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Abstract. Consider the problem of estimating the mean of a normal
population when independent samples from this as well as a second
normal population are available. Pre-test estimators which combine the
two sample means if a test of the hypothesis of equal population means
accepts but otherwise use only the first sample mean, are compared to
limited translation estimators which are derived in the spirit of Bickel
(1984, Ann. Statist., 12, 864-879) (we also cover the cases of unknown
variances). Our conclusion is that if the accuracy with which the second
population mean can be estimated is of the same or better order of
magnitude as the accuracy with which the first can be estimated, then the
limited translation estimators largely dominate the pre-test estimators in
terms of mean square error loss.

Key words and phrases: Common mean, Graybill-Deal estimator, pre-
test estimator, limited translation estimator, problem P.

1. Introduction

Suppose X; is the sample mean and S the unbiased sample variance
of an independent sample of size »n; from an N(u;, 7)-distributed popula-
tion, i = 1, 2. In this paper we are interested in estimation of 4, and ;. The
usual estimators are X; and X>, respectively, but if it is known that x; and
42 are nearly equal, then it is possible to improve on these estimators by
taking suitable combinations of X; and X>. For definiteness we treat
estimation of y; only, but by interchanging symbols estimation of x, can be
treated analogously.

If the assumption can be made that u; = u,, then the Graybill-Deal
estimator (1959)

*This research was supported by grants from the FRD of the CSIR of South Africa.

51




52 J. H. VENTER AND S. J. STEEL
1.1 A= (mS: X1 + mS{X2)/(mS5 + nySP)

can be used to estimate the common mean u; = u», but if this assumption is
not true, then the mean squared error (MSE) of /i considered as an
estimator of y; can be quite large (in fact, it is unbounded as |1 — u2| — o).
Hence the experimenter who is uncertain about the assumption that u; = u,
needs to use the Graybill-Deal estimator with caution. Ohtani (1987)
proposes to do this by means of a pre-test (PT) estimator. With W * a test
statistic of the hypothesis that 4, = u, which is rejected when W* is large,
Ohtani’s PT estimator of y; is

(1.2) Ai=gl(W*<o)+ XI(W*>¢),

with I(A) the indicator function of the event A4 and ¢ a constant. Different
choices of W* can be made. Ohtani uses a modified Wald test statistic. The
choice of ¢ relates to the size of the pre-test employed, and Ohtani
tentatively proposes a size of 25% but says that “... it is a remaining
problem to seek an optimal size of the pre-test”.

Ohtani (1987) gives further references to relevant papers, but does not
refer to the significant work of Bickel (1984). For the case ¢i and o7
known, Bickel’s work can be used to derive a nearly optimal (in a sense to
be made clear below) estimator for 4 and by extension of the arguments
the cases o1, o7 equal but unknown and ot, o3 arbitrary unknown, can also
be treated.

In Section 2 the case is considered where of and o7 are known, and the
problem of estimating u; is placed within the framework of Bickel’s theory.
As a result a limited translation (LT) estimator of 4; can be proposed that
has low MSE when u; = u;, while its MSE never exceeds the minimax
value by more than a prescribed factor. It also transpires that the proposed
estimator achieves its maximum MSE when |u; — p2| — oo, i.e., when the
prior belief that the two means are equal is completely mistaken. Compari-
son of MSE’s shows that the LT estimator is superior to the PT estimator
in the situations outlined below.

Section 3 contains a discussion of the case where of = o7, but are
otherwise unknown. It is found that the LT estimator of Section 2,
modified to incorporate the usual pooled unbiased estimator of variance, is
still a nearly optimal solution to the problem of estimating ;. In Section 4
the general case where o1, o3 are arbitrary unknown variances is consider-
ed. Once more the LT estimator performs better in terms of MSE than the
PT estimators.
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2. Known variances

To begin with, assume o and o7 are known. Since X; and X; are
sufficient for x4, and u,, we base an estimator for u; on X; and X only.
Translation equivariance considerations suggest that attention may be
restricted to estimators of the form X; + A(X: — X1) for a suitable function
h, and our concern is to choose A in an optimal way. The minimax
estimator of y4; is X, and its MSE is of/m. Following Bickel (1984), we
define an optimal choice of 4 as follows: take ¢ > 0 and restrict the choice
of h to functions such that the MSE of X+ A(X;— Xi) is at most
(1 + ¢)oi/n1, and among these find the one having the smallest MSE when
M = o, More formally put

(2.1) R(h,4) = E[ X1 + h(X2 — X)) — w] /(o1 m) ,

and call this the relative MSE (RMSE) of X, + A(X2 — X1). As will be seen
below it depends on x; and u; only through

(2.2) Ad=(u2—m)/v with v =0di/m+0o3/n;.
Then the optimal A (for given ¢>0) minimizes R(h,0) among all A
satisfying R(h,4) <1 + ¢ for all 4.
This problem can be reduced to Bickel’s problem P as follows. Put
2.3) Y=(X:-X)/v and 1=(03/m)/(or/m).
Then the conditional distribution of X; — u; given Y'is
(2.4) N(— (o /mo)(Y — 4),(at/n)t/(1 + 7)) .
Taking conditional expectation given Y in (2.1), we get

(2.5 R, 4) =1/ +71)+ E[(6]/nw)Y — 4) — h(wY)T*/(at/m)
={t+ E[Y-4-h(D)T} U1 +7),

where
(2.6) h(y) = (mv/ o) h(vy) .
Now the restriction R(#,4) < 1 + ¢ is seen to be equivalent to

2.7 E[Y-4-h()<1+q with ¢ =¢l+17),
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and the problem of finding an optimal 4 is reduced to finding % which
minimizes the left-hand side of (2.7) when 4 = 0, subject to (2.7) holding
for all 4, and transforming this 4 by (2.6) to A. This is just problem P of
Bickel (1984). He points out that the exactly optimal solution is compli-
cated, but argues from various points of view that a nearly optimal
solution is provided by the function

(2.8) he() =yI(yl < @)+ ql(y>q) — ql(y < — q)

introduced by Efron and Morris (1971). The corresponding nearly optimal
estimator of y; is

(2.9) X1+ hg(X2 — X1) = Xi + (o1 mu) (X2 — X1)/ V),
and its RMSE is given by (2.5) as
(2.10) Rhg, )={t+ E[Y -4 - h(D)}}/A + 7).

The estimator (2.9) entails a limited translation away from the maximum
likelithood estimator, X, and hence it will be called the limited translation
estimator of z.

Introducing the function

Q.11) g(s,a) = f:’ (z = s)’d(2)dz = (a— 25)p(a) + (1 + ) D(~ a),

with ¢ and @ the N(0, 1)-density and distribution functions, respectively,
we can express the expectation in (2.10) as

(2.12) E[Y—4-h (V)T

=A[D(g~4) - P(-q-ND]+g(q,9— 1) +2(g.q+4).
It is easily shown that this is symmetric in 4, has a minimum at 4 = 0 and
increases monotonically to a maximum of 1+ ¢° as |4]| — . Hence

R(hy, A) behaves similarly, its maximum being (z + 1 + ¢°)/(1 + 1) =1 + &.
The obvious PT estimator in this case is

2 2

moz X1 + moi X

(X - X))ol £+ X (1(Xa — X))ol > 0)
nio; + noj

= X1 + (08 /m)h((X2 — X1)/v) = X1 + (X2 — X)),

(2.13)

with c¢ the critical value and
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(2.14) he(y)=yI(lyl <¢).

By noting the similarity between (2.9) and (2.13), it follows that the RMSE
of (2.13) is

(2.15) Rhe,d)={t+ E[Y—4 - (")} +7),
where

(2.16) E[Y -4~ h(Y)}
= A [D(c— A) — B(— c— A)] +g(0,c— 4) + g(0,c + 4).

For any ¢ = 0 this function achieves a maximum at a finite 4, and we can
select ¢ = ¢(q) such that this maximum is 1 + ¢°, with ¢ as in (2.7). Then,
(2.13) also has a maximum RMSE of 1 + ¢ and is comparable to (2.9) in
this respect.

In order to comment on the interpretation of the parameter 7, note
that since oi/n: and 03 /n, may be thought of as measures of the accuracy
with which X, and X, estimate x4, and u», respectively, it follows by (2.3)
that a small value of 7 means that X, estimates x4, more accurately than X;
estimates u1. Hence, if 1 and u, are close together and t is small, then
there is a good opportunity to reduce risk substantially by incorporating X
effectively in the estimator. If, however, the value of 7 is large, X estimates
w2 poorly compared to the accuracy with which X, estimates u;. In such a
case it is impossible to improve appreciably on X as an estimator of 1 by
using the information supplied by X.

In Fig. 1(a) the RMSE of the PT estimator (2.13) and that of the
comparable LT estimator (2.9) are shown as functions of 4 for the case
7=0.2 and &= 0.25 so that the RMSE of both estimators are restricted
below 1.25. It is evident that LT is superior to PT for small values of 4
which corresponds to x4, and u» being close together. For large 4 the
situation is reversed. Since these estimators are particularly appropriate
when the experimenter believes that u; and p. are close together, it seems
desirable that an estimator should minimize risk in this part of the
parameter space at the cost of higher risk in the less likely part where u;
and u, are far apart. It is in this sense that LT is preferable to PT. Similar
conclusions are evident in Figs. 1(b) and 1(c) which show the cases 7= 1.0
and 7 =5.0, respectively, although the superiority of LT becomes less
pronounced as 7 increases. Figure 1(d) represents an extreme case, Viz.
7=150.0. Clearly, LT and PT are now equivalent for small values of 4,
while PT is still superior to LT for large 4. Hence one would prefer PT to
LT under such circumstances. Also shown in Fig. 1(d) is the constant
RMSE of the minimax estimator, X;. It is evident that X, which nearly
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Fig. 1(a). RMSE with max 1.25 and t = 0.2.
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Fig. 1{b). RMSE with max 1.25 and 7 = 1.0.

dominates both PT and LT, is preferable to any of these alternative
estimators. Very little can apparently be gained in terms of reduced risk at
small values of 4 when the value of t becomes large.

Comparing Figs. 1(a), 1(b), 1(c) and 1(d), we see that the RMSE of PT
changes comparatively little with varying 7, whereas the RMSE of LT
decreases substantially when 7 decreases. Since a small value of t represents
a good opportunity to improve upon X; in terms of reduced risk at small
4, it is clear that LT is much more successful than PT in effectively
utilizing the information supplied by X,. Figures 2(a), 2(b) and 2(c)
illustrate these remarks further. These figures show the RMSE’s of LT and
PT at 4 =0 (i.e., 41 = u2) as functions of 7 for e = 0.1, 0.25 and 0.5. Also
shown is the function /(1 + 7) which is the RMSE at 4 = 0 of (ma3 X, +
n:61.X2)/ (mo3 + nyot). This is the optimal estimator for this case and both
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Fig. 1(c). RMSE with max 1.25 and 7 = 5.0.
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Fig. 1(d). RMSE with max 1.25 and 7 = 50.

LT and PT reduces to this when ¢ =oo. For small ¢ the RMSE of LT
clearly approximates this limiting RMSE much closer than does the
RMSE of PT.

3. Equal unknown variances

Now we turn to the case where of and o? are assumed to have the
common but unknown value ¢°. Put

(3.1 S =[(m—1)St+ (- 1)S]/m, m=nm+n-2.

Since X1, X» and S are sufficient for u1, 4> and o, we base our estimator on
them. Again translation and scale equivariance considerations suggest that
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attention be restricted to estimators of the form
(3.2) X1+ Sh((X2 — X1)/S)

for suitable A. In this case

/1 \
(3.3 T=m/m, v=ocu Wwith wu=4/—+—,
m n;

and arguing as in the previous case the RMSE of (3.2) can be expressed as

(3.4) RhA)={t+E[Y—4-Th(YD}/U+7),
where
(3.5) T=S/c and h(y)=muh(uy).

Now note that Y is N(4, 1)-distributed and mT” is ys-distributed,
independent of Y. The problem of finding an optimal 4 therefore reduces
to the Studentized-version P’ of problem P: among 4 such that

(3.6) E[Y—-A—-Th(Y/T)<1+q" foralld, with g =¢(l+71),

find that choice which minimizes the left-hand side of (3.6) when 4 = 0.
Most likely problem P’ is even more difficult than P and an exactly

optimal solution is not known. A good solution can be found as follows.
From (2.8), we get Thy(Y/T) = hrg(Y) so that

E[Y—A4~- Thy(Y|T)) = E{E[Y - 4 — he,( V)| T}
< E{l +(Tq)"}
=1+ q2 .

A

Hence A, still satisfies (3.6) and the corresponding “limited translation’
estimator of u; is

(3.7 X1+ (S/mu) g (X2 — X))/ Su)
with RMSE
(3.8) {t+ E[Y—4—-Th (Y TP}/ + 7).

It is possible to express (3.8) in terms of the function g of (2.11). By
conditioning on T'it is found that



60 J. H. VENTER AND S. J. STEEL

E[Y—-4 - Th(Y/T)T
= E{A’[®(Tq — 4) — &( — Tq — 4)]
+8(Tq, Tq — 4) + g(Tq, Tq + 4)} .

(3.9)

As in the case where g1 and o3 are known, it is possible to show that (3.8)
is symmetric in 4, has a minimum at 4 = 0 and increases monotonically to
a maximum of 1+¢ as |4| —oo. We computed the RMSE in (3.8)
numerically using subroutine DQDAGI of IMSL. Figure 3 compares this
RMSE (with m =5, t = 1.0 and ¢ = 0.25) with the corresponding RMSE in
(2.10) for the case o1 and o7 known. It is clear that even for such a small
value of m these two RMSE’ differ very little. We found the same
conclusion for other values of 7 and ¢ The cost in terms of increased
RMSE of not knowing oi and o; appears to be quite small, and we
conclude that (3.7) is still nearly optimal if m is not too small.

RMSE
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ol Nt
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1.104 é_l" ./ \\
f" / N \-.;':-'-..
1.00 / : -
// ,/
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P . / ~= LT (vars unkn equal)
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0.60- «+++ PT (vars unkn equal)
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T T T T T T T T T
.00 .50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 500 4

Fig. 3. Comparison of RMSE for cases unknown equal and known variances (m =15,
7 = 1.0, max RMSE = 1.25).

The natural PT estimator for this case is given by

(3.10)

mXi + nmXs I

n+m

Xz—‘X1' ) (‘Xz-X}
S 3 + —
(’ Su ¢ I Su

=Xl+——hc

where ¢ once again denotes a critical value and A. is given by (2.14). As
before the RMSE of (3.10) is given by

S
nmu

~

(

Xo— X
Su

).

:
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3.11) {t+ E[Y—4 - Th(Y/ )}/ + 1),
where
(3.12) E[Y -4 — Th(Y/T)T

= E{A*[®(Tc — 4) — ®(— Tc — 4)]
+g(0, Tc — 4) + g(0, Tc + A)} .

Again we can select ¢ = ¢(q, m) such that the maximum value of (3.12) is
1 + ¢*. It turns out that m has very little influence on c(q, m). For example,
with 7=1.0 and ¢=0.25 we have ¢ =0.7071 and ¢(q,5) = 1.265 while
c(g,) = 1.277. In Fig. 3 we also compare the RMSE’s of the PT esti-
mators for these cases and it is again clear that the cost of not knowing ot
and o7 is small when judged from a risk point of view. Consequently, the
conclusions of Section 2 regarding comparison of the PT and LT estimators
remain valid.

4. Arbitrary unknown variances

If of and o3 are arbitrary and unknown, equivariance considerations
do not suggest a specific form for an estimator of ;. We therefore define
the LT estimator by replacing oi and o5 by their respective unbiased
estimators, S¢ and S7, in (2.9), i.e.,

CHY X1+ (P /mV)ho(X2 — X0)/ V),
where

Vi=Siin+S8}n and Q' =e(l +(S7/m)/(S’/n1)

are now random variables, while /g is still defined by (2.8) with Q
replacing g. The RMSE of (4.1) is given by

4.2) ft+ E[Y -4 — (T UDhou(Y)T}/ (1 + 1),
where
TP =S%e?, i=1,2 and U=V o'=(Tt+ 1T/l +7).

Then introducing the function

(4.3) g(r,s,a,b) :fab (rz — s’ p(2)dz
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= r¢d(b)(2s — br) — rép(a)(2s — ar)
+(r* + D) - D(a)],

the expectation in (4.2) can be written as

(4.4) E[g(1 - T{|U?, AT{|U?, —4-QU, -4+ QU)
+g(QT/U, QU-4)+g(QTE/U, QU+ 4)].

Since U and also Q= Ve(l + tT%/ T?) are functions of T; and T: 5, (4.4) can
be evaluated numerically as a bivariate integral with respect to the densities
of Th and T (e.g., using subroutine DQAND of IMSL). It is straight-
forward to show that (4.4) is symmetric in 4. In addition, when 4 — oo, the
first and third terms in (4.4) approach zero, while the second term becomes
1+ E(QT?/UY =1+ ¢* after simplification. Hence the RMSE (4.2) ap-
proaches 1 + ¢ as 4 — oo. In addition, it is easily verified that

E[Y—4-th(V) <1+ ¢

for all z,g =0 and with Y still N(4, 1)-distributed. Utilizing this result, it
follows from (4.2) by conditioning on 7) and 7, that the RMSE of (4.1)
never exceeds 1 +¢, ie., the estimator (4.1) still satisfies the required
RMSE restriction.

In Fig. 4 we compare the RMSE’s of the two LT estimators (4.1) and
(2.9) for the case ni=n,=5, t=1.0 and ¢ =0.25. The two RMSE’s are
again quite close, even for such small sample sizes. Similar results were
found for other choices of sample sizes and parameters. This again suggests

RMSE
1.20 4

1.10 P e .
1.00 DA

0904 " £

0.80+ (1'

1.z
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0.60- -+-« PT (vars unkn)
0.50

«+ LT (vars known)

~— LT (vars unkn)

T T T T T T T T T
.00 .50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 4

Fig. 4. Comparison of RMSE for cases of unknown and known variances (ni =5, n; =5,

7 = 1.0, max RMSE = 1.25).
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that the cost of not knowing the variances is relatively small, and we think
that the LT estimator (4.1) is still fairly close to being optimal.

A PT estimator for this situation may be based on the Wald test
statistic W = (X2 — X1)/ V which leads to the estimator

(4.5) X1+ (ST mV (X2 — X))/ V) .

The RMSE of this estimator is given by the expression in (4.2) with the
expectation replaced by

(4.6) E[g(1 - TYJU?, ATHU?, —A4—-cU, -4+ cU)
+g0, cU-4)+g0, cU+ 4)].

As in the previous cases we can now try to choose ¢ such that the maximal
RMSE of (4.5) is 1 + &. Unfortunately, it turns out that this choice now
depends on t which is unknown in the present case. If e.g., n1 =n, =5,
¢ =10.25, then we get ¢ = 1.228 for 7 = 1.0 while ¢ = 1.022 for 7 = 0.2. If we
should use ¢=1.228 as a possible compromise value, calculations show
that the maximal RMSE varies between 1.468 at ¢ = 0 and 1.000 as 7 — oo.
In contrast with the LT estimator, it thus becomes clear that ¢ cannot be
chosen to control the maximal RMSE of the PT estimator exactly at a
prescribed level in the case of arbitrary unknown variances.

In Fig. 4 we also compare the RMSE of (4.5) for the case ny =n, =5,
€ =0.25 assuming 7= 1.0 so that ¢ = 1.228 with the RMSE of the corre-
sponding known variances PT estimator (2.13) having ¢ = 1.277. It is clear
that if the difficulty of unknown 7 could be overcome, the resulting PT
estimator could be expected to perform much like the corresponding
known variances PT estimator, and the previous conclusions regarding the
relative merits of the PT and LT estimators would remain valid.

Ohtani (1987) bases his PT estimator on the modified Wald statistic
W*=W?A> where A* =1 - 2{(S/m)*/(ni — 1) + (52/n2)* /(2 — 1)}/ V*.
For n,n2 = 3, we have A° = 0 and then we can write the corresponding PT
estimator as

(4.7) X1+ (ST mV)hga(X2 — X)) V),

and the RMSE of this PT estimator can be obtained as before. It turns out
that there is very little difference between the RMSE’s of (4.5) and (4.7) if
their ¢’s are chosen to give them the same maximum 1 + &. Moreover, the
same difficulty appears again: the choice of ¢ depends on the unknown z.
Thus the conclusions of our comparisons between the RMSE’s of the LT
and PT estimators remain true for this version of the PT estimator. The
motivation for the above modification W* of W is to obtain a test whose
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size is closer to the nominal value. Evidently, this has little bearing on the
estimation problem when estimators are judged according to their RMSE’s.

In summary, the LT estimators are easy to apply in all three cases
considered and they perform substantially better than the PT estimators in
situations where it is worthwhile to use an estimator which combines the
data from the two samples.
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