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Abstract. Brien et al. (1984, Biometrika, 71, 545-554; 1988, Biometrika,
75, 469-476) have proposed, illustrated and discussed advantages of using
Fisher’s z-transforms for analyzing correlation structures of multinormal
data. Chen and Mudholkar (1988, Austral. J. Statist., 31, 105-110) have
studied the sum of squared z-transforms of sample correlations as a test
statistic for complete independence. In this paper Brown’s (1987, Ann.
Probab., 15, 416-422) graph-theoretic characterization of the dependence
structure of sample correlations is used to evaluate moments of the test
statistic. These moments are then used to approximate its null distribu-
tion accurately over a broad range of parameters, including the case
where the population dimension exceeds the sample size.

Key words and phrases: Approximation, correlation analysis, depen-
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1. Introduction

It is obvious that the use of prior information regarding the covariance
structure can improve the quality of multivariate data analysis. If the
components are independent, then they can be analyzed separately using
univariate methods and the results combined. In the presence of inter-
mediate structures such as compound symmetry or sphericity, the analyses
based upon specialized methods (see e.g., Arnold (1973)) are preferable to
using general purpose multivariate methods. Problems involving hypotheses
about covariance structures are therefore important. Using likelihood
ratios is a common approach for testing hypotheses regarding covariance
patterns. But as Brien er al. ((1984), see also (1988)) observe, these
procedures often obscure intuitive detail and can be computationally
costly. Moreover, they are meaningful only if the sample size exceeds the
population dimension. Thus, for the simplest of these problems, testing
complete independence in a p-dimensional normal population, the likeli-
hood ratio is a function of the determinant of the sample correlation
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matrix R = (ry), which equals zero if the sample size 7 is no greater than p.
Alternative test statistics such as n X r; due to Nagao (1973) and

(1.1) T=(n-23) l_%zﬁ-,

where z; = tanh”'(r;), due to Chen and Mudholkar (1989), are reasonable
for arbitrary n, but their null distributions are known only asymptotically.

In this paper we investigate the null distribution of T using a mix of
analytical and numerical techniques so as to render T usable for practically
relevant p and n. Specifically, we employ Brown’s (1987) graph-theoretic
characterization of the dependence structure of r;’s together with numerical
integration techniques to obtain the first three moments of 7. These
moments are then used to construct some approximations for the null
distribution of 7, which are evaluated using Monte Carlo experiments. On
the basis of these evaluations and consideration of simplicity, two of these
approximations are seen to be practical and reasonably accurate for use
over a broad range of p and n.

2. The moments of T

Let Xi,...,X, be a random sample from a p-dimensional normal
population with dispersion matrix V. Let ry’s be the sample correlation
coefficients, z;’s their Fisher transforms, and consider the null hypothesis
Ho: V is diagonal.

The likelihood ratio test which rejects H, for small values of the
determinant |R| of the correlation matrix is impractical when n <p.
Nagao (1973) has proposed n X r; as a statistic for testing Ho, obtained an
asymptotic expansion for its null distribution, and has shown it to be
useful for p =3 and n = 100. Appealing to the famous near-normality of
the Fisher transforms of correlation coefficients, Chen and Mudholkar
(1989) proposed and examined T as defined in (1.1) for testing Hop, and
showed that its asymptotic y2 -1, distribution (see Brien et al. (1984)) is
adequate for moderate values of n, e.g., n =20, provided p is small, e.g.,
= 5. In order to improve upon this large sample approximation, we need
at least the first three moments of 7

It is well known that if ¥ is diagonal, then r;’s and consequently z;’s
are pairwise independent (see e.g., Anderson (1984), p. 282). Hence we can
use the marginal distribution of z to obtain the mean and variance of 7.
However, pairwise independence is not enough to obtain an expression for
the third moment of 7. Brown’s (1987) analysis of the dependence structure
of the ry’s is useful in this context. His result, which is in terms of the cycles
in a graph, with edges corresponding to r;’s, is now outlined.

Let the vertices 1,2,...,p in a graph correspond to the components of a
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random p-vector, and let its edges correspond to the p(p — 1)/ 2 correlation
coefficients of a random sample from the p-dimensional population. The
subgraph corresponding to a subset of {ry, 1 <i<j<p}or of z;’s, consists
of corresponding {i1, ji,..., ik, Jjk} as its vertices, ignoring the repetitions, and
{i1j1,..., Ikji} as its edges. Then we have the following:

LEMMA 2.1. (Brown (1987)) If the p components of a multivariate
normal population are independent, then a subset of {zj, 1 <i<j= p} is
mutually independent if and only if the corresponding subgraph has no
cycle.

Now notice that if the dispersion matrix V is diagonal, the joint
distribution of the p(p — 1)/2 Fisher transforms z;’s of the correlation
coefficients are invariant under permutatlons Let a1 =(n— 3)E (212) az
(l’l - 3) var (le), as = (I’l - 3) E{(Zn - E(Z12)) } and a3 = (I’l - 3) E(Z12213223)
— ai. Then we have the following:

THEOREM 2.2. Under the null hypothesis that V is diagonal,

@.1) sz(T):(’;)al,
2.2) ,quvar(T)=(g)az,
(2.3) /13EE{(T—/11)3}=(12))(13+6(§)a123.

PROOF. (2.1) and (2.2) follow from the fact that z;’s are identically
distributed and pairwise independent.

Now, let Uj=(n— 3)z; — a: and organize them lexicographically as
Vi, Vay.., Vop-1y2. Then Vs are identically distributed, pairwise indepen-
dent and E(Vi) = 0. Hence

24  E{(T-w)}= E{( 2V )3 ]

13

=E(ZV.-3+3ZAV,'2V,-+6.ZkV}V,~Vk).
12 i#) <j<

But E(Vi’V;)) =0, i #j, as V/’s are pairwise independent with zero expecta-
tion. Also, E(ViV;Vi) =0 if Vi, V; and Vi are independent. When they are
dependent, by Lemma 2.1, E(ViV;Vi) = 23, i <j < k. The number of such
dependent triples Vi, ¥; and Vi are p(p— 1)(p—2)/6 since they must
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correspond to a cycle Uw, U and U,y Hence we have (2.3), which
completes the proof.

It is important to note that a1, a, as and a1»; as defined above depend
upon 7 only, and not upon p. a; and a; may be obtained from Gayen’s
(1951) expressions (see also Mudholkar (1983)) for the moments of z.
However, for small values of n, e.g., n=10, 15, these are not accurate
enough for the present purpose. Hence the values of ai, 02, 03 and o423 were
obtained by numerical integration for n = 8(1)50. The following expres-
sions for these quantities are constructed by using regression methods and
Occam’s razor in the light of asymptotic theory.

(2.5) a=~1- 3(nl_ T 6(n7— Y _6 D

=0 w%2+nil+3m§1f‘miif’

=7 mz8+n%l+%;?nf+x:?ny_m%34’
(2.8) iy~ —2 4 165 132

"l -1 81 Tn-1

The errors in (2.5)-(2.8) are, respectively, within =+ 0.00005, =+0.00015,
£0.0007 and =+ 0.00005, except the errors in a; for n= 8,9,10 are
approximately 0.00072, 0.0015 and 0.00084, respectively.

The first three moments of 7"can be obtained by substituting (2.5)-(2.8)
in (2.1)—(2.3). These are used in the following section for constructing some
simple approximations for the null distribution of T

3. Approximations

Under the null hypothesis of complete independence, T is asymptotical-
ly distributed as a y,-1)2 variable. Hence in moderate-size samples, 7 may
be approximated by three parameter random variables such as () ay? + b,
(ii) ¢F(v1,v2) or (iii) k(x?)", which agree with it in the first three moments.
These, and some other, approximations were developed and studied in the
present context, and the first two together were found to be appropriate to
the purpose. They are now discussed:

Approximation 1. The idea of using ay? + b, a translate of a gamma
variable was proposed by Pearson (1959) for approximating the non-
central x° distribution. For approximating the distribution of 7'in this way,
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the constants a, v and b, determined by equating the first three moments,
are given by:

v=8u3/u3,
G.1) a= /a4,
b= —2i/us,

where u1, 42 and us are as in (2.1)-(2.3).

Approximation 2. Since T is an asymptotic x’-variable, in moderate
size samples it may be approximated by a multiple cF(vi, v2) of a variance
ratio F, where the parameters c, v; and v, are given by

c={2(1+0—¢)/(2+30—4¢)} 1,
3.2) vi=4(1+0—¢)/(0¢ — 0+ 49),
n=4+2(0+2)/0-2¢),

where 0 = s/ (p142), ¢ = pi2/ pi and i, g2, ps are given by (2.1)-(2.3).

Evaluation. Evidently, the first approximation is simpler to use than
the second if the tables of percentiles are used. When computers are
available, it is very easy to write micros for either of the approximations in
packages such as MINITAB and SAS. However, the parameter b in the
first approximation is generally positive, implying that the approximation
assigns zero probability to an interval of positive values of 7. On the other
hand, for p > n, the values of v, in the second approximation become
negative. The purpose of studying these two approximations is therefore to
evaluate their quality in the presence of these anomalies. This was done
using a Monte Carlo study. For certain combinations (p,n), for p in the
range from 3 to 30 and n = 10, 15, 20, N = 50,000 samples, each of size n
from a p-variate normal population with an identity dispersion matrix,
were generated by use of NAG subroutine g05ddf, and the statistic T was
computed for each sample. The empirical distribution functions of 50,000
simulations of T for each combination ( p, n) were then used to estimate the
missing probabilities pr (7< b) and to evaluate the accuracy of the tail
probabilities given by the two approximations. A selection of the results is
given in Tables 1 and 2. From the results of the Monte Carlo study and
other considerations, we recommend that Approximation 2, T~ cF(vi,V2)
should be employed when p < min {n, 10}. Otherwise, Approximation 1,
T~ ay. + b is appropriate, especially if p > n.




154 SHANDE CHEN AND GOVIND S. MUDHOLKAR

Table 1. Empirical tail probabilities and missing probabilities pr (T < b) using quantiles from the
approximation 7= ay? + b.

n D a=0.10 a=10.05 a=0.01 a=0.005 «a=0.001 b pr(T<b)
10 3 0.1800 0.0490 0.0099 0.0048 0.0012 0.551 0.0940
5 0.1026 0.0515 0.0097 0.0047 0.0010 2.883 0.0149
10 0.0957 0.0480 0.0098 0.0049 0.0010 20.713 0.0002
15 0.0993 0.0493 0.0101 0.0047 0.0011 59.306 0.0000
20 0.0987 0.0492 0.0101 0.0053 0.0011 120.666 0.0000
25 0.0980 0.0494 0.0103 0.0054 0.0012 205.666 0.0000
30 0.1000 0.0505 0.0105 0.0049 0.0012 314.749 0.0000
15 3 0.1473 0.0507 0.0103 0.0054 0.0011 0.381 0.0559
5 0.0988 0.0490 0.0104 0.0056 0.0013 2.146 0.0040
10 0.0994 0.0480 0.0103 0.0056 0.0014 16.735 0.0000
15 0.0990 0.0503 0.0107 0.0056 0.0012 50.037 0.0000
20 0.0999 0.0511 0.0108 0.0055 0.0012 104.730 0.0000
25 0.1005 0.0509 0.0102 0.0052 0.0010 182.149 0.0000
30 0.0998 0.0503 0.0104 0.0052 0.0010 283.035 0.0000
20 3 0.1303 0.0482 0.0100 0.0055 0.0014 0.290 0.0380
5 0.0978 0.0494 0.0099 0.0054 0.0013 1.700 0.0016
10 0.0985 0.0493 0.0106 0.0055 0.0012 13.943 0.0000
15 0.0962 0.0481 0.0096 0.0048 0.0010 42.979 0.0000
20 0.0979 0.0475 0.0095 0.0049 0.0012 91.902 0.0000

25 0.0974 0.0496 0.0100 0.0053 0.0011 162.423 0.0000
30 0.0987 0.0485 0.0098 0.0054 0.0014 255.560 0.0000

SE 0.0013 0.0010 0.0004 0.0003 0.0001 — —

The empirical probabilities are based upon 50,000 simulations.
SE = Va(l — a)/50000, the standard error of the estimated tail probabilities.

Table 2. Empirical tail probabilities using quantiles from the approximation T= cF(vi, v2).

n D a=0.10 a=0.05 a=0.01 a=0.005 «a=0.001
10 3 0.0954 0.0494 0.0100 0.0053 0.0013
5 0.0977 0.0484 0.0103 0.0056 0.0011
7 0.0973 0.0481 0.0099 0.0050 0.0009
10 0.0999 0.0500 0.0103 0.0054 0.0012
11 0.1003 0.0515 0.0105 0.0054 0.0011
15 3 0.0983 0.0493 0.0104 0.0052 0.0011
5 0.1000 0.0488 0.0100 0.0053 0.0012
7 0.0996 0.0502 0.0110 0.0054 0.0012

10 0.1002 0.0501 0.0107 0.0051 0.0012
15 0.1004 0.0507 0.0099 0.0049 0.0011
16 0.0997 0.0504 0.0106 0.0056 0.0012

20 3 0.0987 0.0493 0.0103 0.0046 0.0009
6 0.1007 0.0496 0.0096 0.0053 0.0013

10 0.0996 0.0502 0.0107 0.0054 0.0011

13 0.0994 0.0496 0.0094 0.0046 0.0009

20 0.1014 0.0503 0.0096 0.0047 0.0011

21 0.1004 0.0499 0.0096 0.0043 0.0011

SE 0.0013 0.0010 0.0004 0.0003 0.0001

The empirical probabilities are based upon 50,000 simulations.
SE = v/a(l - @)/ 50000, the standard error of the estimated tail probabilities.
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