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Abstract. A generalization of the class of direct methods for linear
systems recently introduced by Abaffy, Broyden and Spedicato is obtain-
ed by applying these algorithms to a scaled system. The resulting class
contains an essentially free parameter at each step, giving a unified
approach to finitely terminating methods for linear systems. Various
properties of the generalized class are presented. Particular attention is
paid to the subclasses that contain the classic Hestenes-Stiefel method
and the Hegedus-Bodocs biorthogonalization methods.
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1. Introduction

In a series of recent papers, Abaffy (1979), Abaffy and Spedicato
(1984), Abaffy et al. (1984a), have introduced a class of algorithms (here
named the ABS class) for solving linear algebraic systems of the form

(1.1 A'x=b xeR", beR" A=(a,...,an), ai€R",

where m <n and no assumption is made about the rank of 4. The
algorithms of the class compute a solution x" of the given system in a finite
number of steps (at most m), generating at each step an approximation x;
of the solution. The algorithms of the ABS class are based upon the
following procedure (assuming exact arithmetic):

(A) Let H; be an arbitrary nonsingular matrix and let x; be an
arbitrary vector in R”; set i = 1.

(B) Compute s; = Hia..
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(C) Ifs;=0and a/xi— b= 0, set xi+; = x;, Hi+, = H;, increment i by
one and go to (B) (in this case, the i-th equation depends linearly on the
previous equations); if 5;=0 and a/x; — b; # 0, stop (the i-th equation is
incompatible); if s; # 0 go to (D).

(D) Compute the search vector p; by formula

(1.2) pi=H'z,
where z; € R" is an arbitrary parameter vector save for the condition that
(1.3) ZiHiai #0 .

(E) Compute the approximation x;+; of the solution by the following
formula

(1.4) Xi1 = xi — (afx; — b)/(alp)p: .

(F) If i=m, stop (xm+1 is the solution); otherwise update H; by the
following formula

(1.5) Hiv1 = H;— Haw! H;,

where w; € R" is an arbitrary parameter vector save for the following
condition:

(1.6) wiHai=1.

(G) Increment i by one and go to (B).

Particular algorithms in the ABS class are obtained by making specific
choices of the available parameters, say Hi, z; and w;. Of interest are the
following algorithms:

(i) The implicit LQ or symmetric algorithm, previously considered
by Huang (1975):

(1.7) Hi=1, z=a w=a/(aHa).

(i) The pseudosymmetric algorithm, a version of the symmetric
algorithm (to which it is mathematically equivalent), which has performed
best in numerical experiments of Abaffy and Spedicato (1983):

(1.8) Hi=1I z=Ha w=Hall|Ha|l" .

(iii) The implicit Gauss-Choleski or LU — LL” factorization algorithm
(well-defined iff all principal minors of 4 are nonsingular, otherwise row
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pivoting has to be performed):
(1.9) H=1 z= ei/(|€iTHiai|)l/2, w; = ei/(eiTIIiai) .

When x; is the null vector, it can be shown that the above algorithm
generates the same sequence of iterates x; as the classical escalator method.

The ABS class can be applied to overdetermined linear systems for
determining a least squares generalized solution (see Spedicato (1984)), or
to nonlinear algebraic equations (see Abaffy ez al. (1984)). In this paper we
present a natural generalization of the ABS class for linear systems, which
results in a larger class, where an additional parameter is available. Such a
generalized class contains, in a new formulation, well-known methods like
conjugate direction methods; in fact, the class is essentially a realization of
the general finitely terminating iterative algorithm of Stewart (1973), which
is implemented in terms of usual factorizations, and of Broyden (1985),
where no determination is given of vectors p.. The application of the
generalized ABS class to nonlinear systems is considered by Abaffy and
Galantai (1986).

2. A generalization of the ABS class

Let us assume, for simplicity of formulation, that 4 is full rank.
Consider, instead of system (1.1), the following scaled system:

2.1 ViATx=Vv7p,

where V = (v1,0,...,Um), 0; € R™, is an arbitrary nonsingular matrix. Systems
(1.1) and (2.1) are equivalent, any solution of one being a solution of the
other. If we apply the ABS algorithm to system (2.1), we find that
equations (1.3)-(1.6) take the following form (s; being nonzero since A is
full rank):

(2.2) ZTHiAv; # 0,

2.3) xiv1 = xi— (0ir)| (T Ap)p:
(2.4) Hi. = H; — HiAviw! H;
(2.5) wiH: Avi=1,

where r; € R™ is the residual vector of system (1.1) in x;, say
(2.6) ri=Ax—b.

We can make the following important observations:
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(1) Equations (2.2)—(2.5) are obtained from equations (1.3)—(1.6) just
by substituting a; by Av; and b; by v/b.

(i) At step i only the i-th column »; of matrix V is used. As Vis an
arbitrary nonsingular matrix, v; can be interpreted as a new parameter
available at the i-th step, arbitrary save for the condition of being linearly
independent from the previously chosen parameters vy, va,..., 0;-1.

(iii) The vector xm+1 computed by the equations (1.2), (2.2)-(2.6)
solves not only the scaled system ¥'A"x = Vb but also system A”x = b;
thus, if v; is interpreted as a new parameter, the ABS algorithm with
equations (2.2)-(2.6) can be interpreted as a generalized algorithm for
solving (1.1). We shall call this generalized class the ABSg class of
algorithms for linear systems.

Observing that every property valid for the ABS class of the form
Q(H,, a;, zi, w)) can be reformulated for the ABSg class, if 4 and ¥V are full
rank, as a property of the form Q(H,, Av;, z;,, w;), we can state that the
following relations are true, being the reformulation of similar properties
proved for the ABS class:

2.7 HH 'H=H j<i,
(2.8) HH{'H=H, j<i,
(2.9) HiAvj=0 j<i,
(2.10) H;Av; #0 j=i,
@.11) S BHAy=0 = B=0,
J=i

(2.12) rank (H)=n—-i+1,
(2.13) j§&m=0 = B=0,
(2.14) viA’p=1L,

where L is a nonsingular lower triangular matrix and P = (p1, p2,..., pm). If
m = n, (2.14) gives the following (implicit) factorization of A™:

(2.15) AT=why'Lp™".

The property valid in the ABS class that x;+; is a solution of the first i
equations of system (1.1) is not generally true for the ABSg class, x;+i
being instead a solution of the first i equations of the scaled system
VTA"x = V'b. However, we can characterize the sequence x; with the
following property:
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THEOREM 2.1. Let s € R" be an arbitrary vector; let x; be the vector
generated at the (i — 1)-th step of the ABSg algorithm. Then the vector X
given by the following relation
(2.16) =x+ Hls,
satisfies the i — 1 equations
(2.17) W (AX-b)=0 j<i.

PROOF. Immediate by induction.

The proof of the following theorem can be established in similar way
as the proof of Theorem V in Abaffy et al. (1984a):

THEOREM 2.2. The ABSg class is well-defined, say for every choice
of the nonsingular matrix V there exist choices of zi and w; such that

conditions (2.2) and (2.5) are satisfied.

THEOREM 2.3. For any nonsingular V the following choice of wi for
i=1,2,....m

(2.18) wi = Avi/ (o] ATH: Avy)

is well-defined, satisfies condition (2.5) and implies that the generated
matrices H;+\ are symmetric.

PROOF. Immediate by using properties (2.7) and (2.8).

Remark 1. The update obtained by the above choice of w; will be
called the generalized symmetric update.

k
THEOREM 2.4. Let H, = I and x\ have the form x| = Zlﬁ,-Avj with
I=

k < m. Choose w; as in (2.18) and z; as zi = Av;. Then for i >k, xi is the

vector of minimum euclidean norm among all vectors X such that
vf (A% — b) =0 forj<i.

PROOF. Clearly vector x; is of the form
k i-1 ; .7
(2.19) xi = El Bidvi+ Xyips %= )]G A D) -

Now equation (2.16) gives for arbitrary s the most general expression for a
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vector ¥ satisfying conditions v/ (A% — b) =0, j <. Taking the norm of ¥
we get

k i-1
(2.20) Fx=xIx+ sTH:H's + 2sT[ X BiHi Ay + z y,-H,-pj] )
J= J=

In the summation the first term is null because of (2.9); in the second term
we have, from the choice of z;, the symmetry of the update and (2.7) that
Hip; = H:H Av;= H,H;Av; = H;Av;, which is null again because of (2.9).
Thus it follows that the minimum value of "% is x/x;, corresponding to
any choice of s in the null space of H..

Remark 2. The algorithm where z; and w; are chosen as in Theorem
2.4 will be called the generalized symmetric algorithm.

An additional characterization of the generalized symmetric algorithm
is given by the following theorem (where norms are euclidean norms):

THEOREM 2.5. Let the sequence x; be generated by the symmetric
algorithm. Then, for i=2,...,m+ 1, the sequence || xi|| is monotonically
increasing.

PROOF. Let S: be the orthogonal complement to the space spanned
by v1,...,0;-1 and Z; be the set of vectors x such that the residual in x
belongs to ;. From Theorem 2.4 x; is the minimum euclidean norm vector
in Zi. As Si+1 S Si and Z;+1 € Z; the inequality ||x;+1]| < ||x:|| would contra-
dict the minimality of || x;|| in Z;.

Remark 3. Theorem 2.5 indicates that the solution xm+1 is approach-
ed by the symmetric algorithm from below, a regularization property of
great interest.

THEOREM 2.6. Let H, = I; then among all possible choices of w; in
(2.4) subject to (2.5) the one which minimizes the Frobenius norm of the
correction to H; is given by the symmetric update choice (2.18); moreover,
Jor such a choice the Frobenius norm of H; satisfies the following relation

(2.21) N|H|*=n~i+1.

PROOF. The first statement is just a reformulation of a similar result
proved for the symmetric algorithm by Abaffy and Spedicato (1983). To
prove the second statement let s; = H; Av; and note that H;s; = s; from (2.7).
Now we have
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(2.22) | Hio||F = Tr [(HT — sis?| sTs)(H; — sisT | sTs)]
= Tr (H; — sisi 518}
=Tr (H) -1
= |Hill7- 1,

and the result follows since ||/]|7 = n.

3. Alternative representations of the update matrix

The following theorem is a reformulation of Theorems 6, 9, 10 in
Abafty et al. (1984a):

THEOREM 3.1. Define the matrices Vi= (v1,02,...,0;) and W;=
(w1, wa,..., wy). Then

(a) Wiis full rank.

(b) Matrix W H,AV; is nonsingular and LU decomposable.

(c¢) Update (2.4) can be written in the form.

(3.1 Hivi= Hi — HHAV(WIH, AV 'WIH, .

(d) If Hi =1, then for 1 <j< m the vectors H;Av; and H'w; satisfy
the follwing biorthogonality relation

(3.2) w HiHiAyy=0 j#i.

We show now that for the subclass of the ABSg class where z; is
proportional to w;, it is not necessary to update at step i a full square
matrix H; but just a set of n—i vectors in R", or, in other words, a
rectangular matrix whose number of columns decreases by one at every
step. This result, of great theoretical and computational interest, had not
been disclosed in the previous analysis of the ABS class.

THEOREM 3.2. Consider the ABSg algorithm with the following
parameter choices. H, arbitrary nonsingular, v,...,v, arbitrary linearly
independent, z;=w; and w;= w;/ul HiAv; with w; arbitrary such that
ul H;Av; # 0. Then the algorithm is well-defined and it generates the same
sequence x; which is produced by the following algorithm:

(A’) Let H, and x| be given as in the above defined ABSg algorithm,;
seti=1.

(B’) Forj=1,2,...,m compute vectors uj € R" by formula

(3.3) w = Hi'u; .
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(C’) Compute the new approximation to the solution by
(3.4) Xie1 =X — (07 1)) (VT ATub) udh .

(D’) If i=m stop, xm+1 is the solution; otherwise for j=i+ 1,
i+2,...,m compute vectors u;"' € R" by the formula

3.5) u' =y — (ol A"y (o] ATy
(E") Increment the index i by one and go to (C).

PROOF. It is obvious that the ABSg algorithm with the above
parameter choices is well-defined. To establish the identity of the sequences
x; it is enough to prove that p; = i and that the denominators in (3.4) and
3.95) are nonzero. For i =1 this is true, since ui = Hi'uy = H{'z; = p\ and
vidTui = ol ATH{u; is nonzero by assumption. For i > 1 the result follows
by identifying p; = H,"z; with «} and verifying that the update of p; according
to formulas (1.2) and (2.4) is identical to the update of u} according to
formula (3.5), and that the denominator in (3.4) and (3.5) is identical to
u H; Av.

The subclass of the ABSg algorithm defined by equations (3.3), (3.4)
and (3.5) will be called the condensed ABSg class.

THEOREM 3.3. The vectors u}, i < J =< m, defined in (3.5) are nonzero
and linearly independent for 1 < i< m.

PROOF. It follows from the structure of update (2.4) that every
property of the form Q(H,, Avi, w;) can be reformulated as a property of the
form Q(H:",wi, Av). Under the assumption that Avi,..., Av; are linearly
independent, it follows, see (2.10) and (2.11), that H;Av;, j < i, is nonzero
and linearly independent. Since wx,.. w, are linearly independent (see
Theorem 3.1) it follows similarly that H, wj, j <1, 1s nonzero and linearly
independent. The result follows since #; and H;'w; are proportional by a
nonzero factor.

Remark 4. Parameter choices which satisfy the requirements of
Theorem 3.1 are the following:
(1) The generalized symmetric algorithm

(3.6) ui= Av; .

(i) The generalized pseudosymmetric algorithm
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(3.7) ui= H;Av; .

(i) The generalized implicit LU algorithm (under the additional
assumption that all principal minors of 4V be nonsingular)

(3.8) u; = e;/ (el HiAvy) .

Remark 5. When Av; is known, the number of multiplications requir-
ed by the condensed ABSg algorithm at step 7 is no more than 2n(n — i) +
O(n), implying a total number of multiplications, for m = n, equal to
n’ + O(n’). Note that the formulation of the ABSg algorithm in terms of
matrices H; in general requires 3n° + O(n’) multiplications (for z; propor-
tional to w;), dropping to 3/2n’ + O(n®) for the symmetric algorithm and
n’/3 + O(n’) for the implicit LU — LL" algorithm. The condensed ABSg
algorithm still requires only n’/3 + O(n”) multiplications for the generalized
implicit LU — LL" algorithm (if Av; is known); indeed, if u; is proportional
to e;, equation (3.6) implies that vectors u; ' have only i+ 1 nonzero
components. Thus step i requires only 2i(n — i + 1) + O(n) multiplications
and the result follows.

THEOREM 3.4. Let x; and u}, j=1i, be generated by the condensed
ABSg algorithm. Then the set of vectors X such that vJ (A% —b)=0, j<1i,
has the following form ( for m = n)

n

(3.9) =X+ _Zi()gu},

=
where the o; are arbitrary.

PROOF. We know from Theorem 2.1 that vectors X have the form
%= x; + H's, where x;, H; are generated by any method in the ABSg class
and s is arbitrary. As vectors w; are linearly independent from Theorem

3.1, we can write s = ‘21 Biw;,. Since any property of the form Q(H;, Avi, w))
I=
corresponds to a property of the form Q(H.", wi, Av) it follows from
relation (2.9) that H'w; =0 for j<i. Thus we have s= X fjw; and the
j=i

result follows from the definition of .

4. Generating A-conjugate search vectors

Algorithms generating search vectors that are A-conjugate can be
obtained in the ABSg class when A is symmetric positive definite and the
choice v; = p; is made.
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THEOREM 4.1. Let A be symmetric and positive definite. Then the
subclass of the ABSg class where v; = p; is well-defined. Moreover, the
following relation is true:

4.1) P'AP=D,
where D is a diagonal matrix with positive diagonal elements.

PROOF. For any vector z such that p; = H:z is nonzero, condition
(2.2) is satisfied, for v = p;, since z H;Avi= p{ Ap; is positive from the
assumption on A. Moreover, z/ H;Av; > 0 implies H;Av; # 0, so that condi-
tion (2.5) can be satisfied by a suitable choice of wi. As the p;’s are linearly
independent, so are the v’s, implying that the subclass is well-defined.
From (2.14) we have P'4"P= L. Taking the transpose we have, from
symmetry of A, P'ATP= L= PTAP, which implies the diagonality of L,
L = D; moreover, for j = 1,...,n, Dy = p] Ap, is positive since A is positive
definite.

The subclass of the ABSg class where v; = p; still contains as free
parameters Hi, z; and w;. A sequence of symmetric matrices H; is obtained
by the following choice of w;

4.2) w; = Api/ pl AH, Ap:; .

Formula (4.2) for w; is well-defined, since the denominator is positive. With
the further choice z;= Api/#ni, n: arbitrary nonzero scalar, a realization
would be obtained of the generalized symmetric algorithms with search
vectors that are simultaneously orthogonal and 4-conjugate (as the eigen-
vectors of A are). Since the definition of p; and the considered choice of z;
imply H,” Ap; = n;p;, the determination of p; is not possible in explicit form,
being equivalent to the computation of the eigenvectors of H;'A.

The parameter choices corresponding to the generalized implicit LU
algorithm are H; = I, z; proportional to e; and

(43) w; = ei/ eiTHiApi .

It is easy to show by induction that the above algorithm is well-defined.
Indeed it corresponds to applying the standard implicit LU algorithm to
the problem with coefficient matrix P"A". Such a matrix is strongly
nonsingular, since its i-th principal minor is the i-th principal minor of A
premultiplied by the matrix comprising the first i columns and rows of P;”,
which is a nonsingular lower triangular matrix. The number of multiplica-
tions required by the algorithm is 5/6n’ + O(n’), n’/2 multiplications
coming from the evaluation of the vector Ap..
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We show now that it is possible to determine the parameters z; and w;
such that the sequence x; can be built using only two vectors, the algorithm
becoming identical with the Hestenes and Stiefel method.

THEOREM 4.2. Let A be symmetric positive definite. Let H, = I, and
suppose that, for i=1, r;# 0 (otherwise stop the algorithm at the first
index i for which ri=0; x; is the solution). Take the following parameter
choices at step i: z; = ri, v;= p; = Hi'ri, w; = pi/ pl HiApi. Then

(A) The algorithm is well-defined and w; = p:/ pl Ap:.

(B) The sequence of vectors xi, p; is identical with that generated by
the Hestenes and Stiefel method (with the same starting point).

(C) The scalar products viA"u} in (3.5) are identically zero for
j>i+ 1.

PROOF. To prove (A) we note that condition (2.5) is satisfied if
plH;Ap:#0. Now plH:Ap:= rlHiH:Ap: = r’H: Ap; = pf Ap; because of
(2.7). Thus from positive definiteness of A it follows that p/ H;Ap: > 0 if
pi# 0. Condition (2.2) is satisfied if r/ HiAp: = p/ Ap:# 0, which is again
true if p;# 0. For i=1 this is true from the assumptions. For i>1 it
follows from the proof of statement (B), where it is shown that p; is
identical to the i-th search vector generated by the Hestenes-Stiefel method,
which is nonzero if r; is nonzero. To prove (B) let x/, p! be the vectors
generated by the Hestenes-Stiefel method. Since x{ = x; and pi=ri=pi it
follows immediately that x5 = x,. To extend this result to other indices, let
us write the formulas defining the Hestenes-Stiefel iteration for general i:

/T,

(4.4) xiv1=x{ + (pi'r)| (p!"ApP})pi
(4.5) pier=rler — (PITArta) | (piTAphpi .

With the given parameter choices, the ABSg algorithm can be written in
the condensed form, giving the following relations

(4.6) xiv1=xi — (pir)|(pi Ap)p: ,
4.7) w'' = u— (plAW)/(piAp)p:  j=i+1,...n.

Note that u}, 1 <j < n, has the form uj = r;, and these vectors cannot be
actually computed at the beginning of the iteration, since only r; is known.
However, it is a consequence of statement (C) that the computation of 1/ is
not actually needed.

Equations (4.4) and (4.6) give the same vectors if vectors pi, pl, xi, x{
are the same. For i = 1 this was observed to be true. For i =2 and p, = u}
relation (4.7) becomes
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2 1 s 1 T
(4.8) uy = wy — (p1Awa)/(piAp1)p: ,
since u; = r, = r} and p; = p’ then p, = pb and x; = x3. For general indices

we proceed by induction, assuming that v/ = p; = pf and x; = x/ for j<i. It
follows immediately that x;+; = x/+1. From (4.7) we get

4.9 Uit = i1 — (pi Auir) [ (P APHPE
implying that pi«1 = ui11 = pl+1 if 4h+1 = ri+1. Applying (4.7) backwards we
have

: i-1 )
(4.10) v =l = 2 (o Aul)| (B Ap))pi

as ui+1 = ri+1 the identity p;+1 = pf.1 is established (and statement (A)) if we
show that pj"Aul.1 =0, j<i—1 (and so proving also statement (©)).
Applying (4.7) again backwards we have

. j-1
@.11) uier = uivy = I (pkAui1) (Pl Api)ph
or from the choice of z; and obvious definition of S«

) j-1
(412) uiJ+1 =Tri+1 — kZ:ll ﬁkpl’c .

Since vectors pi,...,p/ are A-conjugate, it follows from (4.12) and the
induction that

(4.13) A1 = piTAris
which is zero from a well-known property of the Hestenes-Stiefel method.

Remark 6. Theorem 4.2 clearly establishes the equivalence with the
various forms of the Hestenes-Stiefel method which have appeared in the
literature (Fletcher-Reeves, Polak-Ribiére etc.). Along similar lines it is
possible to derive explicit expressions for parameters z;, w; in the ABSg
class which generate algorithms equivalent to many other conjugate direc-
tion methods.

5. Relations with the Hegedus-Bodocs algorithm for A-conjugate
vector pairs

In a series of recent papers Hegedus (1982) and Hegedus and Bodocs
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(1982) have introduced recursions for generating, for a given symmetric
matrix A, sets of A-conjugate or A-biorthogonal vector pairs (v, w),
i = 1,...,n, which satisfy the following relation

(5.1) VA =0 j*k.

Hegedus and Bodocs’ recursions are of the following type. Suppose that
vectors v; and u; satisfy (5.1) for j < i; then two additional vectors v;+1 and
u; +1 satisfying (5.1) are obtained by the formulas

(5.2 vi+1 = Plris1,
(5.3) ui+1= Qigi+1,

where P; and Q; are nonorthogonal projectors of the form
(5.4) Pi=1- 2 Awf| (v Au) ,

=
(5.5) Q=1 T uvfA|(f 4uw).,

and ri+) and g;+1 are essentially arbitrary vectors, save for the condition
(5.6) ri]:rlPiAQiqi+1 #0.

In the following theorem we show that, if the columns of matrix V in the
ABSg class are identified with vectors v; in the Hegedus-Bodocs relations,
then it is possible to choose the parameters z;, w; in such a way that vectors
u; become identical with vectors p;. Thus the Hegedus-Bodocs recursions
appear as a special case of the recursions associated with the ABSg class.

THEOREM 5.1. Let A be symmetric and let ri,qi, 1 <i<n, be the
vectors chosen in the Hegedus-Bodocs recursions satisfying condition (5.6).
Consider the subclass of the ABSg class corresponding to the following
parameter choices: Hi= I, v;= Pr, zi=q;, wi= qi/q HiAv.. Then such
parameter choices are well-defined and the identity u; = pi is true.

PROOF. For i=1 the result is immediate. Assume now that the
sequence pj, H; is well-defined and that u; = p; for j < i. In order that H;+,
be well-defined, (2.5) must be satisfied, which is true if g H;Av; # 0. From
the definition of p; and the induction we have identically gl Hi Av; = plAv=
ul Av;, which is nonzero due to (5.2), (5.3) and (5.6). Thus p;+1 can be
determined and we prove first that it equals w;+ and then that it satisfies
(2.2). From (5.3) and (5.5) we have, using the induction
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: T T
(57) Ui+l = Gi+1 _jgl DiYj Aqi+1/(l)j Ap_]) .

Observing that with the assumed parameter choices the ABSg algorithm
can be written in the condensed form, we can write

(5.8) Di+1 = th+1 — (0F Auit+1) [ (0] Ap))p .

Applying (5.4) backwards we have

(5.9) pist=utvi = X (0 Aul)) | (5] Ap)p; -

Again applying (5.4) backwards we have, with S some coefficients
. | j-1

(5.10) = ui — k§1 Brpx .

From the induction and the A-conjugacy of the v; and u; = p; we have

(5.11) of Autvr = o Aulsy
and thus
(5.12) Div1 = Uis —]El (0f Aui1) [ (o] Ap)p; ,

implying that p;+1 = w;+1, since ui+1 = H{'zi+1 = gi+1. We can now immedi-
ately prove inequality (2.2) observing that pfiiAvisi = ulv1Avi+, =
q€+1QiT+1AP,~T+1ri+1 which is nonzero because of (5.6).

Remark 7. The well-definiteness condition (5.6) is satisfied if A4 is
positive definite and V' = P.

6. Final remarks and conclusions

In this paper we have presented a generalization of the ABS algorithm,
obtained by applying it to a scaled system. The columns of the scaling
matrix play the role of additional parameters available at each iteration,
allowing the generation of infinitely more algorithms. We have shown that
conjugate direction algorithms (including the classic Hestenes-Stiefel algo-
rithm) and the general biorthogonal direction algorithm of Hegedus and
Bodocs can be obtained by particular choices of the available parameters.
It is actually possible to show that essentially all algorithms with finite
termination for linear systems correspond to particular parameter choices
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in the scaled ABS algorithm. More about this question will appear in a
forthcoming monograph by Abaffy and Spedicato (1989). It is also possible
to apply the generalized ABS algorithm for solving nonlinear systems. For
convergence results in such a case, see Abaffy and Galantai (1986).
Numerical experiments are presently being performed to find whether
better algorithms than the classic ones can be determined in the generalized
ABS class.
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