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Abstract. We consider the simple self-correcting point process whose
intensity takes only the two levels, a and b, where the level a (0 <a < 1) is
the state of the intensity for low stress, and the level b (1 < b < ) is for
high stress. Then, the maximum likelihood estimators of @ and b and
their asymptotic distributions are explicitly shown. These results may be
instructive and suggestive for studying more general cases of self-correct-
ing point processes.
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1. Self-correcting point process

We consider a point process N(+) on the time [0,0). Let 7, 72,... be
the occurrence times of the events, and let N(¢) = #{7:;: 0 < r; < ¢} be the
number of the occurrence points for the time [0, ] with N(0) =0. Let us
denote the o-field generated by the events for the time interval [0, 7] by
i =a({N(s): 0<s<1t}). Suppose N(7) is a pure birth process with the
instantaneous birth rate at time ¢ given N(f) = n:

(L.1) A()) = A(1|F-) = po(pt — n)

where p is a positive constant and ¢ satisfies the following conditions:
(SC1) 0= ¢p(x) < oo, for any x € R.
(SC2) There is a positive constant ¢ > 0 such that ¢(x) = ¢, for every
x>0.
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(SC3) () limglf d(x)> 1,
(i) li{f}ggp d(x) < 1.

The last condition (SC3) implies that a larger positive value of
x = pt — N(?), caused by fewer occurrence points in the time interval [0, ¢],
makes the intensity ¢ (x) larger and results in more occurrence points in the
forthcoming time interval. Conversely, more occurrence points cause a
smaller negative value of x = pr— N(¢), which makes the intensity ¢(x)
smaller and results in fewer occurrence points in the forthcoming time
interval. That is, the point process is self-correcting.

Isham and Westcott (1979) introduced such a point process and called
it a self-correcting point (SCP) process. By changing the scale of time, we
may take p =1 without loss of generality. They showed the following
results about the mean and variance of the SCP process N(z).

THEOREM 1.1. (Isham and Westcott (1979))
(1) limsup |pu(r) — 1] <eoe.

(1) lirpﬁsup [ V()] < .

Vere-Jones and Ogata (1984) considered the SCP process with the
conditional intensity of exponential type:

A1) = exp {a + Bz — N(1))},
and obtained the ergodicity of X(¢) =t — N(¥):

THEOREM 1.2.  For a measurable function h(-) which is exponential-
ly dominated, it holds that

(12 plim 77 x@yar= £ mE[ [ nxapanxo -,

where {n;};-—= is the invariant distribution of the skeleton Markov chain
{X(M}i=o.

Furthermore, Ogata and Vere-Jones (1984) showed the asymptotic
normality of the maximum likelihood estimators of the parameters a and
f. Vere-Jones (1988) called X(f)=¢— N(¢) the stress release process and
investigated its moments.

Hayashi (1986) extended the results due to Vere-Jones and Ogata to
the general self-correcting point process which is subject to the previous
conditions (SC1)-(SC3) and the additional one:

(SC4) For any K>0, there is a positive number M such that
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d(x) < M, for every x < K.
Hayashi (1988) obtained the asymptotic normality of the maximum likeli-
hood estimators of the parameters a, f, p of the conditional intensity:

A0 =pe(Blpt =Nt —) +a}).

However, these results could not be written down “explicitly” in terms
of the intensity function and its parameters because of the complexity of
the intensity function. In the present paper, we consider a very simple
conditional intensity defined by

pa, if pt—N@-)sc,
13) ()= T NE-)=
(1.3) (D) =pd(pt (=) pb, if pt—Nt-)>c,

where a, b and ¢ are real constants with 0 < a < 1 < b. This point process
satisfies the conditions (SC1)~(SC4), and we call it a simple self-correcting
point (SSCP) process. By changing the location and scale of time, we may
take ¢ = 0 and p = 1 without loss of generality. That is, let us consider the
SSCP process with the following conditional intensity:

a, if Xt-)=<0,
(1.4) Ao(t) = _
b, if X@t-)>0,

with the parameter 0 = (a,b)’, where 0 <a <1< b and X(¢) =t — N(¢), the
stress release process. Then, we obtain “explicitly” the maximum likelihood

estimator and its asymptotic properties. These results are instructive and
suggestive for studying more general cases of the SCP process.

2. Likelihood function and maximum likelihood estimator

The likelihood function of a regular point process on the time interval
[0, T'] is expressed by the conditional intensity as follows (see Snyder
(1975)):

T T
2.1 L1(0)=exp {fo log A(£)dN(?) —fo A(t)dt } .
Therefore, the likelihood function of the SSCP process is given by
T T
(2.2) L) =exp [{fo (log a)y4.(t = )dN(2) +f0 (log b)xs(t — )dN(?) }

- {foTaxm(t —)dt +f0TbXB,(z - )dt ”
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= exp [{(log a)N(A1) + (log b)N(Bn)} — {aL(Ar) — bL(Br)}],
where y4(?) is an indicator function of a set 4 and
A={s:0<s5<t, X(5) <0}, B={s:0<s<1t X(s5)>0},
T T
@3 NAn=J xa-)dN®,  NB)=[ xat-)aN®,
T T
L(AD) =] xat ), LB =] yn(t—)di,

all of which depend on the path. The log-likelihood equations are

(9/da) log Lr(8) = N(Ar)ja— L(Ar) =0,
(3/3b) log L1(0) = N(Br)/b— L(Br) =0,

and hence, the maximum likelihood estimators of a and b are

(2.4) dr=N(A7)/L(Ar) and br= N(Br)/L(By).

T
Let us introduce the process M(T)= N(T) —fo A(t)dt and define
T
J(T)= f o S(OdM(1) as the Lebesgue-Stieltjes integral of the left-continuous

and Z,-measurable function f(¢, ). Then, J(T) has the same properties as
the It6 stochastic integral with respect to the Wiener process. Suppose

T
E{fo | f(O1*A(t)dt } < oo, then the following results hold:

THEOREM 2.1. (Kutoyants (1984))
) {fOTf(t)dM(t), Fr0<T<eo } is a martingale.
T
(ii) E{ J, fdmM@) ] =0.
T 2 T 2
(iii) E[{ J, r@ame) } ] = E{ I, r@*ar } .

The likelihood estimating function is

[ xate —yam/a
(2.5) (9/96) log Lr(0) =|
J. it —)am/b
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and so, by the above theorem, we have the Fisher information matrix as
follows:

E{L(A1)}/a 0

2.6 Ir(0) = .
&0 @ ( 0 E{L(Bn)}/b

Furthermore, we have

(2.7) Or— 0=

3

T
( ir—a ) J, xate =)dM (@) L(Az)
[ ke =y am LB

but it is difficult to obtain the mean vector and covariance matrix of the
maximum likelihood estimator.

3. Stationary distribution of {X(n)}r-o

The stress release process X(¢) =t — N(?) is an ergodic Markov process
and the skeleton {X(#n)}+-o is an irreducible and aperiodic Markov chain.

3.1 Transition probability

Let us investigate the transition probability of the skeleton Markov
chain: Prix= P{X(n+ 1) =k|X(n) =h}. Since Pni=0 for k=h+2, the
transition probability matrix is in the following form:

Poy Posy O 0 0 O
P Pyt Pao 0 0 0
(3.1) o Pooy Poov Poo Poi 00
P.o Py P P P2 0
Prs Puoi Puo Pui Pry Pas

(1)) Under the condition given by X(n) = — h (h>0), X(n+ 1) can
take the values: X(n+1)= —-h+1, —h, —h—-1, —h—2,... with the
probabilities,

(3-2) Pohok = Pop—th-y-th=neny = € °d "k — h + 1),
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fork=h—1,h,h+ 1,..., respectively.

(i) Under the condition given by X(n) = h (h = 0), X(n + 1) can take
the values: X(n+1)=h+ 1,h,...,1,0, — 1,... with the following proba-
bilities:

@ forl<k<h+1,

(3.3) Por= Puner-poreny = € 6" (W= k + 1)1,
@ fork=0,
(3_4) Ph,*k :fol {be—bX(bx)h/h!}{e‘ﬂ(l'X)(a(l _ x))k/k'}dx .

3.2 Invariant distribution
Let us denote the invariant (stationary) distribution of the skeleton
Markov chain {X(n)}»-0 by {@i}i=—c:

oo
i,y = h_Z ﬂhPh,k .

(1) For k>0, Puni vanishes at h if h <k — 2. Therefore, from (3.3),
we have

35 m=, 3 meB =k + D= T mi1e B AL

Now, suppose
(3.6) me=cp* for k=0,

then, it follows that

oo

k -1 - -1 -
cp" = hg‘o ep" e b = epFTlee

This leads to

3.7) p=e%" & logp=b(p-1),

which has the only solution p (0 < p < 1) for b > 1. The value of ¢ will be
determined later.

(1)) For — k=<0, Py« vanishes at 4 if h < — k — 2. Thus, from (3.2)
and (3.4), we have
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(3.8) -k = hZ%_]TEh P,k

= ¢ f. be"? e a(1 - X)) k! dx

k+1
+ X Mou1-ne ‘a "IhY — ce d " (k + 1) .

Let P(f) be the power series with the coefficients {7 «}x-o. Then,
(3.9) P()= 2 il

_ Cfl bl P Ixpal=x)a=1) g
0
+{P(1)e™" ™" —ce Y1~ eV — e Yt
= che™ NPT _ 1V b(p = 1) — a(t — 1)}
+ P~ ¢}t .
This leads to

thp — tbe alt=1) {b(p - D—a(— l)}e"(’_”
{b(p—1)—a(— D}z — ™"} :

(3.10) P =c

By L’Hépital’s theorem, we have
(3.11) P(1)=clb(p— 1) +a(l = bp)}/{b(p - (1 - a)}.

On the other hand, from (3.6), we have
(3.12) P(1)= l—hg,lnhzl—cp/(l—p).

Thus, from (3.11) and (3.12), we obtain

(3.13) c=b(l-p)1—-a)/(b—a).

Consequently, we can conclude the calculation of the invariant distribution
of the skeleton Markov chain {X(n)}-o.

4. Asymptotic normality of the maximum likelihood estimator

Let 0(x)=1if x>0 and =0 if x <0. By the ergodicity (1.2) of the
stress release process X(¢) = ¢t — N(¢) and (2.3), we have
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(T
@1) L(B)/T=T"][ 6(X(t~)di
% 1
~ Lg :jg_mnjE[fo o(X(t —))dt| X(0) :j] (say)

in probability, as 7 — oo. Under the condition given by X(0) =, X(¢) with
0<t=<1 can take only the values X(©)=j+¢j+t—1,j+¢t—2,... and
thus, if j <0, X(¢) is 0 or negative, which implies d(X(z)) = 0. Therefore,
from (3.6), we see

(4.2) Ls =j§0 njE[ [ 6(x )l x©) = j]

* .l

=c X p'[; EO(X@®) X(0) = jldr .
Now, for j = 0, it follows from (3.3) that
j
(4.3) E[6(X(0)|X(0)=/]1= X P[X(1)=j+1—k|X(0)=/]
= kjgo bkt = [ xie jrdx
Therefore, we conclude from (4.2) and (4.3) that
44)  La=cf [ I ]5;0 pxie ¥ jldx } di=c l [ e } dt
=c/fb(1-p}=>1-a)/b-a).

Since L(Ar) + L(Br) = T, we see
45 LA/ T—Li=1-(1-a)fb—a)=(b-1)/(b-a) (say),
in probability, as T — oo, These, together with (2.6), imply that

(b~ D/{a(b— a)} 0

4.6) In(0)T—10)= .
0 (1-a)/{b(b — a)}

We apply the following central limit theorem for the general Poisson-
type point process to the proof of the asymptotic normality of the
maximum likelihood estimator.

THEOREM 4.1. (Kutoyants (1984)) Let N(1),0<t< T, be the point
process with the conditional intensity Ar(t), 0<t<T and set M(t) =
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N(@) - fot/lr(s)ds. Let f1(t), 0 <t < T, be a predictable function. Suppose
the following conditions hold:

(AN1) lTiglofonT(t)le(t) dt = 6* < e, in probability.
(AN2) Foranye>0,

. T 2

lim [ EL/r(0)umon-a() ()} de = 0.
Then, it holds that
(4.7) gz[ fOT Fr(6ydM(2) ] - N(0,6), as T—oo.

Let us denote
(4.8) Ar= T "%9/96) log Lr(6)

T [ gt - )dM(1)/a

T2 [ (e = )ydM()/b

T
Put fr(1) = T""*¢a(1)/a. Then, it holds that (AN1): T [ ya(t)/adt —

(b — 1)/{a(b — a)} in probability, as T — oo. Since {| fr(¢)| > &} = {|y4.(1)| >
eaT"?}, (AN2) holds. In the same way, the conditions (AN1) and (AN2) for
x8(?) are checked up. The same discussion holds for the 2-dimensional
random vector 4r. Hence, by the above theorem and (4.6), we have

(4.9) P47]— N©, 1)), as T—oo.

At the same time, from (2.7) and (4.6), we have the asymptotic normality
of the maximum likelihood estimator:

(4.10) LT (0r- 6)]— N©O,I"'(0), as T—oo.

Similarly, the local asymptotic normality (LAN) of this point process is
shown. We see from (2.2) that the log-likelihood ratio for A = (hi, h2)" is as
follows:
@.11)  Ar(h) =log {Lr(6 + hT™"*)] Lr(0)}
=log {(a+ T "»]a}N(A7) + log {(b + h.T~"*)/ b}N(Br)
— T "2L(Ar) — hyT™"*L(By)
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and thus, from (4.6) and by the Taylor’s expansion:
log{(a+ mT ") /a}=(h|a)T " = (h/a)’T™" + o(T™")

and so on, we have that

4.12) Ar(h) = W'47(0) — Gr(h,0) + 0,(1) ,
where
T 'L(A7)/a 0
(4.13) Gr(h,0)= (1/2)K’ -
0 T 'L(Bp)/b
—~ WI1)h)2

in probability, as T — oo. This demonstrates that the SSCP process is LAN.
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