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Abstract. In this paper, we give a detailed study of the problem of
optimally comparing a set of 7 test treatments to a set of s controls under
a 0-way elimination of heterogeneity model. The relationships between
designs that are A and M V-optimal for comparing the test treatments to
the controls and those that are 4 and MV-optimal for comparing all
treatments are also studied.
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1. Introduction

In this paper, we consider the problem of comparing s standard
treatments or controls, denoted by 1,2,..., s to ¢ test treatments, denoted by
s+ 1,...,0 where v=s+1=>3, s<t. We shall assume that there are n
experimental units available for testing, and that a completely randomized
design is to be used for comparing the treatments. Any allocation of
treatments to experimental units is called a design, which we denote by d.
Under a given design d, rs is used to denote the number of experimental
units to which treatment i is assigned, i = I,...,v. The model assumed for
analyzing the data from a given design d is the 0-way elimination of
heterogeneity model, which specifies that an observation yg (the j-th
observation on treatment / under d) can be expressed as

(1.1 Yaij = i + &, i=1,...,v, j=1,.. ra,
where ¢ represents the effect of treatment i and the ¢;’s are independent

. N . 2

random error terms having expectation zero and constant variance o".
. 2 .

Since the value of ¢ does not have an effect on any of the computations or
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results given in this paper, we shall henceforth assume ¢* = 1. Under these
assumptions, the method of least squares yields best linear unbiased
estimators

(1.2) b= b= X yap|ra— X yaplra

for treatment differences of the form # — 7. For the problem of comparing
s standard treatments to ¢ test treatments, there will clearly be a number of
designs available in almost any given experimental setting. Let D denote
the class of available designs. The criteria we consider here for choosing a
best design in D are the following:

MV (c)-optimality-4 design d* € D is said to be MV(c)-optimal in D if
for any other d € D,

(1.3) ,_.max _ Var, (fi—#)< max Vars(fi—1),

<iss,s+l<j<v Isiss,s+l=sj<v

where Vary (7 — ;) denotes the variance of the least squares estimate #; — #
derived under d.

A(c)-optimality-A design d* € D is said to be A(c)-optimal in D if for
any other d € D,

S v v

(1.4) )y ZlVard* (t‘,-—fj)s‘Z1 .Z]Vard(i,-—fj).
i=1j=s+

i=1j=s+

We note that the MV(c)- and A(c)-optimality criteria defined above
have been the most widely studied with respect to comparing a set of test
treatments to a set of controls. In fact, a good many results have been
obtained in recent years for comparing a set of test treatments to a single
control (see e.g., Bechhofer and Tamhane (1981), Majumdar and Notz
(1983), Hedayat and Majumdar (1984, 1985), Notz (1985), Jacroux (1986,
1987a, 1987b and 1989), Stufken (1987) and Cheng et al. (1988)). For a
more detailed summary of the known results on this topic, the reader is
referred to Hedayat ef al. (1988). The only results known to the author for
comparing s > 1 controls to ¢ test treatments are those given in Majumdar
(1986). In particular, Majumdar (1986) derives some sufficient conditions
for a design to be M¥V(c)- and A(c)-optimal in a block design setting. He
then shows how these sufficient conditions can be applied to establish the
MV(c)- and A(c)-optimality of several infinite families of block designs
and row-column designs. In this paper, we further consider the problem of
comparing a set of s controls to a set of ¢ test treatments. In Section 2, we
find sufficient conditions for a design to be MV(c)- and A(c)-optimal
under model (1.1). The relationship between the MV(c)- and A(c)-
optimality criteria is also studied in this section, as well as the relationship
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between these criteria and more “global™ criteria that can be used for
selecting a design that is optimal for estimating all possible treatment
differences t; — t;, i, j=1,...,0, [ # .

2. Results on optimality

To begin with, we note that under a given design d and model (1.1),
2.1 Varg(fi— ) =1/ra+ U/rg.

We shall henceforth use D(s,¢;n) to denote the class of all possible
allocations of v treatments to n experimental units. Using [x] to denote the
integral part of the decimal expansion for a real number x >0, we shall
also use the following notation throughout the sequel:

r=[n/v],
n=vr+q, 0<g=<v-1,

N
Ndc = ‘2'1 ra = the number of experimental units allocated to
the controls under a given design d,

rac = [nac/s],

Rdc = Stic + Qde, 0=<qa<s—1,

(2.2) v

Nar = ZH rsi = the number of experimental units allocated to
the test treatments under a given design d ,

ra. = [nai/1],
Ra=trag+qa, 0=qa=<t—1,
x=[1/s],
t=sx+q, O0sq=s—-1.
2.1 MV(c)-optimal designs
In view of (2.1), we see that finding an MV¥V(c)-optimal design in

D(s, t;n) is equivalent to finding an allocation of treatments to experi-
mental units which minimizes

2.3) max  l/ra+1/rg.

I<iss,s+l<sj<v

However, if we assume that rg1 < -+ < rgs and rqs+1 < --- < ra, for a given
design d, then it is easily seen that a design d having rs = ra for i=s+
1,...,vand ra=[(n— tra)/s] or [(n — tra)/s] + 1 for i = 1,..., s will have
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max  Varg(i—f)< max Vars(fi—17).

Isisss+l<j<v I<iss,s+l<sj<p

Thus the problem reduces to that of finding an integer r# that minimizes
the expression

2.49) h(r)=1/rn+ 1/[(n—-tr)/sl, t<r<[n/1].

This last expression is easily minimized using a calculator. While minimiz-
ing the function A(r) defined in (2.4) is a relatively simple thing to do, one
can also find an optimal design via the following lemma, which can be
proved using simple algebraic manipulation of (2.4).

LEMMA 2.1.  Let h(r2) be as defined in (2.4). Then the following facts
hold for h(r,).

(1)  h(r2— 1) < h(r2) implies h(r2) < h(r» + 1) for r, = 1,...,[n/1].

(i) A(r2) = h(r2 + 1) implies h(r. — 1) = h(r)) forr, = 1,..., [n/1].

Comment. Observe that because r = [n/v], there must always exist at
least one treatment having r or fewer replications assigned to it under any
design d, and that [(n —tr)/s]=r. If [(n— tr)/s]=r, then since s<1, it
follows that

A =1/r+1/[(n-m)/s]=1/r+1/r<1/(r+ 1)+ 1/(r—1)
s+ D+1[(n—t(r+ D))/s]=h(r+1).

Also, if [(n — tr)/s]=r + 1, then

h(r)=1/r+ 1/[(n—tr)/s]<1/(r+ 1)+ 1/r
s+ D+ 1[n—tr+ D))/sl=h(r+1).
Thus, in all cases we see that 4(r) < h(r + 1). Hence, from Lemma 2.1, we
see that to find an MV(c)-optimal design, one need only minimize A(r,)
given in (2.4) over all r,, 1 < r, < [n/v] =r.

From Lemma 2.1, we get the following theorem.

THEOREM 2.1.  Let h(r2) be as defined in (2.4) and suppose rj
satisfies

h(r¥) < min th(r¥ — 1), h(r¥ + 1)} .

Then any design dx having ra.; 2 r¥ fori=s+ 1,...,v and rs; = [(n — tr¥)/s]
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fori=1,...,s is MV(c)-optimal in D(s,t;n).

Example 2.1. Suppose n=41, s=2 and ¢ = 7. Using Theorem 2.1,
we find that r¥ = 4. Thus one MV(c)-optimal design d* has rs) =6, ra; =17
and 743 = -+ = raw = 4. Another MV(c)-optimal design d has rasi=r=6
andrz; = - =raz=4and rzo = 5.

In the case that ¢t = xs and n = ris + roxs for integers ri,r2, x = 1, the
problem of minimizing (2.4) is equivalent to minimizing

(2.5) hi(r2) =1/r2+s/(n — sxry) .

Since A.(r2) is continuous and convex, we can find the integral value of r;
that minimizes (2.5) by finding the value of r, such that

(2.6) hi(r))<hi(r.—1) and Ah@r)<hi(rz+1).
Algebraic manipulation of (2.6) yields the following theorem.

THEOREM 2.2. Suppose t = sx and n = ris + r2xs for integers ri,r2, x =
1. Then the design d+ in D(s,t;n) having rai=r¥ for i=s+ 1,...,0 and
rasi=m—tr¥)]s for i=1,...,s is MV(c)-optimal in D(s,t;n) provided r¥
satisfies

{2nx — sx(x — 1) — (s"x*(x — 1)* + 4n’x)'"?}
2sx(x— 1)

2.7)

<r2*

- {2nx + sx(x — 1) — (s*x*(x — 1) + 4n’x)"?}
- 2sx(x— 1) )

Example 2.2. Lets=2,t=6and n=40. Then according to Theorem
2.2, the design d* in D(2,6;40) having ry =rse =8 and ras = - =ras =4
is MV (c)-optimal in D(2, 6; 40).

A special situation which will be of particular interest later occurs
when an MV(c)-optimal design assigns r experimental units to each test
treatment.

THEOREM 2.3. Suppose t = xs and n = ris + rxs for integers ri, r2, x =
1. Then the design dx having ryi=r for i=s+ 1,...,v and rsi = (sr + q)/s
fori=1,....sis MV(c)-optimal in D(s, t;n) provided r satisfies
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< {(g+s%) + (g + ) x(q + 5)"}
N s(x—1) '

(2.8)

PROOF. By the comment following Lemma 2.1, it follows that
hi(r + 1) = hi(r). Thus, for d+ to be MV(c)-optimal, the following inequali-
ty must be satisfied:

lr+s/(sr+q@=<1/(r—1)+s/(sr+q+ sx).
Simple algebraic manipulation of this last inequality yields (2.8).

Example 2.3. Consider D(1,6;34). Then the design d+ having ra =
10 and r42 = -+ = ra7 =4 is MV/(c)-optimal in D(l,6;34) by Theorem 2.3
and has treatments 2, 3, 4, 5, 6 and 7 each replicated r = [34/7] = 4 times.

2.2  A(c)-optimal designs

To find an A(c)-optimal design in D(s, ¢; n), it follows from (2.1) that
we must find an allocation of treatments to experimental units that
minimizes

S u
(2.9) igl j:§+] {l/rd,- + l/rdj}
subject to the restriction that ‘g.l = ra = n. Using the notation given in (2.2)

and elementary algebra, it is easily seen that if d has treatment replication
numbers rg1,..., 74, then a design d having rgi=rsc or rae + 1 fori=1,....s
and rgi=rgqorrg+1fori=s+1,...,0 has

v

@10 2 T Var (- 1) = (s~ qu)(t — qa)(1frac + 1/ra)

+ (5 — qac)qac(1/rac + 1/ (ra + 1))
+ Quc(t — qa)(1/(rac + 1) + 1/ra)
+ qacqa:{(1/(rac + 1) + 1/ (ra, + 1))

S v
<X X Vary(t—1%)
Jj=s+1

i=1

= i :i (I/ra+1/rg) .

el

-
©

From the above argument, we see that finding an A4(c)-optimal design in
D (s, t;n) is equivalent to finding a design d in D(s, t; n) that has rz = 7, for
i=s+1,.,st(@—-2),ra=F+1fori=s+(—-2)+1,...,0, rai=ri(F, %)
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fori=1,.,s—n+th+Z+sr(F,2) and rai=ri(7,2)+ 1 fori=s—n+

th + Z 4 sri(F, 2) + 1,..., 5, where ri(F,Z)=[(n— tF» — Z)/s] and ¥, and 2

minimize

Q2.11) g(rn,z2)=(@—2)(s—n+tra+z+sri(r, 2){1/r2 + 1/r(r2, 2)}
+(t—2)n—tro—z—sri(r, 2)){1/r2+ 1/(ri(r2,2) + 1)}
+z(s—n+tra+z+sr(r,2){1/(r2+ 1)+ 1/ri(r2, 2)}
+z(n—tra— z—sri(r, 2){1/(r2 + 1) + 1/(r1(r2,2)) + 1)}

over all (r,z)ed={r.=1,...,[n/t],z=0,...,t}. We note that if we let

L = {n>| n, is an integer, ¢t < n, < n}, then the function g(r:,z) defined in
(2.11) can also be expressed for n, € L as:

(2.12) G(n2) = g(r2, 2)

where n; = tr, + z with r, =[ny/t] and z = n, — t[n2/t]. Using elementary
algebra, the following lemma is easily proven.

LEMMA 2.2. Let G(n) be as defined in (2.12). Then the following
Jacts hold for G(n,) and n; € L:

1) G(n2— 1)< G(m) implies G(n2) < G(nz + 1).

(i) G(n) = G(ny+ 1) implies G(na — 1) = G(ny).

As an immediate consequence of Lemma 2.2, we obtain the following
theorem.

THEOREM 2.4. Let G(ny) be as defined in (2.12). Then G(fiz) =
mEuLl G(n) if and only if

(2.13) G(f) =min {G(Ai, — 1), G(Ai2 + 1)} .

Thus, a design d is A(c)-optimal in D(s, t;n) if ra; = [fi2/ 1] or [A2] 1] + 1 for
i=s+1,..,vand rz=[(n—A)/s] or [(n—)/s]+ 1 for i=1,...,s where
fiy satisfies (2.13).

Example 2.4. Consider the class of designs D(2,7;41). In this case,
the value of n, that satisfies (2.13) is A4, = 27. Thus, an A(c)-optimal design
d in D(2,7;41) hasray =raa =7, r;3=3 and rgs = --- = rgs = 4. It can also be
seen that G(27) = G(28), hence another 4(c)-optimal design d in D(2,7;41)
hasrsi=6,rp=Tand ris = ---rpg=4.

One case of the previous results which will be of interest occurs later,
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when the number of replications assigned to the controls is a multiple of
the number of replications assigned to the test treatments.

COROLLARY 2.1. Suppose t=xs and n=rix + r.xs for integers
ri,r,x = 1. Then the design d having rs: =¥ fori=s+1,...,0 and rz=
mf, for i=1,...,s and some integer m =1 is A(c)-optimal in D(s,t;n)
provided ¥, satisfies

(2.14) max {(x — m*)f, (m* — X)F}<m+x.
PROOF. This result follows directly from Theorem 2.4.

Example 2.5. Consider the class of designs D(1,5;49). Then the
design d having rs =14 and r5;=7 for i=2,...,6 is A(c)-optimal in
D(1,5;49) by Corollary 2.1.

In Examples 2.1 and 2.4, we see that the optimal allocations of
treatments to experimental units are almost the same with respect to the
MV(c)- and A(c)-optimality criteria. However, as we shall see in the next
example, this is not always the case.

Example 2.6. Consider the class of designs D(1,15;30). For this
class of designs the MV(c)-optimal design d* has rs = 15 and rs; = 1 for
i=2,...,16 whereas the A(c)-optimal design d has rsi =5 and rzi=1 or 2
fori=2,...,16.

In the next section, we shall study the relationship between the MV(c)-
and A (c)-optimality criteria.

2.3 Relationship between the MV (c)- and A(c)-optimality criteria

In Section 2, we saw that in some classes D(s,t;n), the A(c)- and
MYV (c)-optimal allocations of treatments to experimental units are approxi-
mately the same, while in other cases, they may be somewhat different. In
this section, we derive conditions under which A(c)- and MV(c)-optimal
designs in D(s,t;n) are the same. With this in mind, let d € D(s,7;n) be
A(c)-optimal with rj; =7 or /1 + 1 for i=1,...,s and rz; =7, or /» + 1 for
j=s+1,...,0. Also let

S

.erfi=ﬁ1:S71+q~1, 0<gi<s-—-1,
(2.15) .ZHI‘J,':ﬁzzﬁz%-qz, 0=g=<t-1,

j=s

t=xs+q, 0<qgi<s—1.
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THEOREM 2.5. Consider the class of designs D(s,t;n) and let de
D(s,t; n) be A(c)-optimal.

(@) If g+ .= s, then d is not MV(c)-optimal in D(s, t; n).

(b) Suppose i+ G <s, g1+ G2+ q<sand §i+ G —q=0.If

—F=x(F+F—%) and
(2.16) i L,
Fisx(Fi+H+71),

then d is also M V(c)-optimal in D(s,t;n). If either inequality in (2.16) is
not satisfied, then d is not MV(c)-optimal.
() Suppose i+ G <s, 1+ +q<sand i+ G —q <0.1If

~FH<x(Fi+Fh—%) and
(2.17) )
Fi+R)F —FH-D=x(F+F+ 7,

then d is also M V(c)-optimal in D(s,t;n). If either inequality in (2.17) is
not satisfied, then d is not MV(c)-optimal.
(d) Suppose i+ G<s,§i+G.+q=sand i+ G—q1=0. If
F+R)F-F-D)Sx(Fi+R—F) and
(2.18) R 5
B<x(Fi+7+ ),
then d is also M V(c)-optimal in D(s,t;n). If either inequality in (2.18) is
not satisfied, then d is not MV(c)-optimal.
(e) Suppose i+ G <s, i1+ G+q=sand g+ G.— q<0.If
F+R)FH—F-)<x(Fi+7-#) and
(2.19) R
(FL+P)F — 7 — Dsx(Fi+7+ 72) y

then d is also M V‘gc)-optimal in D(s,t;n). If either inequality in (2.19) is
not satisfied, then d is not MV(c)-optimal.

PROOF. (a): For d, clearly

(2.20) max Varg (i —i)=1/F1 + 1/F,.

Isiss,s+l=sj=v
If §i + o = s, then a design d having treatment replications
raii=h+1,

fori=1,...,sand rjs+1 = --- = rq, = F» can be constructed. But then
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max Varg(fi—)=1/Fi+ 1)+ 1/h<I/Fi+1/F

I<iss,s+l<sj=p

and d is not MV(c)-optimal in D(s,t;n).

(b): Because g1 + @+ q1<s and §, + §.— q: =0, it follows that in
order for d to be MV(c)-optimal also, the following two inequalities must
be satisfied:

1/Ai+1/i<1/(Fi+x)+1/(F7— 1) and

LA+ 1/R<s1/F—-x) +1/(F+1).
But these last two inequalities are satisfied if and only if the inequalities
given in (2.16) are satisfied, which yields the desired result. The proofs for
(c), (d) and (e) are similar to the proof of (b).

THEOREM 2.6. Suppose t = xs and n = ris + r.xs for integers ri, r2, x =

1 and suppose dx € D(s,t;n) has ra = =ru,=ri =n—r¥xs)/s and
Favs+1 =+ = Faw =13 where r¥ satisfies (2.11). If ¥ also satisfies
2.21) {(nx — (nx(n + xs — 5))'*} <t < {(nx — (nx(n — xs + 5))"*} ’

sx(x —1) sx(x—1)
then dx is both MV (c)- and A(c)-optimal in D(s, t;n).
PROOF. This result follows directly from Theorems 2.2 and 2.4.

Example 2.7. Suppose s=2,1=6 and n=40. Then r¥ =4 and r}
satisfies (2.11), thus d+ having ru =ru=8 and ras= - =rag=4 is
MV(c)-optimal in D(2,6;40). It is easily verified that r also satisfies
(2.21); hence d+ is also A(c)-optimal in D(2, 6;40) by Theorem 2.6.

2.4 Relationship between MV (c), A(c) and other optimality criteria

The MV(c)- and A(c)-optimality criteria defined earlier are specifically
formulated to find “best” designs for making comparisons between a set of
test treatments and a set of controls. Thus, these optimality criteria might
be called local criteria, since they select designs that are optimal for
estimating specific treatment differences of the form ¢, —1¢, 1 <i<sy,
s+ 1=j=v. However, an experimenter may also be interested in eventual-
ly making comparisons between all treatments. Thus he would want to be
able to “optimally” estimate all possible treatment differences of the form
t; — ;. In this case, he would want to use a “global” criterion for selecting a
best design. Two widely used global criteria are the M V- and A-optimality
criteria.
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DEFINITION 2.1. A design d* is said to be MV-optimal in a given
class of designs D if for any other d € D, max Var,, (f; — #;) < max Vara (i —
i#] i#)

”

f)).
DEFINITION 2.2. A design d is said to be A-optimal in a given class
of designs D if for any other d € D, Zl 2 Var fi—i)< X _Zl Varg (fi —
i=1j
7).

=1 i=1j=1
J#1 171

In classes D(s,t;n), it is easily seen that if n=vr+g¢q, 0=g=<v-1,
then an MV-optimal design d* is one which has

Taxi = F for i=1,..,0 if 0sg=<sv-2,
(2.22) .
rei=r+1 for i=1,...,0—1 and rg,=r if g=v-1,

and an A-optimal design d is one which has
(2.23) ri=r or r+1 for i=1,..,v.

We shall now explore the various relationships that exist between the
MV(c)-, A(c)-, MV- and A-optimality criteria.

THEOREM 2.7. Let n=vr+q, 0<g<v—1, and let d* € D(s,t;n)
be MV(c)-optimal With ru < -+ < Faus, Favs+1 < *** < Faw. Also, let i = rau
and rz* = Fdx,s+1.

@ Ifr¥f=rrif=r and 0<qg<v-2, then dx is MV-optimal in
D(s, t; n).

by If rf=r,ri>r and q=v— 1, then dx is not MV-optimal in
D(s, t;n).

PROOF. (a): This follows directly from (2.22) and the fact that if
de D(s,t;n) is any design, since ¢ <v — 2, then d must have at least two
treatments, i and j, such that rg + rg < 2r.

(b): In this case, Fyussi1 =+ =raw =r and ra =>ri where ri* =
[(n—tr)/s]=r.Since t = s and s + £ = 3, it follows that max Vary (i — §j) =

2/r. But an MV-optimal design d has ray = - =ra=r+ 1, ras+1=r and

ras+2=+-=ra,=r+ 1. Hence max Varg ({i—#)=1/r+ 1/(r +1). Thus,
i#j

when g=v—-1, the MV(c) and MV-optimal designs in D(s,¢;n) are

different.

COROLLARY 2.2. Let n=vr+q, 0<sg<v—2, n—tr=sri +qf,
0<gf<s—landt=xs+q,0<q <s-1.
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(@ Ifgf+q<s—1andx(r' —r—r¥)<r¥, then a design dx which
is MV (c)-optimal is also MV-optimal in D(s, t;n).

b) Ifqf+q=sandx(r —r—r¥)<r¥> +r¥ +r— 1’ then a design
dx which is MV (c)-optimal is also MV-optimal in D(s, t; n).

PROOF. (a): Suppose dx € D(s,t;n). Then for d* to be MV-optimal,
it follows from (2.22) that dx must have ru; = r for all i. But for this to
happen and for dx to also be MV(c)-optimal, we see as in Subsection 2.1
that the following inequality must hold:

Ljr+1/[(n—tr)/s]<1/(r— 1)+ 1/[(n—t(r — 1))/s] .

Using the appropriate expressions given and the assumption that g + ¢, <
s — 1, we see that this last inequality is equivalent to 1/r + 1/rif < 1/(r— 1) +
1/(ri* + x) which will hold if x(+* — r — ri¥) < ri**.

(b):  As in the proof of (a), d* must have rs.;=r fori=1,...,v to be
MV (c)-optimal in D(s, t;n). But for this to happen and for d* to be also
MYV (c)-optimal, we see as in Subsection 2.1 and because g + g, > s that
the following inequality must hold:

r+1/rif<1/r=D+1/(rF+x+1).

But this latter inequality will be true as long as x(r’ —r — rif) < rf* + rf¥ +
2
r—r.

Example 2.8. Consider the class of designs D(l,7;45). Then r =5,
g=5,r=10, g =0, x=7 and g =0. It now follows from Corollary
2.2(a) that the design d* having rs =10 and ruo=-- =ras =5 is both
MV-and MV(c)-optimal in D(1,7;45).

Using arguments similar to those used to prove Theorem 2.7, we can
also easily obtain the following result.

THEOREM 28. (a) Ifs<t, then an A-optimal design in D(s,t;n) is
never A(c)-optimal in D(s, t; n).

(b) If s=1, then any design d having rz;=r or r + lfori=1,..,vis
both A- and A(c)-optimal in D(s, t;n).

Comment. Many of the results given in this section can be extended
to experimental situations requiring usage of a block design or row-column
design using techniques and results such as those given in Jacroux (1986)
and Majumdar (1986).
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