Ann. Inst. Statist. Math,
Vol. 42, No. 1, 77-87 (1990)

ESTIMATION OF THE RATIO OF THE SCALE
PARAMETERS OF TWO EXPONENTIAL DISTRIBUTIONS
WITH UNKNOWN LOCATION PARAMETERS

MOHAMED MADI AND KAM-WAH Tsul

Department of Statistics, University of Wisconsin-Madison, 1210 West Dayton Street,
Madison, WI 53706, U.S.A.

(Received March 9, 1988; revised February 20, 1989)

Abstract. We consider the estimation of the ratio of the scale para-
meters of two independent two-parameter exponential distributions with
unknown location parameters. It is shown that the best affine equivariant
estimator (BAEE) is inadmissible under any loss function from a large
class of bowl-shaped loss functions. Two new classes of improved esti-
mators are obtained. Some values of the risk functions of the BAEE and
two improved estimators are evaluated for two particular loss functions.
Our results are parallel to those of Zidek (1973, Ann. Statist., 1, 264-278),
who derived a class of estimators that dominate the BAEE of the scale
parameter of a two-parameter exponential distribution.
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1. Introduction

Several researchers have improved on the best affine equivariant
estimator (BAEE) of the scale parameter of a distribution with unknown
location parameter. Stein (1964) proved that the BAEE for the variance of
a normal population is inadmissible under squared error loss if the mean is
unknown, by showing that there is a scale equivariant estimator which is
better than the BAEE for the variance of a normal population. Brown
(1968), using a different method of proof, extended this result to a wider
class of distributions and loss functions. Brewster and Zidek (1974) describ-
ed two techniques for improving on equivariant estimators. When estimat-
ing the variance of a normal distribution, the first technique produces the
estimator of Stein (1964), and the second technique produces a “smooth”
improved estimator which is also generalized Bayes and admissible within
the class of scale equivariant estimators for the variance of a normal
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distribution. Zidek (1973) used the first technique to obtain an estimator
that dominates the BAEE of the scale parameter for the two-parameter
exponential distribution. This same dominating procedure was obtained
independently by Arnold (1970), who proved its superiority by evaluating
its risk function and comparing it with that of the BAEE. Using the second
technique of Brewster and Zidek (1974), Brewster (1974) presented a
smooth, improved estimator of the scale parameter for the two-parameter
exponential distribution. Gelfand and Dey (1988) extended the results of
Stein (1964) and Brown (1968) to estimation under the squared error loss
function of the ratio of the variances of two independent normal random
variables when the means are unknown.

Section 2 of this paper demonstrates the inadmissibility of the BAEE
of the ratio of the scale parameters of two independent exponential
distributions with unknown location parameters. Using a technique similar
to that of Zidek (1973), we obtain an estimator of the ratio dominating the
BAEE. Although the estimator obtained has a relatively simple form, it is
not smooth. Consequently, we derive a smooth estimator dominating the
BAEE. Section 3 presents examples of dominating rules under two particu-
lar loss functions. Numerical results are also presented.

2. Inadmissibility of the best equivariant estimator

2.1 Definitions and problem statement

DEFINITION 2.1. A real-valued function fis said to be strictly bowl-
shaped in a domain D of the real line, if there exists xo in D such that f'is
strictly decreasing for x < xo and strictly increasing for x > xo.

Let X1, X»,..., Xm and Y1, Ya,..., ¥, be two independent random samples
from exponential distributions with unknown (location, scale) parameters
(w1, 01) and (2, 02), respectively. We consider the problem of estimation of
the ratio 6 of the two scale parameters ¢; and o,. Let X(1) be the minimum
of the X/’s, Y1) be the minimum of the ¥;’s, X be the sample mean of the
X’s and Y be the sample mean of the ¥;’s. Furthermore, let 71 = X — X(1),
Z, = X(])/(X - X(])), T.=Y — Y(1), Z, = Y(l)/(Y - Y(l)) and T= Tl/Tz.
Denote T = (T, T>) and Z = (Z1, Z,). With this notation, mT;/o; follows a
chi-squared distribution with m — 1 degrees of freedom, [fn(m — 1)]"
-m(n— 1)T has an F-distribution with 2(m — 1) and 2(n — 1) degrees of
freedom, and the conditional density of 7, given Z; =z; is equal to
K@) e M ) [y50,25usty for some positive value K(zi). Furthermore,
(T, Z) is a sufficient statistic.

For an estimator 6 = 0(T,Z) of 8= 01/0,, we assume that loss is
measured by L(d,0) = W(d/6), where W satisfies the following condition:
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CONDITION 1.

(1) Wis differentiable with a derivative denoted by W’(-).
(i) W is strictly bowl-shaped, assuming its minimum at 1.
(1)) Ifoi=1fori=1,2, then E(|W(cT)|) < o for all ¢ > 0.

Let p=(u1,42) and o = (01,02). The risk function of an estimator
oT,Z) of 0 is R(6,p,0)=E{W((T,Z)|0)}. Let x=(x1,...,xn) and y=
(y1,.-., yn). Consider the affine group G of transformations on the original
sample space: (x,y) — (ax + b, ¢y + d), where a>0, ¢ >0 and b and d are
real numbers. Our problem is invariant with respect to G with the induced
transformations on the parameter space and the action space given by:

(u1,p2) = (ap + b, cu2 + d)
(0-19 0-2) - (aala aUZ) >

0—(alc)o .

For a given loss function W(-) satisfying Condition 1, a G-equivariant
estimator of 6 has the form

o(T,Z)y=cT forsome ¢>0.

The best G-equivariant (affine equivariant) estimator of 6 is denoted by
0o(T,Z) = coT. Note that ¢, depends on W (-). Now consider the subgroup
H of G, constructed from G by taking b = d = 0. Then any H-equivariant
estimator of 6 is of the form J&(T,Z)= TF(Z) for some measurable
function F. The risk function of an H-equivariant (scale equivariant)
estimator depends on p = (u1, 42) and 6 = (01, 0,) only through o', i =1,
2; thus, without loss of generality, we assume that g, = 1, i = 1, 2 and hence
8 = 1. Clearly, the class of H-equivariant estimators contains the class of
G-equivariant estimators. We show in the next two subsections that some
H-equivariant estimators are better than the BAEE .

2.2 Animproved estimator
This section derives a relatively simple estimator (given in (2.4) below)
that improves on the BAEE.

LEMMA 2.1.  The functions hi(c) = E(W (cT)) and hx(c) = E.(W (cT)|
Z, = z1) for ¢ >0, and for each possible u: and z\, are strictly bowl-shaped
and differentiable with derivatives E(TW'(cT)) and E.(TW'(cT)|Z, = z)),
respectively.

PROOF. Apply Lemma 2.1 in Brewster and Zidek (1974).
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Now denote the unique minimizers of E(W(cT)) and E[W(cT)|Z: =
z1] as ¢ = co and ¢ = ¢(z1, 11), respectively. In particular, co is the minimizer
of the function

@1 2@ = [ [Wenr 11+ mufmy™ 2t

which is an unstandardized expectation of W(cT).
THEOREM 2.1. The best affine equivariant estimator
2.2) o(T,Z)=cT,

is inadmissible, when loss is measured by any member of the class of loss
functions satisfying Condition 1.

PROOF. Let ¢; be the minimizer of
2.3) gie) =, [W (o™ (1 + mufny""di .

Recall that W(cor) is minimized at ¢t = ¢’ and hence W'(cof) <0 for
1< ¢ and W'(cot) =0 for 1= co'. We have,

gico) = [ Wco™ (1 + ma/ny™*"ds

+ [ Wieon™ (1 + mufny™* " dt
> co'(1 + meo' [n) 'gé(co) =0,

since ¢/(1 + mt/n) is strictly increasing in ¢. Thus ¢; < ¢o, as gi(c) is strictly
bowl-shaped. Now ¢(z1,0) is the minimizer of

Go(c) = [ W(etyt™ (1 + m&[ny"" dt ,
where £ = 1 + z;, hence
fom W'c(z1,0)x/E1X" /(1 + mx/n)™ " 'dx =0 ,

which implies that ¢; = ¢(z1,0)/¢&, or equivalently, ¢(z1,0) = ci(1 + z1). Let
I'(a, b) denote the incomplete gamma function (Abramowitz and Stegun
(1972), p. 262). We next note that when u; > 0 (and hence z; > 0) ¢(z1,0) =
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¢(z1, (1), since the unstandardized conditional expectation of W(cT),

Gu(e) =, W(ety™ ' Tim +n— 1, mlm(1 + z)¢ + n]/(21)}
[[mt(1 + z1) + n]™" 'dr

is bowl-shaped (Lemma 2.1), and the function {(x) = I'fm + n — 1, u[m(1 +
z1)x + n]/(z1x)} is increasing in x. When u; <0, ¢(z1,0) = ¢(z1, u1) for z; > 0,
since the conditional density function of T given Z; = zy, is the same for all
1 = 0. Now define Fo(z1) = min {co, ci(1 + z1)} for z; > 0 and Fo(z1) = ¢o for
21 = 0. Then the estimator

2.49) o(T,Z)= F(Z)T
satisfies
E/l]{ W[TFo(Z1)]|Z1 = 21} = Ey.{ W(C()T)|Zl = Zl}

with strict inequality for all g1, and all z; > 0 such that ¢(z1,0) = ci(1 + z1) <
co, which holds with positive probability since ¢; < co. Therefore, 6(T, Z) is
better than do(T, Z). That is, 6o(T, Z) is inadmissible.

COROLLARY 2.1. Let ¢\ be as defined in (2.3). Suppose the loss
Junction W(:) satisfies Condition 1. For any scale equivariant estimator
TF(Z), let FXZ)=min {F(Z), ci(1 + Z\)} for Z, >0 and F*(Z)= F(Z)
for Zy < 0. Then E{W[TF*(Z)} < E{W[TF(2)]}, with strict inequality if
P(F*(Z)+ F(Z)) > 0.

2.3 Smooth improved estimator
Although the improved estimator in (2.4) is relatively simple, it is not
smooth. In this subsection, we develop a smooth improved estimator.

LEMMA 2.2. (1) The function hy(c) = E.[W(cT)|Z: € (0,r)] is strictly
bowl-shaped in c for any r>0. (2) Let cu.(r) be the minimizer of hi(c) in
(1). Then cu(r) is an increasing function of r. (3) cu(r) < co(r) for all real ..
Consequently, co = co(=0), and co(r) is increasing in r.

The proof of Lemma 2.2 is given in the Appendix.
LEMMA 2.3. ®.(Z))T has uniformly smaller risk than coT, where

co(r) 0<zi<r,

D Z1) = )
(z1) Co otherwise .
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PROOF.

E{W[D(Z)T]} = E{W[co(r)T]|Z,€(0,n)}PO< Z: <)
+ E{W(coT)|Z1 ¢ (0,N}P(Z: ¢ (0,1))
< E[W(cT)].
LEMMA 2.4. Let0<r <r. D,AZ\)T has uniformly smaller risk than
D,(Z,)T where

co(ry 0<zi=7r,
DAz)={cr) r<zi=r,
Co otherwise .

PROOF. The result follows from decomposing the risk as in the proof
of Lemma 2.3 and noting that

E{W[co(rT]|Z1€ (0, r)} < E{W[co(r)T1|Z1 € (0,7)}.

THEOREM 2.2. The risk function of w(Z,)T is nowhere larger than
that of coT, where w(z1) = co(z1) if z1 > 0 and y(z1) = co if 21 < 0.

PROOE. Foreachi=1,2,....let0=r,<r,<r,<:- <ri,<oo be such
that
(i) limr, = oo,

=~

(i1) max |ri — ri.| — 0 as i goes to infinity. Define
<j<n;

. co(rs) ri.<zi<r, j=1,2,....n,
®(z) =
Co otherwise .

By Lemma 2.4, @"(Z,) T has smaller risk than that of ¢oT. Now, as i tends
to infinity @"(z1) = w(z1), where w(z1) is co(z1) or ¢o according to z; >0 or
71 <0, respectively. Hence

E{WIy(Z)T]} = E{ lim W[2"(Z)T]|
<lim E{ W[ (Z)T]} < lim E[W (coT)] = E[W(coT)].
2.4  Other versions

Instead of conditioning on the first component of the maximal invariant
under the scale group in the construction proofs in Subsections 2.2 and 2.3
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we can derive dominating estimators by doing similar calculations condi-
tioning on the second component of the maximal invariant. The results are

described as follows. Let ¢; be the minimizer of Ax(c) = fo - Wi(ct)r™ /(1 +

mt|n)""""'dt, where W(-) satisfies Condition 1. Then the estimator defined
by 6(X,Y)=(X — Xo))(Y — Yu)) ' max {co, c2(1 — Y/ Y)} for Yu)>0 and
6(X,Y) =060 =co(X — Xoy)Y — Yu))"' for Yuy < 0, dominates do under W().
Let ¢ = ¢%.(r) be the minimizer of E[W(cT)|Z: € (0, r)], then cd(r) = ch-o(r) <
ci(r) for any r >0 and — oo < g < o. A smooth estimator that dominates
do under W(-) is defined by (X, ¥) = (X — X)) Y — Yu) 'ed(Yuy/(Y — Yuy))
for Yoy >0 and d(X,Y) = do for Yy <0.

Notice that the risk functions of the estimators derived by condi-
tioning on one component of the maximal invariant depend only on the
corresponding location parameter.

3. Magnitudes of risk reduction

In this section, we use numerical integration to calculate the risk
functions of two improved estimators of the ratio 8 = o1/ g, when the loss
function W(J/6) is the squared error loss Ls(J,8) = (1 — 6/8)*, and when
W(/0)= L3,0)=(5/6)—1n(6/0)— 1. Ly(-) heavily penalizes overesti-
mation, and L,(-) penalizes underestimation. The risk functions of the
improved estimators and the BAEE are computed for specific sample sizes
m of the X/’s and n of the Y;’s, and specific values of the location parameter
Hi.

Let co and ¢; be as defined in (2.1) and (2.3). Then

co=1-3n", ci=mn—3)/[n(m+1)], underloss Li(J,6),

3.1
@D co=mmn—2)/[n(m-1)], ca=1-2n", underloss LuJ,6).

In terms of the original samples X = (Xi,..., Xn) and Y = (Y1,..., ¥,), the
first improved estimator of 8 is

(X = Xo)(Y — Yu)' min {co, X /(X — Xw)},
(32 X, Y)= if  Xo>0,
co(X — X)) Y — Yay)™', if  Xin<0.

The estimator 6'(X, ¥) is not smooth. To derive a smoother improved
estimator of 6, note that the value of ¢ that minimizes E.[W (cT)|Z: € (0,r)],
where T and Z, are as defined in Section 2, can be expressed as

cu) =, Bl 1, ] [ 0B 1,
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with

(3.3)  Bust,ny=e™Tm+n =2, pu(mt + n)[(rH))/ (mt + n)"""*
—I'lm+n -2, iu(m(r + 1) + n)/(rr)]
[[mt(r + 1)+ n]"" 2,
for j = m if the loss function W(-) is L and j = m — 1 if the loss function
W) is Lu. cu(r) < cu=o(r) = co(r) for — oo < y; < oo, In terms of the X;’s and
Y/’s, the second improved estimator of 8 = g,/ 0 is
Coz?()—( - X(l))[)_(j - ()? - X(l))j]
G4 FxY)={ (Y- YoIX"" - (X - Xo)"']’
co(X — Xo)Y — Yay)™', if Xuyp<o0,

f Xup>0,

where j = m if the loss function is L; and j = m — 1 if the loss function is
Lu.

Recall that the risk functions of §'(X, ¥) and 6*(X, ¥) depend on the
parameters (u1, g1, U2, 02) only through (ui/o:, u2/02). Hence, in the
calculation of the risk functions of ' and & below, we assume 6 = 1.

The risk function of 6'(X, ¥) has the following integral form

(3.5) fo'"fl da [, 1=t + 20 f (e, z0de + [ da [, 11— ol £ (2, 20t
o dn 1 -l f, 20t

where f(¢, z1) is a probability density proportional to

Im+n— 1, mm + z)t + n)/ @)™ [me(1 + z)) + n]™™!

t>0, z1>0.

The risk function of 6*(X, ¥) has the form
36 [T - col s zdidz + [ dn (1 - e s z0de
where f(z, z1) was defined in the last paragraph and
co(zi) = m(m +n—j =)' [1 = (2 + DY = (2. + 1)77]

for j = m if the loss function is Ls; and j = m — 1 if the loss function is L,.
We evaluated numerically the risk functions (3.5), (3.6) of 6'(X,Y) and
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JZ(X, Y)for m=4,n=7. Tables 1 and 2 compare these risk functions to
the risk function of the BAEE, for several values of the location u;. The
maximum risk reduction upon the BAEE is about 3.5% when loss is
measured by L;, and about 8% when loss L, is used.

Table 1. Percentage of risk reduction in using estimators 6' and ¢° instead of the BAEE under loss
function L;.

Value of y
0 .1 15 2 3 4 .6 8 1

Risk reduction for 8' 1.55 3.13 2.80 2.13 1.00 040 0.07 0.03 0.00
Risk reduction for > 0.03 1.78 230 2.68 3.00 3.40 325 2.88 230

Risk of BAEE = 4.

Table 2. Percentage of risk reduction in using estimators 8' and ¢° instead of the BAEE under loss
function L,.

Value of u;
.05 1 2 3 4 .5 .6 8

Risk reduction for 6' 4.81 823 643 422 283 217 21 177
Risk reduction for 8 3.41 4.96 6.61 778 793 8.11 7.89 7.27

Risk of BAEE = .2725.

Appendix

The proofs of the following two lemmas, which are used in proving
Lemma 2.2, are modifications of the proof of Lemma 2(i) of Lehmann
((1986), p. 85). The lemmas should be of independent interest.

LEMMA A.l. Let {pyx): >0} be a monotone likelihood ratio
(MLR) decreasing family of densities on the real line. If ¥(x) is a
decreasing (increasing) function of x, then E,'¥(X) is an increasing (decreas-

ing) function of n.

LEMMA A.2. (1) Let py(x) be an M LR-increasing density function. If
Y(x;n) is increasing (decreasing) in x and n, then E,¥(X;n) is increasing
(decreasing) in n. (2) Let py(x) be an MLR-decreasing density function. If
¥Y(x; n) is increasing (decreasing) in x and decreasing (increasing) in n, then
E,¥(X,n) is decreasing (increasing) in .

PROOF OF LEMMA 2.2
Part (1). First note that E[W(cT)|Zi € (0,r)] cho W (ct)hu(t; r)dt
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where A(?) = hu(t; r) is a density function proportional to fow yhiu(ty, NhaA(y)dy,

with Ai(8) = hiu(t;r) < 7 2e ™ (@™ — € ™ Vusury and ha(t) < 1" e ™ Iiso).
We need to show that {A(¢z""), 7 > 0} is MLR-increasing i.e.,

(A.1) h(tn1)/ h(tn2) 1s increasing in ¢,
for any #:, 2 such that 0 <#1 <#,.

After putting x = ¢y, and differentiating A(z7:)/ h(t72) with respect to ¢, we
see that for (A.1) to hold it suffices to show that

(A.2) ®(n) =, Chimhi(xi)dx / J, xhimoha(xr Y
is increasing in # .

Rewrite @(n) = E,[#(X)] where ¥(x) = xhi(xt ™)/ ho(xt"") and the expecta-
tion is taken with respect to the density

Dn(x) = xhl(nx)hz(xt_l) / fom xhl(ﬂx)hz(xfl)dx .

Since p,(x) is MLR-decreasing ¥(x) is decreasing in x, ®(y) is then
increasing in #, by Lemma A.1.

Part (2). To show that cu(r) is increasing in r, let r <r* and put
F(c) = E[W(cT)|Z: € (0,r*)]. It is then enough to show that Fcu(r)] <O0.
Noting that F’[cu(r)] o< cov [W(cu(r)T), h(T;r*)/h(T;r)] with respect to
h(t;r), and that W’[c.(r)t]t has only one sign change, it is then sufficient to
show that

(A.3) A(f) = h(t;r™)/h(t;r) is decreasing in ¢ .

Making the same change of variable as in Part (1), and differentiating A(z)
with respect to ¢, it is not difficult to see that (A.l1) is implied by the
statement that H(r) increases in r, where H(r) = E,A(x), A(x)=x
-hi(xt™")/ ho(xt™"), and E, denotes the expectation taken with respect to the
density p.(x) proportional to xki(x; r)h(xr""). To complete the proof of
(A.3) using Lemma A.l, we must verify that

(A4) &(x) = (x; r*)/ hi(x;r)  decreases in x for r < r* .

For (A.4) to hold it is enough to prove that {(r) = E[y(Z;r)] increases in r
where p(z;r) = mz + [muix"'e ™/ (e™" — ¢ ™), and where the expectation
is taken with respect to the density A(z) oc e " [ux'<:<n. With h(z) MLR-
increasing, y(z; r) increasing in z and r, we conclude by Lemma A.2(1) that
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{(r) increases in r. Hence (A.4) holds.

Part (3). To show that cu(r) < cu=0(r) = co(r), we first assume that
(1> 0. Since the function As(c) is strictly bowl-shaped, it suffices to prove
that A3(co(r)) > 0. For this latter claim, and following the same argument
used to show part (2) of this lemma, we need to verify that H(y) =
hu(y; r)/ ho(y; r) is increasing in y. Observe that

HO) =], b et )" ubsotuy; bt
= fom xhuu(x; ha(xy Ndx / f Om xhio(x; r)ha(xy ™ )dx

can be rewritten as H(y) = E[M(X)], with M(x) = hiu(x;r)/hio(x;r) and
with the expectation taken with respect to the density function g,(x) cc
xhio(x; P)ha(xy ™). But for 0< yi <y, the ratio gu(x)/gn(x) cc e ) is
increasing in x. Hence g,(x) is MLR-increasing.

Furthermore, it can be checked that M(x) = (e — ™ )(1 — e ™"
« [e>wry 18 increasing in x. Thus, by Lemma 2.1 of Lehmann (1986), H(y) is
increasing in y.

For the case u; < 0, observe that E.[W(cT)|Z1 € (0,r)] = Eu-o[W(cT)| Z:
€ (0,7r)]. This follows from the fact that the function A(t; r) defined in the
proof of Part (1) in this appendix is same for all u; < 0. Hence cu(r) =
cu=0(r) = co(r).
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