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Abstract. A general solution is derived to the problem of characterizing
block designs that are simultaneously pairwise-balanced and variance-
balanced. Applications of the characterizations obtained to some prob-
lems concerned with the local resistance of BIB designs are presented.
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1. Introduction

Let D denote a block design in which v distinct treatments, T1,..., T,
are allocated on n experimental units arranged in b blocks, the allocation
being described by a v X b incidence matrix N = (ny), i=1,...,0,j=1,..., b.
The vector of treatment replications and the vector of block sizes of D are
N1, =r=(r) and N'1, = k = (k;), where 1, denotes the a x 1 vector of ones
and N’ is the transpose of N. A block design is said to be equireplicated if
r=rl, for some positive integer r, and to be proper if k= k1, for some
positive integer k. Moreover, D is said to be pairwise-balanced it NN’ € 4.,
where 4, denotes the set of v x v matrices with the off-diagonal elements all
equal; D is said to be variance-balanced if every normalized estimable
treatment contrast is estimated with the same variance; and D is said to be
efficiency-balanced if every estimable treatment contrast is estimated with
the same efficiency (cf., e.g., Hedayat and Federer (1974) and Puri and
Nigam (1977)). All designs considered in this paper are assumed to be
connected; i.e., rank(R — NK 'N’) = v — 1, where R = diag (r1,...,r,) and
K = diag (ki,..., k»). It is known (cf., Puri and Nigam (1975)) that a
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connected D is variance-balanced if and only if NK 'N’e 4, and is
efficiency-balanced if and only if every off-diagonal element of NK 'N’ is
proportionate to the product of the two relevant replications.

An interesting problem concerned with the different notions of balance
is that of characterizing the class of block designs which, being balanced in
one sense, are also balanced in another sense. A solution to one version of
this problem, referring to the notions of efficiency balance and variance
balance, is well known (cf., Puri and Nigam (1975) and Williams (1975)),
and asserts that if D is connected and v > 3, then any two of the conditions:

(a) D is efficiency-balanced,

(b) D is variance-balanced,

(c¢) D isequireplicated,
imply the third condition. In the present paper, this problem is considered
with reference to pairwise balance and variance balance. Hedayat and
Federer (1974) showed, through counterexamples, that pairwise balance is
neither necessary nor sufficient for variance balance. On the other hand, it
is clear that these two notions of balance coincide for all proper designs,
which is a (very) partial solution to the problem stated above. Our purpose
is to derive a general solution and discuss its applicability to certain
problems concerned with the concept of local resistance of BIB designs,
introduced by Hedayat and John (1974).

2. Pairwise and variance balance

A solution to the problem of characterizing improper block designs
that are simultaneously pairwise-balanced and variance-balanced will be
given in two parts. The first part deals with designs having blocks of
exactly two different sizes.

THEOREM 2.1. Let D be a connected block design with v treatments
and b = by + by blocks: by blocks of size k\ and b, blocks of size k,, where
2 < k1 <Ky. Further, let Dy, denote the subdesign of D comprising all the
blocks of size h, h = k1, k,. Then D is simultaneously pairwise-balanced and
variance-balanced if and only if both Dy, and Dy, are pairwise-balanced
(and then variance-balanced as well).

PROOF. Let N, denote the incidence matrix of Dy. It is clear that if
2.1 NN+ N N( €4,
and

(2.2) (1/k)N N, + (1/K2)N. NL € 4,
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then (1 — x2/k1)N N/, € 4, and (1 — k1/k2)N., Ni, € 4,. Hence, in view of
K1 < K2, 1t follows that

(2.3) NiyNhed,, h=kK,K:.
Since (2.3) obviously implies (2.1) and (2.2), the proof is complete. [

Since a binary and proper variance-balanced block design is necessari-
ly a BIB design (cf., Tocher (1952), p. 61 and Rao (1958)), it is clear that
under the additional assumption that n; =1 or 0 for every i=1,...,0,
j=1,...,b, a necessary and sufficient condition for D in Theorem 2.1 to be
simultaneously pairwise-balanced and variance-balanced is that both D,
and D, be BIB designs. Consequently, both D,, and D, are equireplicated,
and hence, in view of the result of Puri and Nigam (1975) and Williams
(1975) quoted in Section 1, it follows that if a binary block design with two
different block sizes is simultaneously pairwise-balanced and variance-
balanced, then it is necessarily efficiency-balanced as well.

The restriction in Theorem 2.1 to the case of two different block sizes
is essential, because in general the balance properties of D are not inherited
by its subdesigns. As an example consider the design with 6 treatments and
76 blocks specified as

D=D,U D;U D,=(3D¥U4D5U (3D¥) U (2D¥),

where each symbol of the type ¢D, denotes ¢ copies of a design D., and
where D¥, D5, D¥ and D¥ are as specified below:

(i) D7? consists of the following 8 blocks: (1, 3), (1,4), (1,5), (1,6),
(2,3),(2,4), (2,5) and (2,6),

(i) Dj consists of the following 6 blocks: (3;4), (3,5), (3,6), (4,5),
(4,6) and (5, 6),

(iii) DY consists of the following 4 blocks: (1,2,3), (1,2,4), (1,2,5)
and (1,2,6),

(iv) D¥ consists of the following 8 blocks: (1,3,4,5), (1,3,4,6),
(1,3,5,6),(1,4,5,6), (2,3,4,5), (2,3,4,6), (2,3,5,6) and (2,4, 5,6).
It can be verified that D is simultaneously pairwise-balanced and variance-
balanced (with 12 and 4 as the unique off-diagonal elements of NN’ and
NK ~'N’, respectively), while each of the subdesigns D,, D; and D; is not
balanced. On the other hand, however, the designs (2D,) U D; and
D; U (2D,) are variance-balanced. According to Theorem 2.2 below, this is
just a necéssary and sufficient condition for a design with blocks of sizes
two, three and four to be simultaneously pairwise-balanced and variance-
balanced.

THEOREM 2.2. Let D be a connected block design with v treatments
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and b= b1+ --- + b, blocks: b\ blocks of size ku,..., b, blocks of size k.,
where u=3 and 2 < k) < --- < k,. Further, let D, denote the subdesign of D
comprising all the blocks of size h, h = k,...,k.. Then any two of the
conditions:
u-1

(a) mL=Jl (ku = Km)Dx, Is variance-balanced,

(b) D is pairwise-balanced,

(¢) D is variance-balanced,
imply the third condition. Moreover, if (a) holds along with (b) or (c), then

U2 (km — K1) Dy, is also variance-balanced.
m=

PROOF. Notice that the conditions (a), (b) and (c) are equivalent to
the relations

u-l u-1
Ku X (1/6m)Ne, Ni, = X N, Ni, €4,
mlelNKmNK’m €d,,

u-1
Ku Z (1/Kkn)Ne, N, + NoNi € 4, ,

respectively. Hence the first part of Theorem 2.2 is a consequence of the
fact that any two of the relations A € 4,, Be 4, and 4 + B € 4, imply the

third relation. The second part follows by observing that L:J2 (%m — K1) Dy, 18

variance-balanced if and only if
2:‘.2N,(",Nx’m - K 2:32 (1/Kkm)N«,Ni, € 4, . O

A design D is called a linked block design (cf., Youden (1951)) if any
two of its blocks have the same number of treatments in common; i.e., if
N’'N € 4,. 1t 1s obvious that the dual of a variance-balanced design D is a
linked block design if and only if D is also pairwise-balanced. A characteri-
zation of such a design is therefore obtainable directly from Theorems 2.1
and 2.2. Consequently, Theorem 2.1(ii) of Nigam and Puri (1982), stating
that the dual of a variance-balanced design D is a linked block design if
and only if D is proper, seems to be incorrect; the condition given by them
is sufficient but not necessary. The same remark applies to their Theorem
2. 1(i1i).
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3. Local resistance of BIB designs

Let D be a BIB (v, b, 1, k, ) design, let & = {T,..., T;} be a subset of
{T\,..., T,}, and let D; denote the design obtained by deleting from D all the
experimental units assigned to the treatments in T, and ignoring empty
blocks if such emerge. Then, according to Hedayat and John (1974) and
Most (1975), D is said to be locally resistant of degree s with respect to T
if D, is variance-balanced. Since, on the other hand, D: is pairwise-
balanced irrespective of the choice and cardinality of &, it is clear that the
problem of examining the resistance of BIB designs is very closely connect-
ed to the problem of characterizing binary block designs which are
simultaneously pairwise-balanced and variance-balanced.

The incidence matrix of a BIB (v,b,r, k,A) design may always be

written in the form
1y  0:-,
N: )
Nt Nk

where Nx_ and Ni correspond to the subdesigns Di-; and Dx comprising
blocks of size k — 1 and k, respectively. Consequently, a simple corollary to
Theorem 2.1 asserts that a BIB design is locally resistant of degree one with
respect to a given treatment if and only if the corresponding subdesign
Di_1 is a BIB design (if and only if the corresponding subdesign Di is a
BIB design), which was originally established by Hedayat and John (1974),
Theorem 4.1 (see also Kageyama (1987)).

For examining the local resistance of degree two it is useful to
partition NV as

1; 15 00—y 0p-2r4s
3.1 N=| 11 0-: L 0b2s;],
Ne-a NEI Niei  Ni

where Ni-2, Nk-1 = (N1 N;f-l) and Ni correspond to the subdesigns Dy-2,
Dy, and Dy comprising blocks of size k — 2, k — 1 and k, respectively. As
an immediate consequence of Theorem 2.2 we get the following.

THEOREM 3.1. A BIB(v,b,r,k,A) design, in which b>2r— 1 and
k>3, is locally resistant of degree two with respect to a given pair of
treatments if and only if the design (2Di-2) U Di-1 corresponding to this
pair of treatments is variance-balanced (if and only if the design
Di-1 U (2Dx) corresponding to this pair of treatments is variance-balanced).
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Theorem 3.1 is to be supplemented by noting that if b = 2r — A, then
the submatrix Ny in (3.1) is absent, and thus Dy contains blocks of two
different sizes only. Consequently, we may apply Theorem 2.1 to conclude
that a necessary and sufficient condition for the local resistance of degree
two is then the requirement that each of the subdesigns Di-; and Dx-; be a
BIB design. For a discussion of BIB designs satisfying the condition
b=2r— Asee, e.g., Kageyama and Mohan (1984), Section 3.

It can be verified that the designs (2Dx-2) U Dy_; and Dy-; U (2D¢) in
Theorem 3.1 are equireplicated (with the replications equal to 21 and
2(r — 4), respectively), and thus, being variance-balanced, they are efficiency-
balanced as well. Therefore, the question arises as to how to utilize this
additional property in investigating local resistance of degree two of BIB
designs. Notice that the design given as an example before Theorem 2.2 is
not equireplicated, having r’ = (32, 32, 33,33, 33, 33).

THEOREM 3.2. The following conditions are necessary for a
BIB (v, b,r,k, ) design to be locally resistant of degree two:

(a) Ak —2)/(v— 2)is a positive integer,

(b) there exist integers x, y, z satisfying the equations

2(k = Dk = DA =2) - 7]

(3.2) 20k =Dx+(k=2)y= - 2)v - 3)
and
(B3  xt+y+z=2a.

PROOF. Let D-2, Di-; and Dy be subdesigns of BIB (v,b,r,k, A)
with the incidence matrices Ni-2, Ni_1 = (N£1:Ni-)) and Ny, respectively,
as specified in (3.1). In view of the equality of treatment replications in
(2Dx-2) U Di-1, comparing the diagonal elements on the two sides of

2 1
3.4 k2 Ni-2Nj, + ﬁ N1 Ni-y
_2(r=A) 2[A(v=2)—r] ,
=T, o3 bt (v —2)v-3) L-2Li-2

shows that Di-2, D¢-1 and, consequently, also Dy are equireplicated, with
the replications equal to :

Alk —2) 20(v — k) r(v—2k)+ Ak
, and ————F——
v—2 v—2 v—2

3.5
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respectively. Hence we get the condition (a), which implies that also the
second and third quantities in (3.5) are integers, whereas the condition (b)
is obtained by comparing the off-diagonal elements in (3.4). O

The necessity of the condition (a) in Theorem 3.2 was established by
Kageyama and Saha ((1987), Corollary 3.4), who also pointed out that
another necessary condition is that

Ak = 2)(k = 3)—1)

3.6) - 203

is an integer .

Notice that condition (b) in Theorem 3.2 requires that

2(k — D(k = 2)[A(v—=2)—r]
w—-2)(-3)

is an integer ,

and since

2(k — 1)k — 2)[A(v — 2) — r]
=20k — D[k — (v —2) — rk — 1)]
= 2(k — D[k — D —2) — A — D]
= Ak — 2k — 3 — 1) + Ak — D)k — 2)(v - 3),

it follows that, under (a), the condition (3.6) is implied by (b). It also
follows that if there is only one solution to the equations (3.2) and (3.3),
then each of the subdesigns Dx-2, Di-1 and Dy is pairwise-balanced and,
being proper, is variance-balanced as well. But a proper variance-balanced
block design is necessarily a BIB design, and hence we conclude that if
there is exactly one solution to (3.2) and (3.3), then Di-2, Di-1 and Dy are
all BIB designs.

Condition (b) in Theorem 3.2 proves to be quite useful. For example,
Kageyama and Saha (1987) verified that within the class of BIB designs
with v=2k +1, k>4 and r <30, only BIB(11,33,15,5,6) and
BIB (11, 66,30,5, 12) designs fulfil the necessary conditions for the local
resistance of degree two given in their Corollary 3.4, i.e., (a) in Theorem
3.2 and (3.6). In these two cases, the equations (3.2) and (3.3) take the
forms

3.7 8x+3y=13, x+y+z=6,

and
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(3.8) 8x+3y=26, x+y+z=12,

respectively. It is seen that there is no integer solution to the equations 3.7
and that there is a unique solution, viz. x=1, y=6 and z=5, to the
equations (3.8). The former observation implies that there does not exist a
BIB (11,33, 15,5, 6) design which would be locally resistant of degree two,
thus answering in the negative the question of Kageyama and Saha ((1987),
p- 89). On the other hand, the latter observation implies that, as originally
asserted by Kageyama and Saha (1987), there does exist a BIB (11, 66, 30, 5, 12)
locally resistant of degree two. Its subdesigns Ds;, D, and Ds are
BIB (9,12,4,3,1), BIB(9,36,16,4,6) and BIB (9,18,10,5,5) designs,
respectively.

The last part of this paper is concerned with problem (c) of Hedayat
and John ((1974), p. 157). They asserted, in their Theorem 5.5, that if &,
consists of k treatments occurring in any one block, then a sufficient
condition for a BIB (v, b,r, k, A) design to be locally resistant of degree &
with respect to ) is that it is symmetric, i.e., that v = 5. Moreover, they
posed the question whether this property is also a necessary condition. This
question was answered in the negative by Chandak (1980), and perhaps the

. . ) v—1 v—2
simplest example is the unreduced BIB ( v, (k) . ( P ) , k, (k _ ))
design, which is known (cf., Kageyama (1987), Lemma 2.1), to be resistant
with respect to every subset of treatments whose cardinality does not
exceed k.

However, the symmetry of a block design becomes both necessary and
sufficient for the local resistance of degree k with respect to &, consisting
of treatments which occur in the same block when a modified definition is
adopted, according to which D is said to be locally strongly resistant of
degree s with respect to Z, if Dy is a BIB design.

THEOREM 3.3. Let D be a BIB (v, b, r,k, A) design, and let F, consist
of k treatments occurring in one block which is not repeated in D. Then D

is locally strongly resistant of degree k with respect to T, if and only if
v=b.

PROOF. As pointed out by Hedayat and John (1974) in the proof of
their Theorem 5.5, the sufficiency is an immediate consequence of the fact
that if v = b, then Dyis a BIB (v — k,v— 1, r, k — A, A) design. Now assume
that Dy is a BIB (vs, by, r+, ks, A+) design. Then Ay = 1 by the definition of Dy,
and hence, since vy = v — k and ry = r, it follows that (ks — 1)/(v — k — 1) =
(k—1)/(v—1). Consequently, ks=k(v—k)/(v— 1), while on the other
hand, ks = vsrs/ by = r(v — k)/(b — 1). Comparing the two expressions for ks
yields r = k, or, equivalently, v = 4. [J
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