Ann. Inst. Statist. Math.
Vol. 42, No. 1, 65-75 (1990)

MORE COMPARISONS OF MLE WITH UMVUE
FOR EXPONENTIAL FAMILIES

TEA-YUAN HWANG AND CHIN-YUAN Hu
Institute of Statistics, National Tsing Hua University, Hsinchu, Taiwan, 30043, Republic of China

(Received December 28, 1987; revised February 6, 1989)

Abstract. Under some regularity conditions, the asymptotic expected
deficiency (AED) of the maximum likelihood estimator (MLE) relative to
the uniformly minimum variance unbiased estimator (UMVUE) for a
given one-parameter estimable function of an exponential family is
obtained. The exact expressions of the AED for normal, lognormal,
inverse Gaussian, exponential (or gamma), Pareto, hyperbolic secant,
Bernoulli, Poisson and geometric (or negative binomial) distributions are
also derived.
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1. Introduction

Let X1, Xa,..., X» be a random sample of the one-parameter exponen-
tial type having the probability density function

(1.1)  f(x,0)=exp {P1(O)T(x) + D,(0) +d(x)}, x€8, OeQ

with respect to a fixed o-finite measure u (either Lebesgue or counting
measure), where S is a subset of real numbers and € is a parameter space.

The maximum likelihood estimator (MLE) and the uniformly mini-
mum variance unbiased estimator (UMVUE), which are considered the two
most important estimators for g(f), an estimable function of 6, are
equivalent in terms of the asymptotic relative efficiency (ARE) under some
regularity conditions. In order to discover which one is better, Rao (1961,
1962 and 1963) introduced several concepts of second-order efficiency, and
Hodges and Lehmann (1970) gave the deficiency. In this article, we shall
use the latter because of its great convenience.

Let T (X1, Xa,..., X») and T2(X1, Xa,..., X») be two estimators of g(6),
and the measure of performance of estimators 7; is taken as the expected
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squared error, denoted by V,.(7}), i = 1,2. We may assume that {V,(T})} are
strictly monotonic decreasing sequences in the sample size n, i=1,2, and
Va(T}) = 0 as n — oo for each i. In the problem with which we shall be
concerned, V,(T;) will typically be of the form

(1.2) Va(T) =an" + bin "™ + o(n™"?)

i=1,2, withr>0.
As discussed in Hodges and Lehmann ((1970), p. 784), there exists an
unique k, such that Vi (T>) = V.(Th) and

(1.3) knjn — 1

as n — + o. Therefore, they defined the asymptotic expected deficiency
(AED) of T; relative to T as follows:

(1.4) AED [T, Ti] = lim (kx — n)

provided that the limit exists. Furthermore, they proved

(b—b)jra if s=1
(1.5) AED [T>, Th] = oo if 0<s<l1
0 if s>1.

In Section 2, a simple formula for the AED of MLE for g(8) relative
to the UMVUE will be derived for the one-parameter exponential family
(1.1) under some regularity conditions. We also slightly extend Theorem
3.1 of Morris (1983) (see, Lemma 2.3 below). Section 3 gives the exact
expressions of the AED corresponding to normal, lognormal, inverse
Gaussian, exponential (or gamma), Pareto, hyperbolic secant, Bernoulli,
Poisson and geometric (or negative binomial) distributions.

2. Main result

In order to derive the main result, we put more restrictions on f(x, &)
defined as in (1.1) as follows:

(1) Qs either the real line, or an interval on the real line.

(2) S, the set of positivity of f(x, 8), is independent of 6.

(3) T(x)is not a constant function almost everywhere with respect to
the fixed o-finite measure pu.

It is well-known that the complete sufficient statistic for 8 is given by:
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n
Q.1 Z= 3 T(X)/n

and the probability density function of Z is of the form:
(2.2) h(z,0) = exp {n®(0)z + nd2(0) + d¥(2)}

with respect to the fixed o-finite measure u, where d»(z) depends on z and
n.

Let g(6) be a given estimable function of 6. If an UMVUE for g(8)
exists, then it must be a function of Z and the sample size n, let it be
U.(Z). From the application point of view, usually U.(Z) — g(6) a.e. as
n — oo, for example Church and Harris (1970), Downton (1973) and Chao
(1981), etc.; furthermore, each member of the function U,(z) has derivatives
of all orders. Therefore, in this article, we shall assume that U\’(Z) = O(1)

almost everywhere with respect to the measure g, for all i=1,2,.... For
convenience, we drop the subscript » and denote U(Z) to be the UMVUE
for g(6).

We assume that the following regularity conditions hold throughout
the rest of this article unless specified:

(1) zis an interior point of (2.

(2) 6Pi(6) + P3(0) =0 and @{(0) >0 for all f € Q.

(3) The density A(z,6) can be differentiated with respect to 6 under
the integral with respect to z any number of times.

(4) The functions U(z) and g(#) admit a convergent Taylor series for
all interior points of Q.

Note that the approaches presented by Morris’s (1982, 1983) (concen-
trated in natural exponential families and quadratic variance function) will
certainly be able to unify some statistical inferences such as the unbiased
estimation, Bhattacharyya and Cramér-Rao lower bounds, as well as the
calculation of the AED of MLE for g(8) relative to UMVUE, but with
very unpleasant expression for some cases. In order to obtain a simple and
concise formulation of the AED as presented in (2.3), we really need the
regularity condition (2); that is a key condition in this paper. It is also
noted that the regularity condition (2) gives E(7T(X)) = 6 and Var (T(X)) =
[®/(0)] ' where X is a random sample from (1.1).

The result derived in this paper can be used to obtain more AED than
that found in Morris’s (1982, 1983); for example, our paper can obtain the
AED of some distributions with cubic variance function which cannot be
obtained by Morris’s papers. We consider inverse Gaussian distribution in
detail in Section 3.

The regularity condition (3) implicitly assumes that the functions
®;(0), i = 1,2, are analytic on the interior points of Q. And the estimable
function g(8) in the condition (4) is actually analytic when the probability
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density functions are the natural exponential family (NEF) with the natural
parameter ¢; for more detail, see Abbey and David (1970) or Theorem 9 of
Chapter 2 in Lehmann (1986).

The regularity condition (2) can be used to prove that the log
likelihood function L is strongly unimodal, and that its MLE for 6 is
unique; the proof for the uniqueness of the MLE can be found in
Barndorff-Nielsen (1978) for an exponential family. Now, the invariant
property of the MLE (Zehna (1966)) implies that g(Z) is the MLE for g(8)
if Z is the MLE of . We have the following result.

THEOREM 2.1.  Under the regularity conditions (1)—~(4), the AED of

the MLE g(Z) for g(0) relative to the UMVUE U(Z) for the exponential
Sfamily (1.1) is given by

(23) AED[2(2), U(Z)]= V(0) 187(0)/g'(0) + —417 [£7(0)/g(O)) }
+V(0)g"(6)/g(6)
where V(0) = [®1(6)] .
In order to prove this theorem, we need some lemmas.
LEMMA 2.1.  Under the regularity conditions (2) and (3), we have
(2.4) Oui/ 90 = — ipi-1 + n®@{(0) i +1

w=1and uy=0, i=1,2,3,... where ;= E(Z— 0) are the central mo-
ments of Z.

The proof of Lemma 2.1 is easy and omitted here; it gives the recursive
relationship among the central moments of Z. For example, we have

(2.5) w =[SO, w=—SO[PIO)] > -n?,
Us = 3[nDUO) 7 + { — B(O) DIO) + 3[D(0)] Bi(0)]*}
[n@i(0)]"°

and in general
pr-1=0m")  and  pu=0M"), i=1,2,....

Now, under the regularity conditions (1) and (4), the MLE g(Z) has a
convergent Taylor expansion,
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(2.6) g(2)=g(0) + Z £"(0)(Z - 0)/i!
and combining Lemma 2.1 and the following relation

1 - -3
MSE [g(Z)] = Var [g(Z)] + - [0 [n@{(@)] " + O™,

we have

LEMMA 2.2. Under the regularity conditions (1)—(4), the mean squar-
ed error of the MLE g(Z) for g(0) is given by

2.7  MSE [g(2)] = [g(@)[n®{(0)] "
+1{g(0)g”(0) + % [g7(0)]” - £(0)g"(O)®{'()/ Di(6)}
[n®iO)]* + 0.
Next we find the variance of the UMVUE for g(@) as follows

LEMMA 2.3. Under the regularity conditions (1)—~(4), the mean squar-
ed error (or variance) of the UMV UE U(Z) for g(0) is given by

(2.8) MSE [U(Z)] = [g(0)) [n®{(0)] "
+ L OF O]+ 0™
PROOF. Using the conditions (1)-(4), we obtain
U(Z)= U@) + T UOXZ - 0))i!
and the unbiasedness of U(Z) yields
5(0) = U®) + % U0t
for all f € Q, and the conditions (2), (3) and Lemma 2.1 give
g(6) = U0+ £ U O

+ i; UYO) — ipgi-r + n®i(O) pi+1]] 3!
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=nPi() L U™ @) i) 1!

for all interior points 6 of Q. Note that U(Z) depends on Z and the sample
size n. Since the regularity conditions give U"(Z) = O(1) for alli=1,2,...,
we have the following relations:

E[U(Z) - UO) = [UO)] 2 + UO)U"(O) s

i 1y N2 _1__ , " -3
+{ 4 [U"(D] + 3 Uueu (0)}/14+0(n ),

1 -3
[U©) = g@O)) = [U" O+ O(n ™) ,

U0) = g(0) + U O)21O)[®1(0)] ' - U"(0)}
2n®UO)] ' + O(n?),
U'6)=g'(0)+ O(n™),  U"(0)=g"(0) + O(n").

Finally, the identity
MSE [U(Z)] = E[U(Z) - UO)Y + [U(®) - g(O)T
gives the desired result and the proof is complete.

Note that Lemma 2.3 can be used for the quadratic variance function
(QVF) case, which Morris ((1983), formula (3.7)) considered for normal,
exponential (or gamma), hyperbolic secant, binomial, Poisson and negative
binomial distributions.

PROOF OF THEOREM 2.1. Lemmas 2.2, 2.3 and Hodges and
Lehmann’s (1970) result (1.2) and (1.5) with r=s=1 yield the desired
result.

The fact pointed out in the introduction can be obtained as follows.

COROLLARY 2.1.  Under the regularity conditions (1)—(4), the asymp-
totic relative efficiency of the MLE for g(0) relative to the UMVUE is
equal to one.

Finally, we note that the regularity conditions (3) and (4) may be
slightly weakened; for example, the Taylor expansion of the remainder
term may be such that the UMVUE has up to a term smaller order than
O(n™?), but in some sense Lemma 2.3 gives a sufficient extension of
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Theorem 3.1 of Morris (1983) for large sample size n.

3. The AED for some distributions

Abbey and David (1970) considered the Koopman-Darmois class of
exponential densities and developed a method for obtaining the UMVUE
of g(#) without explicit knowledge of any unbiased estimator of g(6).
Morris (1982) gives a detailed insight into the natural exponential families
with quadratic variance functions (NEF-QVF), and defined the family of
elementary distributions as having unit magnitude +1 in the leading
coefficient of the variance function, namely: the normal N(0, 1), exponen-
tial, hyperbolic secant (HS), Bernoulli, geometric and Poisson distribu-
tions. We note that these six elementary distributions satisfy the second
regularity condition given in Section 2. Therefore, we can easily obtain the
AED for these six elementary distributions from Theorem 2.1. Note that
Theorem 2.1 is true without restriction on quadratic variance functions.

Furthermore, it can be shown that normal N(0, 8), gamma, lognormal,
inverse Gaussian and the one-parameter Pareto distribution also satisfy the
second regularity condition. Baxter (1980) considered the transformation
Y=log (X/k) and found that the one-parameter Pareto distribution is
equivalent to the one-parameter exponential distribution; hence the Pareto
and exponential distribution have the same AED value. It is also noted
that N(0,6), I'(1/2,60) and log N(0, §) have the same AED value.

The exponent of the Pareto, lognormal distributions are non-linear in
the random variable. In contrast to the lognormal distribution, we may
term the Pareto distribution a “log-exponential” distribution. The same
argument can be applied similarly to the non-linear transformations of the
exponential family in which the exponent is linear in the random variable
(Morris (1982)). Finally, we note that the random walk distribution
(Johnson and Kotz (1970)) has the same cubic variance function as that of
the inverse Gaussian distribution.

The AED of the MLE for g(0) relative to the UMVUE corresponding
to each distribution discussed above will be presented as in the end of this
section. The table presented there could be used to assess the AED of the
MLE relative to the UMVUE which are used to estimate some functions of
unknown parameter such as probability functions, hazard functions and
reliability functions (see, for example, Church and Harris (1970), Downton
(1973), Kelley et al. (1976), Tong (1977) and Chao (1981, 1982)), etc. In this
paper, we only give an example to address the issue of positivity of the
AED as follows.

We consider the application of the result to the problem of estimating
R = P(Y< X) which has been extensively studied in reliability and its
related fields by Church and Harris (1970), Downton (1973), Kelley et al.
(1976), Tong (1977) and Chao (1981, 1982). This problem is of importance
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in the following physical situation. Suppose that X is the strength of a
component which is subjected to a stress Y. The component fails when and
only when X < Y. In the usual case, we assume that the distribution of
stresses Y is known (Church and Harris (1970)), hence we consider the
following two cases:

Case 1. (Both X and Y are normally distributed) We assume that
X 1s distributed as a normal distribution with unknown mean 8 and known
variance and that Y has a standard normal distribution. Then, Church and
Harris (1970) and Downton (1973) gave

(.1) R=®(0/\/2)

where @(-) is the standard normal distribution. The UMVUE Ry and
MLE Ry for R are, respectively, as follows:

(3.2) Ru=®(\nX/\/2n-1) and Ru=®X/\V2)

where X = (X; + -+ + X,)/n and X, Xa,..., X» are random samples of size
n. Note that

(3.3) Ru> Ry

if and only if x>0 for all sample size n. Now, using Table 1 with
g(0) = 2(0/\/2), we get

(3.4) AED [Ruy, Ry] = (560° - 8)/16

and conclude that:

(1) For |0]<(8/5)"* (=1.26), it is approximately equivalent to
0.19 < R<0.81, the MLE is better than the UMVUE and the minimal
AED in this range is equal to — 0.5, when 6 = 0 (R =0.5). Therefore, the
MLE can only save a maximal 0.5 observations.

(2) For 8] >(8/5)"* (R>0.81 or R<0.19), the UMVUE is superior
to the MLE. However, since in many applications R should be nearly
unity, the UMVUE is always superior to the MLE.

Table 2 shows the values of AED corresponding to some specific
values of 6 (or R).

Case 2. (Both X and Y are exponentially distributed) We assume
that X is distributed as an exponential distribution with unknown parame-
ter 0, and that Y has an exponential distribution with known parameter 1.
These assumptions are adopted by Kelley ez al. (1976) and Chao (1982).
They gave
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Table 1. The AED of MLE for g(f) relative to UMVUE.

Distribution f(x,6) AED
Bernoulli 6*(1-6)"* (1 -26)g:(8) + 6(1 - 0)g:(6)*
Geometric g'a-o'y! (20 - Dgi(8) + 8(8 - 1)g2(9)
Poisson &% x! £1(0) + 0g:(6)
Normal N, 1) QY "exp{-(x-6)2} £2:(0)

N(0,0)  (2II8) " exp { — x*/26} 46g,(9) + 20°g:(6)
gamma [ (% )ux"_l exp {— ax/0} 20g1(6)/ o + 0°g:2(0)/
exponential 6 'exp{-x/0} 202,(9) + 6°2:(8)
hyperbolic exp {tan”' (0)-x} )
secant 2 cosh (IIx/2)(1 + 65?2 2061(0) + (1 + 6)8:(0)
lognormal  LN(8,1) (xv/2IT)exp { - (log x — 6)*/2} 2:(0)

LN(0,68) (x/2110) " exp { — (log x)*/ 26} 402.,(60) + 20°2:(9)
inverse - 12 - 6)* 2 3
Gaussion I6o,H  @Ix) exp{ 20°x 30°:(0) + 0°g2(0)

IG(1,0)  (2I8x°) " exp { — (x - 1)*/2x} 402,(0) + 20°g:(6)

*g=g'g, g=gi/4+8"lg.

Table 2.
R: 0.900 0.950 0.975 0.990 0.999 1.000
4. 1.810 2.330 2.770 3.300 4.384 o
AED: 0.520 1.200 1.900 2.900 5.510 L
(3.5) R=0/(1+6), Ru=X/(1+X)
and
s _ (n=Di(=1"" [ (—D'(nX) ]
Ry= N r ,
T xS ¢

where X is the sample mean, Ry and Ry are the MLE and UMVUE for R,

respectively. Table 1 with g(0) = /(1 + 0) gives

(3.6)

AED [Ry, Ry]= —4R+7R?,

where 0 < R < 1, and we conclude that: For 0 < R < 4/7, the MLE is better
than the UMVUE and the minimal AED in this range is equal to —4/7,
when R =2/7. Therefore, the MLE can save a maximal 0.57 observations.
For R>4/7, the UMVUE is superior to the MLE and the maximal AED
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is approximately equal to 3, when R is nearly one. Similarly, R should be
close to unity in the practical situation. Therefore, the UMVUE is always
superior to the MLE in this case. This conclusion exactly coincides with
the work given by Chao (1982). She provides a simple and satisfactory
approximation formulas for s-bias and MSE of the MLE R, even when
the sample size n is small. Finally, we note that the sample size must be
integral. The main reason that the UMVUE is better than the MLE in the
example is that it is never worse, in the sense that the MLE nowhere
achieves (asymptotically) an MSE no larger than that of the UMVUE with
smaller sample size.
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