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Abstract. The technical validity of the saddlepoint technique for approx-
imating the resampling distribution of the sample mean of i.i.d. and non-
iLi.d. random variables is examined. The relative errors are shown to
occur at the same rate as in parametric analysis. Discreteness in resam-
pling problems is accounted for. The uniformity of the errors is also
explored.
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1. Introduction

Assume that Xi,..., X, are independently and identically distributed
(i.i.d.) random variables with distribution F and that the moment generat-
ing function (MGF)

(1.1 M) =] dF(x)

converges for ¢ in a non-trivial real interval / containing the origin. In
statistical analysis, we often need to know the distribution and density,

— _ n
when it exists, of a linear statistic such as the sample mean X = n' ;X,—.

The exact formulas are often intractable. In such cases close approxima-
tions are desirable. Saddlepoint approximations provide an excellent
method to achieve this goal.

Daniels (1954) derived the saddlepoint formula for the density A, of X
as

(1.2) hs(x) = {n/[2n K" ()]} exp {n[K () — t:x]} ,

*This work was completed while the author was at the University of Texas at Austin.
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where K(#) = log {M(¢)} is the cumulant generating function (CGF) and ¢,
is the unique solution to K'(¢) = x, provided that the solution exists.

The saddlepoint technique can also be applied to obtain an approxi-
mation of the cumulative distribution H, of X, or equivalently the tail
probability G, =1 — H,

1 - d(w)+ o)z ' —wh, if x#EX),

1.3 G, =
0 SO L L koo, it - ECo),

where w = {2n[t.x — K(1)]}"? sgn (1), z = t:{nK"(t:)}*, and @ and ¢ are
the standard normal distribution and density, respectively. The relative
errors in (1.2) and (1.3) are of order n”'. Moreover, they are uniform over
all x in a fairly large family of distributions (see Jensen (1988) for a
rigorous discussion). Formula (1.3) is due to Lugannani and Rice (1980).
The successive saddlepoint approximations extending (1.2) and (1.3) to
reduce the relative errors were also obtained by Daniels (1954) and
Lugannani and Rice (1980), respectively (see Daniels (1987)).

For discrete random variables, results similar to (1.2) and (1.3) can be
derived with slight modifications. In particular, G(x) is as in (1.3) with z
replaced by z = {1 — exp ( — L)HnK"(t)}".

Saddlepoint approximations have shown great accuracy, more so than
normal approximations and Edgeworth approximations. In most practical
applications, the first-order approximations are sufficiently accurate.
Therefore they are used in a large number of statistical problems (see, for
example, Barndorff-Nielsen and Cox (1979) and Daniels (1983)). Reid
(1988) gives an excellent review of this topic.

One obvious limitation in using the above formulas is that the MGF is
supposed to be known, except for possible unknown parameters. This
limitation has restricted most applications in the parametric framework.
The first application of the saddlepoint technique in nonparametric analysis
appeared in Robinson (1982), who used the method to approximate
permutation distributions. Davison and Hinkley (1988) apply saddlepoint
approximations in a number of bootstrap and randomization problems.
They give no proofs, leaving open the question of technical validity of the
approximations when F'is replaced by the discrete, but consistent, empirical
distribution function (EDF) F.

The object of this paper is to study the technical validity of saddle-
point approximations in resampling analysis from the viewpoint of asymp-
totic theory. The simple statistic sample mean is considered throughout the
paper. Note that unlike in parametric analysis, here the sampled distribu-
tion F, as well as the resampled statistic, depends on n. Such dependence
raises the question of the applicability of saddlepoint approximations.
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Section 2 shows the details of the proofs for the distribution function of X
for discrete and continuous variables in bootstrap analysis. The correspond-
ing approximations in randomization analysis are proved to be valid in
Section 3. The relative errors in the saddlepoint approximations are not
uniform, in contrast to the standard saddlepoint approximation theory, as
shown in Section 4. We briefly discuss generalizations in Section 5.

2. Bootstrap distribution function of X — £ (X)

Let T=t(X\,..., X») be an appropriate estimate of some parameter
0 = t(F); e.g., if 6 is the population mean u, then a natural choice of T is

T=X=n' EIZX,-. Because the distribution F of X is unknown, we will use

the EDF F as an approximation to F, where

~ 1 &
Q.1 F(x)=— 3 Iex .
n i=1

1

The following is the basic non-parametric bootstrap idea. Assume that we
can write 7= ¢(F) as usual. Then the tail probability

2.2) G(x) = Pr (t(F) — t(F) = x| F)
is approximated by
(2.3) G(x) = Pr (t(F*) - t(F) = x| F),

where F* is the EDF of X/*,..., X,*, which is a sample from F under a
uniform resampling plan (see Efron (1982) for details). The distribution
function defined by H(x) = Pr (¢(F) — t(F) < x| F) is hence approximated
by the bootstrap distribution function A(x) =1 — G(x). The accuracy of
G(x) to G(x) has been explored by many authors (see, for example, Singh
(1981)). We will not go over this topic here.

G(x) in (2.3) can be approximated by simulation up to any accuracy.
One substantial problem is that the bootstrap technique usually requires a
large number of simulations. Avoiding this difficulty, the saddlepoint
method provides an alternative way to approximate G(x) in certain
circumstances.

In this paper, we consider ¢(F) = E(X)=u and t(F)=n"' leXi. Let
Y* = X* - X and

2.4) (1) = exp (R()} = ™' 3 exp (X~ X)1}
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be the MGF of Y* with CGF K. The following lemmas, together with
Lemma 3.1 in Section 3, are very important in our derivations. Lemma 2.1
generalizes the truncated form of Watson’s lemma.

LEMMA 2.1.  Assume that {A.} and {B.} are two sequences of random
variables such that A, — A, B, — B in probability, where A >0, B> 0 are
constants, and that {h,(x)} is a series of stochastic functions satisfying

(a) each hu(x) is differentiable infinitely many times in a closed
neighborhood U of x = 0;

(b) max |A(x)| = Oy(1) for eachr=1,2,...;

e a8 |2n(x)] = Op(1).
Then, fork=1,2,...,

@5 /@y e Ph(dx

1 (ke
= hn(0) + 5 Hi(0) + - + H2O0) + 0,(n ** 1) .

(2n)*k!
PROOF. See Appendix A.

In particular, 4., B, and h.(x) can be fixed numbers, i.e., non-
stochastic for fixed n and x. Notice that the maximum in condition (c) is
defined on [ — A,, B,] instead of U. Adding this condition is to include the
case where U does not contain [ — A, B.], so that one only needs to check
the existence of U. No relationship between U and [ — A4,, B,] is needed. A
counterexample can be constructed to show that the lemma does not hold
if the maximum in condition (c) is defined on U. The main difference
between this lemma and Watson’s lemma is that A.(x) here depends on n
while the counterpart in Watson’s lemma is independent of n.

LEMMA 2.2. Let C=[— b, —a]VU ey, ba] with bj>¢>0, j=1,2.
If d € I defined in (1.1), then

(2.6) max | M (d + iy)| M(d)|" = 0,(p")

with 0 < p < 1, where C is restricted within the principal period of M if X is
discrete.

PROOF. See Appendix B.

The proof given in Appendix B is similar to the classical proof of the
consistency of the maximum likelihood estimator (but in a different space).
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2.1 Discrete variables

Suppose that the X’s are discrete and take integer values only.
Without loss of generality, we may exclude the case that Pr(X=r)=0
except at multiples of integers bigger than 1. Then

= ~ 1 in 5o
2.7 &(r/n) = Pr (Y* =r/n|F)= % _iﬂen[K(l) xr/n]dt

for any integer r. Thus the tail probability Pr (Y* > ¢| F) is

(2.8) G(C) = ,g’)“g(r/ n)= j?.—:'c—ltfdd*i:: e”[K(t)—tc/n]/(] - e")d[
for any d >0, where ¢ is such that nc is an integer. Here we apply the
method of steepest descents (see Jeffreys and Jeffreys (1962), Chapter 17)
to approximate the above integral.

Assume that 7 and ¢ are the solutions to K’(f)=c and K'(¢) =,
respectively. (It is easily seen that #. exists and is unique for ¢ € (X(1), Xn),
where X(i),..., X(n) are the ordered statistics.) From the theory of classic
saddlepoint approximations (Daniels (1954)), there is a contour L, perpen-
dicular to the real axis at 7 = 12, such that K(¢z) — tc¢/n is real and descents
most quickly on Lo. Moreover, there exist > 0, f > 0 such that L, and the
straight line from 2 — in to £2 + im intersect at 70 — ia and 2 + if. Similarly,
there are counterparts L,, a, >0 and B, > 0 for K(f) — tc/n corresponding
to Lo, a and . Because there may be more than two intersection points, we
assume f. — i, and f. + if, are the points with minimum |o, — | and
|8+ — BI. It can easily be shown that a, — «, 8, — f in probability. First we
assume ¢ > 0 and then ¢, > 0. Let d = ¢, in (2.8). We say that an error E; is
exponentially small if E, = O,(p") for 0 <p < 1. Ignoring an exponentially
small relative error, the contour of the integral in (2.8) can be replaced by
L, without affecting the integral. Let w be a new variable, so that

= (w=wf = R() - te ~ [R(1) - tec

and sgn (Im (w — wo)) = sgn (Im (¢ — ¢.)), where w. = {2[t.c — K(1.)]}" sgn (¢.).
The transformation w = w(¢) maps L, from f. —ia, to .+ i, onto the
straight line C(w.) = {w|w = w. + iy, y €[ — an, bs]}. Thus

~ 1 we+ib, 219 L
2.9) G(e)=— TN — e P 4t

; dw
27i ¥ e ian dw

1 wet iby n{w'/2—wew] dw

2mi~ weian w
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l we+ib, Dim L
o) U — ey dtjdw — 1/ whdw

=hLh+5L.
Clearly, a, — a> 0, b, — b > 0 in probability. We may assume a < b. Then

_ 1 W+ oo A[w?/2=wew] dw
27~ weie w

= {1~ d(VnwIH1 + Op(e ™"} .

On contour C(w.) write P,(w) = (1 — e ") 'dt/dw — 1/w = ¥ () + Y (y),
where ¥, and ¥,, are real functions. In a closed neighborhood ¥V(w.) of
w = w, on the complex plane that may include w = 0, ¥,(w) is analytic. Let
U be the projection of C(w.) M V(w.) on the y-axis so that U C[ — ay, ba].
Then ¥,.1(p) satisfies conditions (a) and (b) of Lemma 2.1 by the strong law
of large numbers, and

(2.10) I {1+ 0y}

d" ()] dy']y=0i" = d“¥n(w) | AW =w. = ()
for £k =0,1,2,..., since the imaginary part of ¥,(w) is zero on the real axis.
It is not necessary to check if U is [ — an, bs] or not. Furthermore, it is

easily seen that ¥, satisfies condition (c) also. By Lemma 2.1, for
r=12,...,

@I B=o e () dys ()

= ¢(Vnwodon P + din P 4 oo+ A IR L 0,y

where

do=z'-w', d=PIWI-IY j=1l..r,
and

ze= (1= e WK} .
Therefore,

(2.12) G ={1—-®(/nw)
+d(nwdon P+ din " + o+ dn T}
.{1 + Op(n—(r+l))} .
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Formula (2.12) can be similarly shown to be valid when ¢ <0. It follows
that the saddlepoint approximation

(2.13) Gs(o)
1 — @) + p(a)b:' —ah), if ¢#0
| 1 £ RO RO + 5 RO,
if ¢=0
with @. = \/n we, be = 1.{nK"(t.)}""?, satisfies
(2.14) G(c) = G()1 + Op(n” )} .
These results are parallel to those in parametric analysis.
2.2 Continuous variables
Now assume that the unknown distribution F is continuous. First

round data Xi,...,X. to m decimal places and denote the results by
XM ..., X\™: these are discrete with steps of 107", Let

K(m, ) =log ( n' 2':: exp {(X" = X"} |.

Because 10”X;" is an integer for each j, a simple transformation gives as
an approximation to

G(m,c) = Pr(Y'"™* = ¢|F'"™),
the following:

(2.15) Gs(m,¢)

[ 1- &)
+ G(@){L[10™(1 — exp { — 1./10"})] 'b.' — &'},
if ¢#0,
1 ih s _
— = =y PR, 0/ (R m, 00"
1 o _
+—10""2znK"(m,0)} ", if ¢=0,

2
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where superscrlpt (m) indicates the corresponding rounding of F, etc.,
c10™n is an integer, and 4. and b, are the same as in (2.13). Again the
relative error rate is n ' in probability. The higher order approximations
analogous to (2.12) can be obtained similarly. Note that the error term in
general depends on m, but for each fixed m the rate is valid asymptotically,
as n increases.

In practice, the Xj’s are recorded with a fixed number m = mo of
decimal places, so that the bootstrap estimate G in (2.3) is G(o) = G(Wlo, c);
then the corresponding saddlepoint approximation to G(c) is Gs(c) =
Gs(mo, ¢). Thus the asymptotical formula (2.14) holds. But if m is allowed
to increase with n with a certain slow rate, the saddlepoint approximation
is still valid. It is theoretically unclear whether the approximation is valid
when m is infinite. Numerical examples suggest that the increase in m does
not affect the approximation significantly.

If one uses G in approximating the true continuous distribution H(x)
or G(x) =1 - H(x) of X, modification of G(c) with continuity correction
is desirable; i.e., for real x,

(2.16) Gi(x) = Gy(x + (2n10™) ") .

If we were to assume F continuous, we would have the existing
saddlepoint formula (1.3) with K(t)—]?(t) Denote the result by Gbo.
Numerical examples show that all three of Gs, Gi and G, are remarkably
close to each other, although G is asymptotically more accurate for the
bootstrap tail probability.

Example 1. Consider the following artificial data with sample size
n =10 and m = 1 decimal place:

9.6 104 13.0 150 16.6 17.2 17.3 21.8 24.0 33.8

discussed by Davison and Hinkley (1988). We want to calculate the
approximate bootstrap percentage points of X — u. The results are compar-
ed in Table 1. The “exact” results in column 2 are simulation approxima-
tions from 50,000 simulated samples, taken from Davison and Hinkley
(1988). They calculated the approximation H,=1— G, for the data. As
Table 1 shows, the differences among A, =1 —~ G, Hi =1 — G, and H, are
negligible. They are all very close to the “exact” results, even in the extreme
tails, while normal approximations are not. For comparisons with
Edgeworth approximations, see Davison and Hinkley (1988).

The calculations of the saddlepoint approximations in Table 1 are
straightforward, except for solving the solution ¢, for each fixed ¢. The
method of bisection search was used to find the solution. Let D(r) =
K'(1) — ¢ and choose a proper interval (bz, by) such that D(b) <0 and
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Table I. Approximations to bootstrap percentage points of X — u.

Via saddlepoint

Probability ~ “Exact” approximation Normal
approximation
A H m
0.0001 -6.34 -6.3180 - 6.3130 -6.3130 - 8.46
0.0005 -5.79 ~5.7892 - 5.7842 —5.7842 - 7.48
0.001 - 5.55 —-5.5273 ~-5.5223 —-5.5223 -7.03
0.005 -4.81 -4.8101 - 4.8051 ~4.8051 -5.86
0.01 —4.42 - 4.4381 —4.4331 —4.4331 -5.29
0.05 -3.34 —3.3346 - 3.3296 - 3.3296 -374
0.10 -2.69 -2.6913 - 2.6863 - 2.6864 -291
0.20 - 1.86 - 1.8606 - 1.8556 -~ 1.8557 -1.91
0.80 1.80 1.7906 1.7956 1.7955 1.91
0.90 2.87 2.8466 2.8516 2.8515 291
0.95 3.73 3.7430 3.7480 3.7479 3.74
0.99 5.47 5.4715 5.4765 5.4765 5.29
0.995 6.12 6.1162 6.1212 6.1212 5.86
0.999 7.52 7.4584 7.4634 7.4634 7.03
0.9995 8.19 7.9839 7.9889 7.9889 7.48
0.9999 9.33 9.1095 9.1145 9.1145 8.46

D(by)>0. Let by = (br+ by)/2. If D(by) <0, then redefine by = bu.
Otherwise redefine by = by. Repeat the above procedure until by — b is
smaller than a pre-set error bound. We then take by in the final recursive
procedure as the solution #.. The convergence of the recursive procedure is
usually very quick. Table 2 in the next section was calculated similarly.
There is no further numerical approximation involved in the calculation,
since when the error bound was reduced from 107 to 107'°, no further
changes in Table 1 were made.

Using the special properties of the saddlepoint approximation and its
smoothness, we can show theoretically that when « is close to zero, the
difference between the a-th quantiles a, of H and a5, of Hs, G5 — au=
a0,(n*?), where O,(n *?) is fairly stable as ¢ — 0 so that a, is generally
more accurate than quantiles from other standard second-order accurate
approximations. Similarly, when a — 1 we have as. — a. = (1 — 0)0,(n"*?)
by considering the tail probabilities.

It is worth mentioning that the appropriate bootstrap density of
X — E(X) can be constructed by using (1.2) with K replaced by K. The
good properties of the classical results are retained in the approximation;
this is also true in the randomization case. The details are omitted here.

3. Saddlepoint approximations in randomization analysis

Saddlepoint approximations can also be applied to randomization
analysis in some situations. In this section we consider a special application
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in a matched pair design initially proposed by Davison and Hinkley (1988).
Let Xi,..., X» be the differences of two treatments randomly allocated to
each pair of experimental units. If no effect exists, + X; appear equally
likely for each unit.

To carry out the randomization test of a sample X, one would need to

calculate the distribution of X* =n"' le X/* given F, or equivalently the tail

probability
(3.1) Go)=1-Pr(X*<c|F)=Pr(X*=c|F),

where X;* is randomly selected to be + X; with probability of 1/2 each.

Notice that there are two special features in this resampling plan.
First, the X;*’s are independently but not identically distributed; second,
each X;* takes only two possible values. Therefore any two values of nX *
always differ by a multiple of 2 x 10™™. The MGF of nX * is

(3.2) Wz+(1) =J_1fll (€™ + e )2} :jlfl1 cosh (1)) .
Let

N B 1
3.3) K@) = - log M,x+(f) = 7}; log {cosh (¢X))} .

The saddlepoint technique used in Section 2 is still applicable here. But the
detailed calculations are quite different. Because X * is symmetric, it is
sufficient to consider positive values of X*. For each value ¢ of X%,

c= ( Zl X+ 2r./ lO'"")/ n, for some integer r., and
=

(3.4) Mo (e ™ = % {eosh (1X5)e ™} exp { = 27101

o ,z'l (1+ e yexp{—2r107™1} .

Thus, (d — ai, d + ai) with a = 10™7/2 is a principal period of the formula
in (3.4). For any d > 0,

(35) GO = I Pr(F*=rinlF)= 3 - [ gtho-uigy

reS Qoivd-a

1 d+ai - o
:z_aifd’w' exp {n[K(r) — tc]}fl —exp (— 2¢/10™)} 'dt ,
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Mo

where S = {r|r = nc and r10™/2 is an integer}.

LEMMA 3.1. For fixed d and a > 0, there exists 0 < p < 1, so that

(3.6) max | Mux+(d + iy)| Max+(d)| = Op(p") -

asiy|=sa
PROOF. See Appendix C.

Lemma 3.1 indicates that the integral of (3.5) in the two tails is
exponentially small in probability, as in the i.i.d. case. Hence we can apply
the saddlepoint method to (3.5), obtaining

(3.7  Gs(o)=1- (@)
+ ¢(@)26[10™(1 — exp [ — 2¢./10™) b ' — &'},

with
G(c) = Gl + Op(n )},

where 1 satisfies K'(t.) = ¢, @ = {2n[tcc — K(1)1}""* sgn (¢.) and b, =
t{K"(t)}'”*. It can be easily seen that (3.7) is also valid for any negative

value ¢ of X*. To approximate the true tail probability of X which is
continuous, it would be useful to simply modify (3.7) as

(3.8) Gi(x) = Gs(x + (10™n) ™)

for real xe ( -n! 21: | X, n! 21: | Xl ), where (10™n)"' is the continuity

correction.

Example 2. In this example we illustrate the performance of (3.7)
and (3.8) using the following n = 12 matched pair differences given by
Miller ((1986), Exercise 1.11) and used in Davison and Hinkley (1988):

45 —-342 74 126 —-25 1.7 -340 73 154 -38 29 -—-42.

In the matched pair design, we wish to calculate the distribution of X *.
Table 2 lists the comparisons of the approximations. Davison and Hinkley
calculated G, the saddlepoint approximation defined in (1.3) with K(1) =
K(t). As in the bootstrap example, these three versions of saddlepoint
approximations are all very close to each other, and close to the exact
values which were calculated by exhausting all possible values of X *. Table
2 does not show significant effects of discreteness.
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Table 2. Approximations to Pr (X* = ¢| F') for matched pair differences data.

Via saddlepoint approx.

c Exact G ) ) Normal approx.
0 0.50 0.50 0.50 0.50 0.50
0.90 0.417 0.428 0.427 0.427 0.421
2.24 0.310 0.323 0.323 0.322 0.309
4.04 0.202 0.201 0.200 0.200 0.184
6.28 0.0972 0.0883 0.0880 0.0879 0.0808
7.63 0.0442 0.0432 0.0430 0.0430 0.0446
8.53 0.0205 0.0213 0.0212 0.0215 0.0287
8.97 0.0127 0.0132 0.0131 0.0131 0.0228
10.32 0.00098 0.00104 0.00101 0.00101 0.01072
10.77 0.00024 0.00019 0.00018 0.00018 0.00820

4. Uniformity of relative errors

In the resampling problems discussed in the previous sections, the
relative errors in the saddlepoint formulas appear not to be uniform. We
will now show this fact.

We only need to prove that d; in (2.12) is not bounded in the tails for
fixed n. Formula (3.7) has the same property. Without loss of generality we

assume X(n-1) < Xm). Let p(f) = exp {tX(,,,}/Ell exp {tX;} and g(t) =1 — p(1).
Then p(t) — 1, g(t) — 0, as t — =o. Hence

4.1) R'(0) = M'(0)) M(1) ~ Xi — X + g()(Xim = Xin-1)
4.2) R7(6) = M"(1)] M (1) — (M'(2)] M (1))’
~ Xin + 40 Xe-1 = (P()Xon + () Xn-1)°
~ q()( X — Xin-1)*,
as t — oo. Here we ignore ¢°(¢?) and higher order terms. Similarly, K®'(r) ~
q()(Xim — Xn-n)’ and K0 ~ g(t)(Xiw — Xin-1))". From (4.1), g(t) ~

Xy — X — )/ (Ximy — Xin-1)), as ¢ — Xny — X. By expressing ¥/ (w) in terms
of dt/dw, d*t/dw® and d’t/dw’, we can find

4.3) |di| ~ 5/{2(Xon — Xin-0)[g (1]} = o,

as 1. — oo and thus as ¢ — X, — X. We can similarly prove that |di| — o
asc— Xy — X.

However, the numerical examples show that near the two extremes
when the relative errors become apparent, both exact and saddlepoint
approximations are practically 0 and 1. Thus while the lack of uniformity
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in these problems is interesting from the theoretical point of view, it does
not cause serious problems in practice.

5. Generalizations

n
If we consider more general statistics such as 7= ;a}")Xj, it 1s still
possible to use saddlepoint formulas with some restrictions on a. To be
n
more specific, if na” — ¢; > 0 for each fixed j, and lea,(-") is bounded for all

n, then the saddlepoint formulas are applicable both in parametric and
nonparametric analysis. Such statistics include the estimates of coefficients
in linear models. In bootstrap and randomization contexts, one should use
the saddlepoint formulas derived in the paper with K(¢) replaced by

Ry=n"' ;Iz(na}")t). The proofs are parallel to those for the case of

sample mean.

Another natural extension is to a smooth function of the sample
mean. It is straightforward when the sample mean is univariate. There are
no general results of the saddlepoint approximations in the multivariate
case in the literature yet, and this is a current research area. However, some
special situations have been considered by Wang (1988). A genuine saddle-
point approximation for the distribution function of a nonlinear statistic
T= X — Y’ is derived with excellent accuracy. But the subsequent attempt
to approximate the distribution of a studentized ¢-statistic (this type of
statistic is very important in the bootstrap context; see Hall (1988)) is
unsuccessful numerically due to other expansions involved. See Chapter 6
of Wang (1988) for details.
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Appendix A
PROOF OF LEMMA 2.1. For x € U and fixed k,
hn(x) = Ba(0) + RL(0)x + -+ + AZFTO)X™ ) 2k + D! + Roaks2(x) ,

where Ry ax+2(x) = A*2(E)x™ 21 (2k + 2)!, and &, is between 0 and x. Let



128 SUOJIN WANG
gk (x) = {hn(x) — [An(0) + Ha(0)x + -+ + AT D(O0) X1 (2K + DI}/ %42
Then by (b) and (c),

Coi= _max, [gnx(0)] = Op(1).

Write e, = exp { — (n/4) min (47, B%)}. It is easily seen that

(2k)!
2 kin*

i@} [ e i = + Op(en) ,

and
B, 2
(njQY [ ™ P dx = Oyer)
But,

)@Y [ & ()

— [7a(0) + M (0)x + -+ + AZFDO) X 2k + D)!]}dx
< 12 (B e 2Ak+1) g ~(k+1)
<{n/Qm}" [, &P Corx®™ Vdx = Op(n™ V).

Thus, for each £,

” (2k)
hi(0) N hn(0)

{n/(27z)}1/2f ¢ PR (x)dx = ha(0) + 2 et R

+ Op(n Yy .

Appendix B

PROOF OF LEMMA 2.2, Let

pi(d) = max |[M(d + iy)| | M(d) .
Then p; < 1. For d € I, there exists r € (1, 2], such that
L@d) = |x|'"e™dF(x)

converges. It is easily seen that
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Pr (|M(d+ iy) — M(d + iy)| >¢)
<& E|M(d+iy)— M+ ip)|"
< De 'n'"Elexp {(d+ ip) X1} — M(d + iy)|
< DQ/eyn' (Elexp {rXid}] + M'(d)),

for any &£ >0, any y and some D > 0. The second inequality above comes
from a result in Petrov ((1975), Chapter 3, Supplement item 15). The above
result and the properties of M assure us that there exist 0 < p2(d) <1 and
D, >0, such that

Pr (| M (d + iy)| M(d)| > p2(d)) < Di /0",

for y € C. Moreover, similarly to the first inequalities, for a > E{| Xi|
-exp (dX1)}, there is D, > 0, so that

1 » .
Pr(—n—zl:|Xj|edX’>a)SD2/n' '

Let An(d, y) = {w: | M(d + iy)| | I(d) > p2(d)}, Bu(d) = { w:n 2| X| exp (dX))
>a . For each x € C, there exists open set Cx relative to C and indepen-

dent of n, such that for y € Cy and w ¢ A,(d, x) U B.(d),
|¥i(d+ )] < 19 + 9] + = 51| exp (@X)y — x| < p(d) ()
where p(d) = {1 + p2(d)}/2 < 1. Thus,
{ w: sup | M(c + iy)| > p(d) M (d) } C An(d, x) U B.(d) .
There exist finite subsets of {C,}, Cx,..., Cs, say, covering C. Then
0= | sup 1+ )] > p(@ (@ |
C kQ { w: sup | M(d + iy)| > p(d)M (d) } C ( kQ An(d, xx) ) U B.(d) .

Therefore,
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Pr(Q,) < i Pr {A.(d, xx)} + Pr {B.(d)} < (pD:\ + Dy)/n’ "
Finally,
Pr (p_" max | M(d+ i) M(d)|" < 1 ) >1-Pr(Q,)—1,
as n — oo, and this implies Lemma 2.2.

Appendix C

PROOF OF LEMMA 3.1.

log {| Mux+(d + iy)] Maz+(d)| "}

1 & _
=—Zlog|(™ + &™) cos (yX)) + i(e™ — &) sin (yX))|
1 i log (¢ + &™)
n 1
1 =z o 1 & .
=— 2 log {(¢™ — &)’ — 4 sin® (dX))} — — X log (¢ + ™)
2n 1 n !
1 n
= 5 Zl', log {(1 — 4 sin (yX))(edX’ +e dX’) }
2 1 v
<- —213 sin” (Y X))(e™ + e )2,
Thus,
log [ max | My (d + iy)] M ()] ™"
2 -
< < min ¥sin’ X)(Ee™ + ey 2.
n aslyi=a 1
Because

1 2 o . o
n 21‘, sin’ (pX))(e™ + e )T = Efsin’ (yXi)(e™ + )7

in probability, and
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min E{sin® (pX ) (e + e )} =c>0,

a<|y|
using the same technique as given in Appendix B, we can easily prove that

max | M.x(d + iy)| Mux(d)|"" < p

as|y|=a

in probability, where p = ¢ “* < 1. Formula (3.6) then follows.
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