled counting, it can be
easily generalized to weights satisfying conditions of Lemma 3.1. We shall
prove (3.12) along the style of Harary and Palmer’s proof. The key is the
concept of rooted graphs and the technique of rooted graph enumeration.

Consider the weight
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[ () it He U @,
W(H) = )
[ bnnd(xy it He U@,

Note that the last integral is independent of x;. Fix an H € @,. If two
subgraphs H: and H, of H are blocks and have two vertices in common,
then their union is also a block. So, there is the maximal block subgraph of
H containing (i, j) for each edge (i, j) e H. Hence H can be decomposed
into block subgraphs, every two of which have at most one vertex in
common, and the vertex 0 belongs to only one of them. From this remark,
we can show that H can be decomposed uniquely into Ho, Hi,..., Hx, 0 < k,
such that

(1) Hoe Bomforl <Im<n,

(2) each H;, i=1, is connected and has just one vertex #0 in
common with Hy and

(3) every two of H;, i =1, have at most one vertex in common which
is also a vertex of Ho.

Moreover, it can be shown that W(H) is equal to the product of
W(Ho),..., W(Hy).

The function S(x) can be interpreted as the exponential generating
function of sums of weights for rooted, connected and labeled graphs
where the root is unlabeled and just one block subgraph contains the root
(see the proof of Theorem 3.1 of Harary and Palmer (1973)). Therefore the
exponential generating function of J,’s is equal to

eS8 (05 ) (5 2

=1 pllm=0\m/{i=t jj! Jn=1 !
where
(1) the second sum chooses m vertices vi,...,0, out of non-zero
vertices of Ho from which rooted connected graphs Hi,..., Hy hang,

(2) the sum with respect to j; selects the number of rooted connected
graphs which hang from the vertex v;,

(3) S(x)” stands for the labeled enumeration of j; rooted connected
graphs while their roots are unlabeled (because they are identified with v;)
and

(4) the division by j;! means that j; graphs are unordered.

The last relation is equivalent to (3.12) and the proof is completed.

COROLLARY 3.1. Functional relations (3.11) and (3.12) are solved
explicitly as: for n = 1
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1

(3.13) yn=— Yu-r(nf2, nfs,..., nfr) .

(3.14) 5;1 = i;} EiBn,i(la 2)’2, 3)’3,---, (n —i+ l)yn—i+l) .
PROOF. Let

k

- Y
S = CXP(kZIﬁkﬂ F) ,
then £(0) = 1 and
FOY =1+ Z 2 Vi, nfss. )

The equation (3.11) can be rewritten as y = xf(») and this functional
equation can be solved uniquely by Lagrange’s inversion formula as

2 _
X d n-1
= —+... n=\|— n
y=px+p s, , D (dy) S

=0
(see Harary and Palmer (1973), Chapter 1). Now y must be equal to R(x)
and hence p, = ny,. On the other hand, p, = Yu-1(np2, nPs,...,nP,) and the
first assertion follows.

Next let fi(x) = x". From the differential formula of composite
functions

Ms

x=0 k

[T e

d Bui(Prse, Pa-ks1) fon (0)
X 1

{m!Bn,m(pl,...,p,,mH) if m<n,
o if m>n.

Hence, substituting power series expansions of R(x)" into the right-hand
side of (3.12), we can show (3.14).

For example, the first several y,’s and J,’s are:

yzzﬂz, y3:ﬁ3+3ﬁ22, J/4:ﬁ4+ 12ﬁzﬁ3+ 16ﬁ23,
s = Bs + 2024 + 15(Bs + 103) B3 + 12565 ,
6 = P + 30825 + 60(fs + 663) fa + 540B2(B3 + 4B3) 5 + 129665
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di=e, Or=e+2he, =&+ 6Be+3(fs+3pNe,

Os =4+ 128263 + 12(fs + 4B3) e + 4(Ba + 126285 + 1683)e1 ,

Os = &5+ 208284 + 30(Bs + 585)es + 20(fa + 15255 + 2563 ez
+ 5(Bs + 208284 + 1563(Bs + 1087) + 12583)e; .

If we let g(x) = exp ( — @(|x|)), then & = f;+1. Therefore

S1=P2, 62=Pi+2Bi, S3=Ps+9B:f3+9B3,
0s = Ps + 1624 + 12(fs + 863) B + 6453 ,
Os = s + 25285 + 50(fs + 567)Pa

+ 12582(3B5 + 10B3) s + 62563 .

Finally note that, if we introduce the scale parameter ¢ and replace

g(x) and @(r) by g(o 'x) and &(r/ o), respectively, then J, and ¢, will be
multiplied by ¢*, and , and y, will be multiplied by ¢*" .

4. Mayer expansion of global mean

The family of o-fields {} is decreasing to the tail o-field Fw as
G ' R®. Therefore, from the reverse martingale convergence theorem,

1
G1R?

m | T g(0| T |=im [ oS }/ 1,0 ]
~E{ 11z |

for P-a.s. u. Hence we expect the formula of the Mayer expansion of the
global mean, that is, the unconditional mean, of IT g(x) to be:
M

n

4.1 E{I;Ig(x)}:exp(glén%).

But, so far the derivation of the expansion (3.6) is only formal. In this
section we shall show that (4.1) is valid at least in some region of z.

THEOREM 4.1. The Mayer expansion (4.1) is valid at least in the
region z < 1/ (coe™™ | gll). If the potential @ is non-negative, the expansion
is valid in the region z < 1/(coel|g||).
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Let G, be the disk {x; |x| < n}. Fix two numbers zo, g with
0<z0<q<1/(coe” " llgl) .
Consider the sequence of functions
f(2) = Ee(D, 2, Guy t N G) | E(D, 2, Guyt N ) .

From the reverse martingale convergence theorem (see Doob (1953))
4.2) lim f,.(z0) = Eo.-, { Mg(x)| }
n-oo u

for Po .-a.s. u. Fix a u € .#o so that (4.2) holds. From the expansion (3.6)
and the estimates of J, given in the proof of Theorem 3.2, we can see that
fx(2), considered as functions of complex variable z, are analytic and
uniformly bounded for |z| < gq. Therefore, { f»} is normal, that is, compact
with respect to uniform convergence topology in |z| < ¢ (see, e.g., Hille
(1977), Chapter 15) and there is a subsequence { fr} which is uniformly
convergent in |z| < g. The limit function f(z) is also analytic in |z| < g and,
since the uniform convergence induces convergence of corresponding
Taylor coefficients, it must be equal to

exp( ién%)

n=1

by Theorems 3.1 and 3.2. Finally, from (4.2), f(zo0) =E¢,ZO{Hg(x)|l@m}
V]

and the first assertion is completed. If the potential function @ is non-
negative, we can let the stability constant b =0 in the proof of Theorem
3.2. So the second assertion follows from the first immediately.

Remark 4.1. We can show from the proof of Theorem 3.2 that the
series 2. J,z"/n! is convergent for |z| < l/(cerbHIIgil).

b. Examples

Let us list several examples of mean quantities which can be dealt with
using our method. First, let g(x) be of the form

8 = ek ) = exp [ - £ o(1x x|
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and g"(x,..., X) be corresponding means E { IMTg(x) } In statistical physics,
]

functions p™ = 2"y (X)m)g™, z being the activity, are known as m-point
correlation functions. If P is motion-invariant, p'" is a constant A. Also,
p(2)(X1,X2) depends only on |x; — x2| and can be written as p"”(|x; — xa|).
The constant 4 is the intensity of P, that is, the mean number of points per
unit area. If C; and C; are two disks with infinitesimal areas dV, and dV»
and if the distance between centers is 7, then p*(r1)dVidV; is interpreted as
the probability P{u N C;# &, u N C, # B}. The correlation function p*?
plays a central role in the second-order analysis of spatial point process.
For example, p”(t) = ’K’(f)/2nt, where K is the second reduced moment
function, i.e., Ripley’s K-function (for details, see Stoyan et al. (1987)).
Next fix a bounded Borel set 4 and let g(x) be the indicator function
of A°. Then the assumption (A4) is trivially satisfied and we have

E{ ITg(x) ] =P{uN A=} In particular, if 4 is b(0, 1), the closed disk

u

with center 0 and radius ¢, then F(¢) = 1 —E{ Mg(x) } =P{uNA#D}is
U

the distribution function of the nearest distance to points of u from an
arbitrary settled point. Stoyan et al. (1987) coined the good name spherical
contact distribution function for this distribution function.

Also, let g*(x) = g(x)e *"V. Since the reduced Palm distribution Po(du)
is equal to z/A- w ({0}|x) P (du), we have the relation

E{ I;Ig*(x) } ;i/z-Eo{lgg(x) }

that is, we can also deal with mean quantities with respect to the Palm
distribution. If g(x) is the indicator function of b(0,)° as above, then

Dn=1- z//l'E{ Ig*(x) } =Po{u N b(0,1) # D} is called the nearest
u

neighbor distance distribution function. This is the distribution function of
the nearest distance to points of x4 from a typical point of x. As to the
practical role of these distribution functions in stochastic geometry, see, for
example, Diggle (1983).

It may be instructive to give a numerical example. Since the purpose is
to explain how to compute using the expansion (4.1), no perfection or
completeness is intended. As can be seen, the computation is never easy
and needs heavy computer work. Let us consider the spherical contact
distribution function F(z) of the hard disk system. The function g(x) used
is of the form

if |x|>1,

g(x)=gi(x)= ,
otherwise .
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Our choice of the potential function is the simplest one, that is,

+oo if <1,
&(1) = _
0 otherwise .

Hence the corresponding point patterns are considered as centers of
mutually disjoint unit disks uniformly dispersed on the plane. The point
patterns are approximated by the equilibrium state of lattice-valued birth
and death Markov chains as explained in Preston (1976) (see also Stoyan
et al. (1987), Chapter 5). The region [0, 100] x [0, 100] is discretized into the
square lattice L = {(i/ 100, j/ 100); 0 < i, j < 10000}. The initial point patterns
Xo on L are given by sequential random packing so that the packing
density is about the given activity z. With the time span 47 = 107°, L-valued
Markov chains X, are generated successively for sufficiently many times.
The transition from X, to X,+ is determined as follows:

(1) P{X.:1 = X,\{x}} = 4t for each x € X, (i.e., the death rate = 1),

(2) P{Xn1 = X, U {x}} = z41¢ for each x not within distance 1 from
every point of X,, (i.e., the birth rate = zy (x; X»)) and

(3) otherwise X,,+1 Xn.

Finally, the sample spherical contact distribution function F(¢) is calculated
for various contact distances ¢. In order to avoid the edge effect, only
points in [20, 80] x [20, 80] are used.

Theoretical approximations are computed based on the formula (4.1).
Well-known numerical results for virial coefficients v,, which are equal to
— (n— 1)f./n!, for hard disk Gibbsian process, give values f,..., B (see
Ree and Hoover (1967)). We compute & by multidimensional numerical
integration for each z. Of course, &1= — nt’. The integral defining &, in
Theorem 3.2 can be simplified further. Let us say that two graphs in HBox
are equivalent if they are the same up to a permutation of vertices
{1,2,...,n}. Let &%, be a set of representatives of this equivalent relation
and b(H) be the power of the equivalent class of H. Then

= [ [ L Z (Y= DY ] d(x)n

where N(H) is the number of those edges (0, j) € H with |x;| <7 and edges
(i, j) with |x; — x;| < 1. Since, for example, #%s = 1,014,888 and HRB s =
2,278 the integrand is considerably simplified. Further, a careful choice of
representatives makes the numerical evaluation more efficient. Finally, a
Monte Carlo evaluation of this integral are done. Usually a Monte Carlo
quadrature uses pseudo-random numbers but we used quasi-random
numbers. A sequence X, = (x,... ’) of d-dimensional quasi- random
numbers are generated by the formula x¥ = {the fractional part of nx{'}
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where xo = (x",..., xt”") is a set of irrational numbers. It is known that with
appropriately chosen x, the efficiency of the quadrature based on quasi-
random numbers (the Haselgrove method) is far superior to that based on
pseudo-random numbers, at least for sufficiently smooth integrands (see,
e.g., Niederreiter (1978)). We took x{’ = 2/ "Though our integrand is
not smooth (a linear combination of indicator functions), a preliminary
experiment affirmed this superiority. As a result, we got values &, &; and &4
numerically for 1 = 0.1(0.1)5.0 and computed values

~ s
Fo=1- exp(kglskg) .

The results are displayed in Fig. 1. The pair of curves (F(2), F(¢)) are
shown for z=0.1 (A,B), 0.2 (C,D) and 0.3 (E,F). Though the use of
coefficients only up to fourth degree seems to rough, agreements are fairly
good for z = 0.05(0.05)0.25 (in fact excellent for z = 0.20 and 0.25) but not
for z=0.3 and over. A common defect of the Mayer series (also of the
activity expansion) is that it is convergent only for relatively small values of
z. This is because mean values of Gibbsian processes usually have singulari-
ties as a function of z, which indicates the phenomenon called the phase
transition, well-known to physicists and a characteristic property of
Gibbsian processes. In fact, it is proven that the hard disk system has a
phase transition somewhere between 1/me and 1/m (probably nearer to
1/7n =0.318...), where the system makes the transition from the gas phase
to the liquid phase (see Ruelle (1969), Chapter 4). In some cases, a Padé
approximation, i.e., approximation by rational functions in z, to a Mayer
series show a better agreement for higher values of z.

0.75

0.0 1.0 2.0 3.0 4.0 5.0
Contact distance -———

Fig. 1. Spherical contact distributions (F(z), F(£)) for z = 0.1 (A, B), 0.2 (C, D) and 0.3 (E, F).
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