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Abstract. By means of second-order asymptotic approximation, the
paper clarifies the relationship between the Fisher information of first-
order asymptotically efficient estimators and their decision-theoretic
performance. It shows that if the estimators are modified so that they
have the same asymptotic bias, the information amount can be connected
with the risk based on convex loss functions in such a way that the
greater information loss of an estimator implies its greater risk. The
information loss of the maximum likelihood estimator is shown to be
minimal in a general set-up. A multinomial model is used for illustration.
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1. Introduction

The concept of information amount is related to the summary aspect
of statistics and measures the amount of information loss through the data
reduction process. Fisher (1925) emphasized the relevance of the concept as
a criterion for the comparison of estimators as opposed to such decision-
theoretic criterion as mean square error. He indicated the maximum
likelihood estimator suffers minimal loss of information amount among
first-order asymptotically efficient estimators, and made this the main
reason for its use. However, it is by no means clear how the summary
aspect of an estimator is related to efficiency of estimation. As far as first-
order asymptotic approximation is concerned, the sufficiency of a consis-
tent estimator implies its efficiency. But the relationship seems not so
straightforward in higher-order approximation, and the maximum likeli-
hood estimator in itself does not exhibit any superiority in a general
decision-theoretic estimation set-up; a specific correction needs to be
applied in order to be optimal (see Ghosh and Subramanyam (1974),
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Pfanzagl and Wefelmeyer (1978), Ghosh et al. (1980), Akahira and
Takeuchi (1981) and Akahira et al. (1988)).

Of all the above results about the higher-order asymptotic optimality
of the maximum likelihood estimator, Pfanzagl and Wefelmeyer (1978),
Takeuchi (1982) and Bickel er al. (1985) showed under general set-ups that
the maximum likelihood estimator is third-order optimal for regular loss
functions if the comparison is conducted in such a way that compared
estimators are modified so that they have some asymptotic bias.

In establishing a higher-order decision-theoretic optimality of the
maximum likelihood estimator if bias-corrected, Ghosh and Subramanyam
(1974) noted that the relationship between the Fisher information criterion
and the decision-theoretic optimality in estimation needed to be clarified.
However, they do not seem to have gone further. In view of those studies
on higher-order asymptotic properties of the maximum likelihood estima-
tion, there still remains the problem of how the information amount of an
estimator and the bias adjustment for higher-order optimality in estimation
is related. Ghosh and Subramanyam (1974) do not seem to have clarified
this point, in spite of their original intention.

This paper aims at directly relating the information amount of first-
order efficient estimators satisfying certain conditions (which will be called
BAN estimators below) and their decision-theoretic performance in view of
a specific loss function in second-order asymptotic approximation (namely,
up to and including the order O(n"")), giving a general formula connecting
the two and thus clarifying the relationship. The paper shows that a
correction such that a class of estimators has the same asymptotic bias is
essential for their risk to be related to their information amount, and the
latter is invariant under bias-correction. More specifically, thanks to the
formula of the second-order information amount given by Hosoya (1988),
Theorem 2.1 in Section 2 shows the invariance property of the information
amount and Theorem 2.2 establishes a relationship between the risk of
BAN estimators and their information amount. The theorem implies that if
estimators are modified in such a way that each of them has the same
asymptotic bias, then their decision-theoretic performance becomes com-
parable and shows that the greater is the loss of information of an
estimator, the greater is its risk. It should be noted that this relationship
holds for any pair of BAN estimators, and that the comparison between
the maximum likelihood estimator and another BAN estimator is only a
special case. In other words, a decision-theoretic comparison of any two
BAN estimators in terms of their information amount gets meaning in view
of the theorem, whereas the studies so far seem to have been focused only
on the decision-theoretic completeness of the maximum likelihood esti-
mator (see Pfanzagl and Wefelmeyer (1978) and Akahira er al. (1988)).
Section 3 shows that the maximum likelihood estimator suffers the least
loss of information among BAN estimators under a general set-up
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(Theorem 3.1). The property is known so far for the multinomial case (Rao
(1962)) and for the stationary Gaussian linear process (Hosoya (1979)).
Section 4 illustrates the results in Sections 2 and 3 by comparing the
maximum likelihood and minimum y’ estimators for a multinomial model,
evaluating explicitly their second-order information amount, and the
Kullback (1959) and other risks.

Throughout, the asymptotic cumulants (which are denoted by such
notation as E, Var, Third Cumulant) are evaluated by means of formal
term-by-term integration of statistical stochastic expansion. The rigorous
conditions for the validity of such an operation are not pursued but it is
1mp1101tly assumed. Also, the Einstein convention is used in this paper,
meaning that if an index appears twice in a term—once as a superscript
and once as a subscript—summation over the index is indicated.

2. The second-order Kullback risk and the second-order Fisher
information

Suppose that the observable random n-vector X, has a probability
measure in a real n-space R" and has a density f(x»|6) with respect to a
o-finite measure u, where 6= {0',...,07} is a parameter p-vector. The
density is assumed to be sufficiently smooth with respect to 6 in an open set
© C R”. The log likelihood function is denoted as /.(x»|6); namely, (xn|6)

= log f(x.|0). Set the derivatives as I i(x|0) = dl, (x2]0)/ 30", 6ij(xx]0) =
0%1,(x|0)/96'96’ and so on and assume that for 6 € &
(i) Es{hn.i(Xnl0)} =

(i) Eo{ln ,(XnIG)ln,(XnIH)} = — E{l.i(Xxl0)},

(i) Eo{(1/n)bni(Xn|0) 1nj(Xa]0)} = [;(0) + O(n "y and I(0) is positive-
definite where I denotes the matrix {/;},

(iv) the joint distribution of n Y*1,(Xx|0) tends weakly to a multi-
variate normal distribution with mean 0 and covariance matrix /() as
n — oo if 8 is the true value.

The class of estimators of 8 which is investigated in the following is the
one termed the best asymptotically normal (BAN) estimators. An estimator
(X, is BAN if it has the asymptotic expansion when 6 is true

2.1 gi=\/n@ -6

= n L (Xa|0) + 1 *mi(Xn, 0) + 0p(n” ),

where mi(X,, 0) is measurable with respect to X, and smooth with respect
to 0 such that Es(|mi(X., 0)|) exists and is bounded as n — oo where IV is
the (i, /)-th element of the inverse of /. Also the BAN estimator g is assumed
to have the asymptotic cumulants which have the following expression:
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By = — 0.0 L iin 7 Y
EotOh) = —r= Ki(0.0) + 57 Ki(6,0) + o(n ),
(2.2)  Covu(8r,6) = 1'(0) + % K6,0) + o (%) ,
o a a 1 1
Th 0:1 '{ 5 e Uk l]k ( )
Third Cum(t», 07, 0,) N (9)+ K70,0) + o -

where note that the argument g is omitted in K (6) because for the class of
estimators (2.1) K is seen to be common (see Akahira and Takeuchi
(1981), p. 161). Then assume a maximum likelihood estimator § is BAN
(vn (0 - 0) is also denoted as 8,,).

The second-order Fisher information amount is the asymptotic approx-
imation, up to and including the order O(1) of the Fisher information
amount, and the general formula for asymptotlcally normal statistics was
given by Hosoya (1988). Its application to 8, leads to the followmg
expression of the second-order information amount matrix 7;* of f,:

(2.3) I¥(0.0,) = nl;(0) + % tr {1(6) 'Li(0)1(0) '1,;(0)}

+— {K"""w)bm,u(e)f,-]n(e)

+ Kf’"“<0)1<f”(0)bm(0) 5Li(0) Lj(0) Iy (0)}
— I(0) Ly(0){ K "™(0,8) — I"(O)KI"\(0,)}

where the brackets [ ] denote the symmetrization with respect to its
arguments, and the subscripts preceded by commas denote the differentia-
tion from the corresponding elements of 8; Iin.; = d1,n(8)/36" for example.

A bias correction of a BAN estimator # means in this paper the
modification such that

(2.4) 6% =8+ n'¢i(@) + n i),

where ¢! and qbz are assumed to be first-order continuously dlfferentlable
If ¢1(-)= — Ki(-,0), (2.4) implies that §* is asymptotically (up to n ')
unbiased; the bias correction below is not restricted to this unbiasedness
correction. By the correction (2.4), the cumulants 8 become:
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iy 1 o . 1 o .
Eo(0) = \/’7 {Ki(0,0) + d1(0)} + sy {Kx0,0) + $2(0)}

1
nV

+ E{oi(@) — $i(0)} + o(n ),
(2.5)

~i N . o 1
Covo(0F, 0¥y = 1(0) + % (K70,0)+ I"'¢{(0)} + 0 ( —n—) ,
i i x 1 1
: *i 7ykj xk — ljk zlk *
Third Cume(FF, 6}, 6% N K*6) +— K740, 0% + 0( - )

Then the substitution of these values in the formula (2.3) gives this result in
a straightforward way.

THEOREM 2.1. The second-order Fisher information amount is in-
variant for the correction (2.3); namely, it holds that

In order to see how this invariance property is related to the evalua-
tion of the performance of estimators in a specific estimation situation,
suppose that a convex loss function A(6, 8) is given and that it satisfies: (i)
h(0,,0:) =0; h(6:,6,) =0 only if 8, = 6,, (ii) h(b4,6,) is fourth-order con-
tinuously differentiable with respect to the second arguments and (iii)

h,;(0,0)) is positive definite, where h,;(01, ;) = 9°h(0,, 6,)/36536]. The risk
of using_ 0 is then given as Eeh(H f) and second-order approximation of
nEsh(6,0) is said to be the second-order risk of d based on the loss function
h and denoted as R(8, §). It follows from the stochastic expansion

nh(6,8) = \/n h,(0,0)0, + h,;(0,6)8,84/2
+n Php(0,0)0:658% 6

IR 1%, 1

+ 1 80505024 + 0p(n”")
that

(2.6) R(0,0) = h,{Ki(6,0) + n ' Kx6,0)}
+ h{1%(0) + n ' K0, 0)
+n K8, 0)K{(6,0)}/2
+n  ha{KP*O) + 317 K6, 0)}/6

+n gl 198 .
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There seems to be no way to connect R(6, ) and 7*(8, ) in the form they
are given; but suppose bias correction is applied so that corrected esti-
mators have the same bias, up to and including O(n"?). Namely, given two
BAN estimators 8y, &5, let ¢ and ¢, be correction functions such that
OF =01+ n'¢1(B)) + n’¢2(8)) and 65 =0, + n 'y (62) + n *ya(B:) for
which

2.7) Ki(0,8) + ¢i(6) = Ki(0,8) + yi(d), and
K3(0,8)) + nE {1 (0) — ¢i(6)} + $2(6)
= K3(0,0,) + nE{wi(8:) — wi(0)} + wi(0) + o(1) .

Then, the next theorem holds.
THEOREM 2.2,

(2.8) R(6,0%) — R(8,6%)
= — {hi(O) IO O} I£ (0, 8)) — I¥(6,8,)}/ (2n) .

PROOF. It follows from Ki(8, 8%) = Ki(8, 85) = r/(0) that
R(0,6%) — R(0,8%) = h,s(8, 0¥ K0, 0F) — K°(0,0%)}/(2n) .
On the other hand, thanks to (2.5)
K(6,0F) — K'(6,0%) = K'(0,0,) + I'¢{!(0)
~ (K0, 8) + "y {%6)}
whereas in view of (2.7) the right-hand side is equal to
2.9) K'(0,8)) — I'"UK{%(6,8)) - {K"(6,8,) — I'"K{'(6, 0>)}
= — I"PYIK0,0.) — T, 020)}

by the formula (2.3). Thus the result follows. [

COROLLARY 2.1. If I5(6,8,) — I}(6,8,) is positive-definite, then
R(0,8%) < R(6,5%).

PROOF. Since h,; is positive-definite, it has the spectral decomposi-
tion A,j = X Am@mi@m (Am is positive). Then the right-hand side of (2.8) is

written as
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— 2 Al @mi I ami PO{IE (6, §)) — LE O, 82)}/ (2n) . O

The consequence of Theorem 2.2 and Corollary 2.1 is evident; once
the bias of BAN estimators is adjusted so that they have a common bias,
not only their decision-theoretic performances become comparable, but
they can be interpreted in terms of information amount. Unless such
adjustment is made, there seems no general way of connecting the two
concepts (see Efron (1982) for a discussion of the distinction between the
data summary aspect of an estimator and the decision-theoretic nature of
estimation).

Example. Suppose the loss function is given by what Kullback (1959)
calls the mean information for discrimination, which is represented as

(2.10) h(01,02) = Eo{ln(Xn, 0)) — (X0, 62)} ;

then the difference of the second-order risk of two bias corrected estimators
0 and 65 is expressed as

R(0,0F) — R6,0%) = — 10){16,0)) — I}6,8,)}/ 2n) .

Remark 1. Note that Theorem 2.2 does not assume symmetricity for
the loss function A(81, 62). The result (2.8) is derived thanks to the particu-
lar way the first cumulant K{(,8) is involved in the last term of the
second-order information amount formula (2.3) and thanks to the fact that
the BAN estimators have a common third-order cumulant K*(8). See for
the related optimality result of the maximum likelihood estimator Takeuchi
(1982) and Bickel ez al. (1985), where they showed that the bias-adjusted
maximum likelihood estimator is third-order efficient for specific asym-
metric loss functions.

Remark 2. In the derivation of (2.3), a little generalization is made
in the application of Hosoya’s (1988) result where K, (8, §) is assumed to be
equal to 0. But the assumption turns out to be unnecessary, since the
contribution to I by that term is equal to

} 8 1 .

1 ) PL4q" K Par

n E[ YETY { 5 Iplng 1,026, K57 (6, B) ”
= E [ é Ilplmilnjngfqr(a, g) ] + 0(1)

which is of order o(1).
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3. The second-order information amount of BAN estimators

Endow an order structure to the set of the second-order information
amount of BAN estimators in such a way that 7¥(0,8)) < I*(0,8,) if and
only if 7*(0,8,) — I*(0,0)) is non-negative definite. The purpose of this
section is to prove the next theorem, which shows that the information
matrix of the maximum likelihood estimator § is maximal with respect to
this order in the general set-up of Section 2. (Fisher (1925) noted the
superiority of the maximum likelihood estimator in this sense and also
regarded this as the reason for superiority as an estimator. See Rao (1962)
for this property in the multinomial case, Hosoya (1979) in linear stationary
time-series models and Hosoya (1988) for simultaneous equation models
with nuisance parameters.) In addition to the assumptions of Section 2,
assume:

(i) limn 'Eo{liluj} = Liik(0) ,

lim " 'Eo{lnii} = Lix(0) -
Those limits exist and there is a relationship that
(3.1 Lik(0) = — L(0) — Ly.x(0) ;
(i) For any 8, Eo[n "*(l.; + nlj)n(@’ — #’)] has a derivative with
respect to 6 which is bounded in n, and E[n "*(b.j — nLu(0))n(6’ — )]
and E(n(6’ — 6’)) are bounded in n.

THEOREM 3.1.  For any BAN estimator 8,

L¥6,6,) - I7(60,0,)
= 1i(0) () Cov {n(@ — 6", n(@™ — §™)} + 0(1) .

PROOF. In order to evaluate K"™(8,§), consider the equation
Cov (B, 87") = Cov (65, 67)
+n [Cov {6, n(8" — §™)} + Cov {6, n(0' - )}]
+n ! Cov {n(@ - 8", n@@ —0m)y},

where if it can be shown that



INFORMATION AND EFFICIENCY IN ESTIMATION 45

(3.2) Cov {6, n(6" — §™)}
=n "{I*K"(6,0) — I"K"(0,0)} + o(n” '),

the result follows, since then
n '{K"™(0,8) — K"™(8,0)} = Cov (B, ") — Cov (6L, 6) + o(n™")
=n {I"KT(8,0) - I'"'K(0, 6)}
+n ' Cov{n@ - 6", n@ - ™} +o(n”"),
whereas, in view of (2.3),
10,0, — (6,8, = IiLy- [K"(0,8) — K™(8,0)
—{(I""K70,0) - I''K (6, 0))) .

Therefore what needs to be established is the relationship (3.2). It follows
from the stochastic expansion of 8,

O =n""I"1,;0) + n” 2170t {1, 1(0) + nly}

+ 0,(n %)

b

that
Cov {05, n(d’ — 67}
= I Cov {n Plur, (¢’ — )}
+n 2 Cov {n” ™l + 1), n(07 — )}
+o(n '
where the first covariance in the right-hand side is equal to

Cov {n Pl n(0’ - §%)}

=n ' % E {n(@ -0} = n"{K{0,0) — Ki(0,0)} + o(n” "%

As for the second covariance, it holds that

Cov {n Pl (i + nln), n(0’ — 87)}
=E {n han *(bym + nla)n(0’ — §7)}
—Lem E {n(gj — gj)} + o(n—l/z)
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=n 17 % E {(n "l + L)n(@’ — 8°)}

— n_]/2 E {n_ l/z(ln,mzk + nlmz,k)n(éj — gj)}
— Lim E{n@@ - 0)} + o',

where the first term in the right-hand side is of order o(1) by assumption
(ii), whereas the sum of the second and third terms is equal to n
«E {0 by — nLup)n(®’ — 67)} in view of (3.1), and since it is of order
o(1), the relationship (3.2) follows. U

4. A multinomial model

Let the random numbers Nl,...,NS (N1 + -+ + N® = n) have a multi-
nomial distribution

1 1 s __ S _ n! 1 n' s n’
@D pIN'=n N =10} = e pO) - p(6)

and suppose that p'’s are smooth positive functions of a scalar parameter 6.

Set ln(0) = log p(N ..., N°|0) and set Na=\/n{(N'/n) - p'(6)}. Let O be a

maximum likelihood estimator of § based on (4.1) and let § be a minimum
S

x* estimator which is a value minimizing _;1 (N’ — np'(0))*/p'(0); then 8

satisfies the equation
4.2) D@ = Z (N nf @)/ p' @)} =0

where the dot denotes differentiation with respect to 6. In general, both 6
and G are BAN estimators for regular situations and 8, has the following
asymptotic cumulants (see Peers (1978)):

It

@) =n"Ki+on"),
Var (@) =m' +n'Ky +o(n),
Third Cumulant (6,) = n *K; + o(n’h,

where

K1 = {moo1/2 + muym;”,
K> = {mooor + 3(mo2 — mgl) + 2(ma1 — 2mamer) + 3m101}m53

+ {(5mbo1/ 2 + Smi) + 8miimoo } izt
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-3
Ks = (2moo1 + 3mi)m;”

in which mg.... is defined as

Mase.(6) = %, (log p/(0))"(log '(6))log () - p'©)

In Section 2, the lower limit of second-order risk for BAN estimators is
seen to be attained by the maximum likelihood estimator. Consider the
second-order Kullback risk based on the loss function (2.10) and the
unbiased correction of estimators. Namely, set

0* = 0 — n Y{moo (6)/2 + mi(0)}/ ma(0);
then E (6%) = o(n™"). In view of the relationship

Ki = (mooor/ 2 + 3muo1/ 2 + moz + ma)my’

- (m(2)01 + 3moormiy + 2m%1)m53 ,
and in view of (2.7), the Kullback risk of #* is represented as
K*(0;0%) = 1 — n" '[{(mooo1/2) — B3mio1/2) — 2mor

— ma1 + 3md; + dmamo } m3?
- {(m<2)01/2) — 2mi1moor — 3m%1}m§3] .
For the purpose of comparison of second-order risk of 8* and 8*, the

asymptotic cumulants of § is required, but it is derived by means of the
relationship

(4.3) n(@ - 0) = (1/2m;) Z(N'/n)’pi(8) pi(0)” + 0p(1)

which is obtained by the Taylor expansion of D(f) around 8. It follows
from (4.3) that

E {n(@-0)}=o(1).
Var {n(f - 0)}
=2 X Cov {(N'/n)’, (V| n)’}p(0)p"(0) [ {P(O)P'(0)} + o(1) ,

whence the asymptotic cumulants of 8 are
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E (9,1) =n"’Ki+o(n"),
Var (B,) = my' + [Kz + Var n(@— 0)l/n+ o(n’"),
Third Cumulant (8,) = n"'"*Ks + o(n %) .

Now, in view of (2.6) and (2.8), the difference in the risk is expressed as
(4.4)  K*0,0%) — K*(6;0%) = m{Var n(6 - 0)}/2n) + o(n”"),

where note in this case that (2.5) holds also for uncorrected 8, 0, since the
bias of & and 6 is the same up to O(n"").

Finally, take as a risk the one which would be most favourable to the
minimum y° estimator; namely

Di(0.0) = nE[ 250 - /@) 11/0)

where the second-order approximations for 8 and g, respectively, are given
as

Di(6,0) =2+ n '[maKE + K2) + 2(2mi1 + 3ms)(Ks + 32 ' K7)
+ 6(2mio1 + 2mos + 15my + 7m4)m§2] + O(I’lAl) ,
D¥(6,8) = Di(0,6) + n”'my Var {n(6 - 0)}/2 + o(n"),

whence it is concluded that the maximum likelihood estimator is better for
this risk, too, no matter what bias correction is applied.
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