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Abstract. The likelihood ratio chi-square criterion for testing goodness-
of-fit in k cell multinomials is known to overestimate significance for
small and moderate sample sizes (see, e.g., Larntz (1978)). Therefore, the
usual chi-square approximation to the upper tail of the likelihood ratio
statistic G°, is not satisfactory. Several authors have derived adjustments
(e.g., Williams (1976), Smith et al. (1981), Hosmane (19875)), so that the
asymptotic mean of G’ matches the mean of the asymptotic chi-square
distribution in the hope that the distribution of G* would improve. In
this paper, a new adjustment to G* is determined on the basis of the
n”'-order term (n being the total number) of the Edgeworth expansion of
the distribution of smoothed G’. Monte Carlo results indicate that the
modified G* outperforms the unadjusted G*.
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1. Introduction

In this paper, we consider smoothing of the likelihood ratio statistic
G*, for testing the equiprobability hypothesis in a & cell multinomial
distribution. Since equiprobable class intervals produce the most sensitive
tests (see, e.g., Cohen and Sackrowitz (1975), Spruill (1977) and Bednarski
and Ledwina (1978)), several authors have considered small sample studies
of the distribution of G” in this case. Chapman (1976), Larntz (1978),
Koehler and Larntz (1980) and Lawal (1984) examined the error in
approximating the distribution of G* with a chi-square distribution. Good
et al. (1970) computed the least squares fit to logso P*(G* > a), where
P*(G* > a) is a smoothed version of the exact tail probability of G*.

It is known that the likelihood ratio chi-squared criterion overesti-
mates significance, in the sense that the null hypothesis Ho is rejected too
often in relation to the nominal level of significance when Hp is true for
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moderate sample sizes (see, e.g., Larntz (1978), Smith ez al. (1981), Lawal
(1984) and Hosmane (1987b)). Williams (1976), Smith et al. (1981) and
Hosmane (1987b) have suggested downward multiplicative correction to G*
for testing goodness-of-fit of multinomial distributions. Larntz (1978)
studied the behavior of G*, concluding that the aberrant behavior of G* is
due to very small observed counts in the table. The classical ad hoc
procedure of adding 0.5 to all frequencies can be used, but it does not
perform well. In this paper, we consider the following smoothing procedure:

C2: Add a positive constant to all the frequencies in the table.

This adjustment procedure has been considered by Hosmane (1986, 19874
and 1987b) to smooth statistics in the analysis of categorical data.

In this paper, we determine the suitable smoothing constants in the
adjustment procedure C2 on the basis of the n 1—order term of the
Edgeworth expansion of the dlstrlbutlon of smoothed G*. Here we assume
the distribution of smoothed G* follows fairly closely to a smooth curve for
small-to-moderate samples (see, e.g., Smith er al. (1981)). The analytical
study involving asymptotic considerations was combined with Monte Carlo
studies for finite samples. Some relevant findings of these studies are
reported in Section 3.

2. Modified likelihood ratio statistic

Let ¥ = (Y4,..., Yx)’ be a multinomial random Vector with parameters
(m,n) where ©=(m1,...,m), 0<m<1 for all j, an—l and n= Z Y.

Consider a one-way classification, for a single factor B with k (fixed) levels
with observed frequencies Yj, j = L,...,k. The null hypothesis is expressed
as

2.1 Homi=p, Jj=1,.,k,

where p; is the hypothesised probability of the j-th cell. In this paper, we
consider the equiprobable hypothesis where p; = 1/k for all j. The likeli-
hood ratio statistic G* to test Ho is

k
2.2 G’=2 X Y;In (¥/np).

It is known that G* has an asymptotic chi-square distribution with (k — 1)
degrees of freedom (df) when Ho is true.

Now, using the C2 procedure we obtain the modified G?, say GX(Y)
given by
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(2.3) GZ(Y) =2 ( 1 + ) Z (Y;+a) In{(Y;+ a)/(n+ a))p;},

where a+ = X a;, a; is a non-negative constant such that Y; + a; > 0 for all j
J

with probability one and (1 + ¢/(n + a+)) is similar to the Bartlett adjust-
ment factor (see Barndorff-Nielsen and Cox (1984)).

We now derive the Edgeworth expansion of the distribution of G*(Y)
using the fact that the distribution of the likelihood ratio statistic in this
situation follows fairly closely to a smooth curve for small-to-moderate
samples (see, e.g., Smith et al. (1981)). In order to justify the Edgeworth
expansion of the distribution of G*(¥) given in the next section, we have to
exclude cases where the lattice character of the statistic is too pronounced
(see, e.g., Knusel and Michalk (1987)).

THEOREM 2.1. The Edgeworth expansion for the distribution of the
statistic G*(Y) can be expressed as

(2.4) PG’ (Y)<d)= P(yt.<d)

1; [P()(k 1<d)[(1—S)+6(2 le,

k g°
Z—’ —(l+k)a+—c(k—1))]
=Dy
kg2
+P(x;%+1<d)[(S—1)+6(2—f
J
k a;
—Z—’-a3+a++c(k—1))]
J=1 pj

k .
— 6P (yi+3 < d) [,-Zl % — ka. ” +0mn
J

where y; represents a chi-square random variable with v degrees of freedom

and S = Z p, The proof of the above theorem is given in the Appendix.

Here we note that for a; = 0 for all j and ¢ =0 in (2.4), we obtain the
result (4.8) obtained by Siotani and Fujikoshi (1984). In practice, we add
the same constant, say a, to every cell i.e., g;= a for all j to smooth G’.
Then (2.4) reduces to
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(2.5) P(GAY)<d)= P(xi-1<d)
+ "1%; {(P(xi-1 <d)(1—S)+6(Sa(2 - a)
+ ka(ka —k - 1) — c(k — )]
+ PR <d)[S—1+6(aS@a-1)

—katka— 1)+ c(k— 1))]
—6P(yis<d)a(S— K} + o(n*) .

For a = 0, n” '-order term in (2.5) is eliminated by selecting

_(1-5)
(2.6) et

This ¢, corresponding to a = 0, is exactly the one obtained using moment

correction to G* (see, e.g., Hosmane (1987b)). Also, Williams’s (1976)
correction g ' in this situation is given by

_ S—-1 -1 c _
'= 1+—) =1+—+0@n",
9 ( on(k - 1) x TOm .

which agrees with our correction up to the »”'-order term.
In the case of the equiprobability hypothesis, we have =k’ and
hence (2.5) reduces to

Q1) PGY)<d)= P(ir<d) + T [P <d) — PO < d)]
(K = 1) + 6(ka — KPa+ c(k = )] + O .

Then the choice of ¢ for fixed a, in order to eliminate the n '-order term in
2.7 is

1
(2.8) c=€(6ak—k—1),
and (2.7) reduces to

P(GAY)<d)=P(yi-1<d)+ 0n .

This choice of ¢ corresponding to a=0 for testing the equiprobability
hypothesis is the same as the one obtained using moment correction to G’
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(see, e.g., Hosmane (1987b)). This indicates that improving the asymptotic
mean of G* improves the approximate chi-square distribution as noted
earlier by Lawley (1956), Williams (1976) and Barndorff-Nielsen and Cox
(1984).

In the case of the asymmetric hypothesis (i.e., p; # 1/ k), the moment
correction to G’ for fixed a is given by

{a(S—k)-a2(S—k2)+(1%g—)—

2.9) c=7—

(see Hosmane (19875)). For this choice of ¢, the equation (2.5) reduces to
P(GZ(Y) <d)= % {SP()(,%_1 <d)+ (k2 _ S)P()(,f+3 <d)}+ O(n"m) .

Therefore, for a#0, improving the asymptotic mean of G does not
necessarily improve the asymptotic chi-square distribution for testing the
asymmetric hypothesis.

3. Monte Carlo investigation

A Monte Carlo simulation study was carried out to assess the relative
performance of smoothed G? statistic in finite samples. We considered 225
tables of sizes varying from 2 to 10 (i.e., & = 2(1)10) with n/k = 1(1)25
satisfying the equiprobability hypothesis Ho. For each null hypothesis,
multinomial random variables Y; with probability 1/k and sample size n
are generated using an IMSL (1987) subroutine. Independent random
samples were obtained 1,000 times for each distribution. For each simula-
tion the adjusted G* were computed, using the C2 procedure, with different
combinations of (a, c) values, for testing the equiprobability null hypothesis
Ho. The empirical levels of significance, @, attained were computed as the
proportion of times the value of G* exceeded the asymptotic critical value
of y2 for the nominal value @ = 0.05 and a = 0.01 with (k — 1) degrees of
freedom.

The C2 procedure was studied for the combination (a, ¢) with a = 0.1,
0.2, 0.25, 0.3, 0.4 and 0.5 where ¢ is the optimal value as indicated in
Section 2. For convenience in labelling the tables, the various Monte Carlo
setups, each consisting of one value of a together with the value of ¢, given
in the previous section, are labelled (1) through (6) as follows:

G%:(1)0.1, (2)0.2, (3)0.25, (4)0.3, (504, (6)0.5.

We also considered modified G* with a=0 and ¢= (1 — §)/6(k — 1)
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denoted by Gé; a=0.5 and ¢=0 denoted by G¢s. For the sake of
comparison, the tables report values of @ for the unadjusted G* denoted by
G.. Also, the adjusted G’ suggested by Williams (1976) and Smith ez al.
(1981) are included in our study; these are denoted by G% and G3rums,
respectively.

All computer program were double precision and written in FORTRAN.
The values of @ are given in Table 1 for four cell and eight cell multi-
nomials (i.e., k=4 and k = 8) satisfying the equiprobability hypothesis
with n/k =2, 5 and 10. They typify the behavior observed for the other
tables considered in our study. It is seen that if many expected cell
frequencies are small, the modified G” statistics with @ > 0 tend to under-
estimate o, and the underestimation of a seems to increase as a increases.
As expected, unadjusted G* overestimates a and GZs seems to underesti-
mate o in most cases. For moderate to large expected cell frequencies, Gw,

Table 1. Embpirical levels ( x 1000) for G* statistics at @ = 0.05 and @ = 0.01" in four cell and eight cell
multinomials for testing the equiprobability hypothesis.

k=4 k=8
Statistics nik= nlk =

2 5 10 2 5 10

G: 32 58 68 102 86 52
15 (4 14 Q) 4 (12

Gw 32 52 66 62 79 47
@ 1% 14 (®) (22) ®)

Gérms 32 52 66 69 81 47
) 19 14 10 (22 (®)

eh 32 51 66 62 79 47
M (19) 4) ®) (22) (3)

(0 32 52 66 46 74 47
0) a6y  (14) 5 (20 (8)

2 32 52 66 40 72 46
©) (16) (14) (C)] (20) ®)

®) 32 52 66 38 71 45
0) a1s (14 (C)] (20) (®)

) 32 52 66 37 71 45
) (5 14 Q) (19 8)

) 32 52 66 33 67 45
0) 15 (14 () (18) ®)

) 32 52 66 28 65 45
(0) (13) (14) 3) (16) ®)

Gis 4 44 71 8 33 47

() 1n de () (5 “4)

"The numbers in parentheses correspond to a = 0.01.
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Gsrms, G¢ and G{) statistics attained levels that are quite close to the
nominal values.

In order to check whether 4 is reasonably close to the nominal value a,
we adopted Cochran’s (1952) suggestion that G should be between 4% and
6% at the nominal 5% level, and between 0.7% and 1.5% at the nominal 1%
level. Table 2 gives the percentage of tables among the 225 tables which
had acceptable a values. It seems that G and Go) approximate a better
than any other G’ statistics considered in our study.

Table 2. Acceptabilities for G statistics at @ =0.05 and « = 0.01 for testing the equiprobability
hypothesis.

Percentage of tables having
acceptable @

Statistics

5% 1%
G2 62.68 67.11
Gw 69.33 72.00
Girms 67.56 72.00
G§ 72.89 72.56
0] 73.33 72.15
%)) 72.67 69.78
3) 72.33 68.44
@) 72.33 67.56
5) 71.44 66.67
(6) 7111 66.47
Go.5 57.4 62.5

We would like to point out that although Smith ez al. (1981) conclude
that Williams’ method is never more accurate than their method, our
results indicate that G approximates o better than GZzys in most cases.

A similar study was also carried out to compare the estimated powers
of G statistics for k = 2(1)10 with n/k = 1(1)25 to test the equiprobability
hypothesis Ho against the following alternative hypothesis

1 o .
7[1-(](_1)], i=1,...,k—-1,

1+
k b

3.1 H;:m=
i=k,

(see, Cressie and Read (1984)), where — 1 <& < k — I is fixed. In Tables 3
and 4, we report the empmcal powers of G statistics to test Hp agamst H,
with 6=0.5 (i.e.,, a “bump” alternative) and 6= — 0.9 (i.e., “dlp”
alternatlve) for k =4 and k = 8, respectively. The results 1ndlcate that Gs,
G, G¥% and G2rwms have similar powers. Also, for modified G?, the power
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Table 3. Empirical powers ( x 1000) for G? statistics at ¢ = 0.05 and o = 0.01" in four cell multinomial
for testing the equiprobability hypothesis.

k=4,6=05 k=8, 6= -09
Statistics nlk= njk=

2 5 10 2 5 10

G2 57 157 281 126 677 992
(G1)  (54)  (108)  (68)  (594)  (940)

G 57 152 265 126 676 991
(18) @7 (108) (30) (519 (931)

Gérms 67 152 265 126 676 991
(18)  (47)  (108) (30)  (519)  (940)

G} 57 147 265 126 676 991
%)) @7  (108) (30) (519) (931)

o)) 57 152 265 126 676 991
() @3 (108 (6) (351) (931

¥) 57 152 265 126 676 991
() @3 108 (6)  (351) (929)

%)) 57 152 265 126 676 991
) (40)  (108) (6)  (286)  (929)

) 57 152 265 126 676 991
) (40) (108) (6)  (286) (919)

5) 57 152 265 126 676 991
() (40) (108) (6)  (286) (919)

6) 57 152 265 126 676 991
()  (40) (108) (6)  (255) (S19)

Gis 20 125 249 22 664 985

(@) @31 J11s) 5) (141)  (900)

"The numbers in parentheses correspond to o = 0.01.

decreases as a increases, whereas Gos seems to have low power, as
expected, since it underestimates a in the null case.

Summanzmg the above results, the statistics that perform best are Gé
and G§,, as these approximate a correctly in most cases by correcting the
known tendency of unadjusted G*? to overestimate significance and have
similar powers.

4. Conclusion

Results in the preceding section suggest that the “usual” adjustment
procedure of adding 0.5 to every cell does not perform well at all.
Therefore, we do not recommend the “usual” procedure in testing the
equiprobability hypothesis usmg the likelihood ratio statistic. The modified
likelihood ratio statistics G and G(i) are seen to be satisfactory in attaining
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Table 4. Empirical powers ( x 1000) for G statistics at a = 0.05 and & = 0.01" in eight cell multinomial
for testing the equiprobability hypothesis.

k=8,35=05 k=8,6=-09
Statistics nlk= njk=

2 5 10 2 5 10

G2 122 141 175 192 541 897
(240  (40) (66) (36) (173)  (639)

Gw 66 125 164 120 497 883
(1) (4 (62 (16) (146) (617)

Gérms 81 128 166 138 509 885
(14 (35 (62 (19 (151) (620)

G} 66 125 164 120 497 882
(1) (34 (62 (16) (146) (617)

() 42 121 164 75 450 881
(5) (3l)  (61) (12) (124) (615)

%) 38 116 164 63 421 881
5) (30) 61) ) (111)  (609)

3) 38 114 163 62 411 881
) (290 (60) 9  (106) (605)

@) 37 113 163 57 405 880
5) (28)  (60) 9)  (100) (604)

0] 35 109 161 52 376 877
©)] (28) (60) L)) (96)  (601)

(6) 33 105 161 44 355 874
G)] (28)  (60) Q)] (90)  (596)

Gis 11 87 159 24 251 890

m @) 9 3 (83 (550

"The numbers in parentheses correspond to a = 0.01.

Type 1 error levels and to perform slightly better than the modified G*
statlstlcs suggested by Williams (1976) and Smith et al. (1981). However,
the G{,, statistic has a slight edge over G¢ for moderate to large samples.
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Appendix

Define W;=n""*(Y; - np;),j=1,....k, and let W= (W\,..., W,) where
r=k — 1. Then the random vector W is a lattice random vector which
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takes values in the lattice

-1/2

L={w=(wi,....,w):w=n “(m—nq)and me M}

where g = (p1,...,p,)’ and M is a set of integer vectors m = (mu,..., m;)" such
that m; =0 and 21 m; < n. The asymptotic expansion of the probability
f=

mass function P(W = w) is given by the following lemma.

LEMMA A.l. (Siotani and Fujikoshi (1984)) Let w=n""*(m — nq).
Ifme M, then

(A1)  P(W=w)=n"¢Ww)l +n "hi(w) + n 'ha(w) + O(n *?)}

where

d(w) = Q1) IQ|  exp ( - % W )

is the multivariate Normal density function, and

1 & w, 1k w
1(w) 251 p 651 pj2 ’
1 ., 1 L1y 1 kw1 koW
1 _y 1 1 w1 A
ha(w) ) [A(w)]” + 12 (l i=1 pj )+ 4 Jg:l PJZ 12 j=1 P13 ’

with wy = — Zl wj, = diagonal (pi,...,pr) — qq'-
=

The above lemma gives a local Edgeworth approximation for the
probability of W at each w in the lattice L. Hence the continuous
multivariate Edgeworth approximation for the probability of any set D
from (A.1) is

P(W e D) = [-f )1 + " hi(w) + 1" ha(w)}dw + O™ .
D
We now outline the proof of the theorem.

PROOF OF THE THEOREM 2.1. Let

D(d) = {w = (wy,...,w)): G} (¥Y)<d},
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r . ~2
where wy = — ‘21 wj. The distribution of G°(¥') can now be expressed as
i

P(GYY)< d)= P(We D)) .

Consider the transformation
-1,2 I
(A.2) z=(z1,...,2;) = Hw= B4 w,
—1,..., —1

where [, is the identity matrix of order r,

4 = diagonal (p,...,px) ,
VP =P \pi),

B=(b,,...,by) is a k x r matrix such that (B, \/1;) is an orthogonal matrix.
Then noting that HQH’ = I, and \/;,-(bfz) = wj, we can express (A.1) as

(A-3) P(W=w)=n"|Q""{ @) + 00"},

where

(A4)  f(2)=2n) " exp ( - % z'z) {1+n"g1(2) + n”"'g2(2)}

with
T T
a@= -5
2
_f@, -5 T T,
E@A= Tt Tty T
and
_ & bz k& (b2
A AT,
£k (b'z)’ £k (b'z)
-t ©2 _§ )

and
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-1

S=2p

M=

ji=1

By interpreting f(z) as the continuous density function of the random
vector Z, it is possible to approximate the distribution of the statistic
G*(H'Z), assuming that the lattice character of G*(H 'Z) is not too
pronounced, as

(A.5) P(GYY) < d) =£--ff(z)dz
(d)
where
(A.6) D(d)={z:z= Hwand w e D(d)} .

Then the characteristic function of G*(H 'Z) is defined by
(A.7) v = [ exp(itGNH '2)}f(z)dz .

~y, oo ) .
We can express G (H'z) using a Taylor series as

k ag(b!
A2 -1y o -1/2 a;(bjz) _ T; }
(A8) G(H z=zz+n { 2]_; N 3

k2 £ ag:(b'z)? T
+n_1{_2-‘i—ZM+——i+cz'z—af}
A
+om .

Since the asymptotic distribution of W, and hence Z, is multivariate
normal, then

bz 12
——==0(n ).
pn
Also, since
2

€Xp {a+n'1/2ﬁ+n‘lv}:ea 1+n—1/2ﬂ+n—l(v+£2__)l+ O(n—a/z)’

then using g1 and g> from (A.4), w(¢) in (A.7) can be expressed as
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(A9) vy =] | @y exp t 95’2_—1) 7'z } {1 +n hi(z) + n" ' ha(2)}

Al+n 1/2g1 (z) + n_lgz(z)}dz + O(n_w)

where
hi(z) = it[2Q1 —%] )
. T4 , 2 . 2
h(z)=it| Qo— QO+ ra +cz'z —ar |+ 2[it Q1]
@ry 2
+ 13 3 [thng]
with

kg2 k ai(b! k (b'z)?
Oo=3 4 , Oi=2 a;(bjz) and Q=2 ai(bjz) .
J=t A

J=1 p; \/Ej

Now substituting o” = (1 — 2ir)"", (A.9) reduces to

A10) @ =f | @y exp { - f{f 2z } u(z)dz + O(n™*")

where

(A1l) u@)=[1+n"h(z)+n ' m@]1+n gz + () +n 'g2)]

- T T3 itT3
_ 12} 5y A1 A3
l+n {21[Q1 > + 5 3 }
-1 L(ﬁ _TL)Z 1-5) T
o {2 6 2 2 4 12

. : Ty .
+itQo— itQr + T4 + itcz'z

(T’ itQiTs
18 3

T Isi}

— ita} + 2(it Q1) +

—ltT1Q1+lt 6 1 13

From (A.10) it follows that
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(A.12) w(t) = d E[u(Z)] + O(n )

where Z is formally a normal random vector with mean 0 and covariance
matrix ¢’l,. Now, using the moment formulas for a multivariate normal
random vector Z, and replacing z by Z in T, T», T3, T4, Q1 and Q: of
(A.11), we obtain

E(T)=0, E(T)=0, E(T)=d(S-k),
E(h)=d(S—k), E(TiTs)=3d"(S-Kk),
E(T)=36"(S—2k+1), E(T?) =358~ 3k>— 6k +4),

2_2k212__2} 2_2{"&_}
(A13) E(Ql)-—a[jzlpj a ¢, EQ)=c jglpj a ¢,
£ g
E(Q1T1)=02{Z&—ka+] and
J=Lpj

E(Q1T3)=30'4{.§ &—kw } .
i=1 pj

7

Now from (A.12) and (A.13), we obtain

r

o
12n

(A.14) y()=d + {(1—S)+6[2é1%—(1+k)a+—c(k—1)

kg7 kg2
T +02[(S—1)+6(_Z]a—J
j i=

=l p bj

—di+etk—1)- i L a. )]}+ omn .
i=1 p;

7

Now, recall that ¢’ = (1 — 2ir)”"?, which is the characteristic function of a y*
random variable with r = k — 1 degrees of freedom. Inverting (A.14) and
recalling that w(7) is the characteristic function of the G*(¥), we obtain the
result of the theorem.
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