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Abstract. Some new confidence bands are established for the quantile
function from randomly censored data. The method does not require
estimation of the density function. As an application, we construct bands
for the quantile function of the length of fractures in the granitic plutons
near Lac du Bonnet, Manitoba, where an Underground Research Labo-
ratory is being built for the nuclear waste disposal program in Canada.
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1. Introduction

Many statistical experiments result in incomplete samples, even under
well-controlled conditions. For example, clinical data for surviving most
types of disease are usually censored by other competing risks to life which
result in death. Those who survive a disease up to a certain time usually
constitute a censored sample of those who were observed to also have had
the same illness, but died of other reasons. Hence, if we are to infer
something about the stochastic nature of the survival time of clinical trials
of interest, frequently we can only base our work on the leftover (censored)
sample of those who are still alive, the so-called uncensored observations.
The operating time of machines, and that of all kinds of equipment, are
subject to the same types of censorship. In particular, the fracture data in
Section 3, which are of importance to Canada’s nuclear waste disposal
program, are also based on incomplete observations. Many fractures in
rock masses are covered by vegetation and soil and cannot be completely
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measured. These types of situations are usually described by the random
censorship model.

Let X?,..., X» be independent identically distributed random variables
with continuous distribution function F, and let Yi,..., ¥, be independent
identically distributed random variables with continuous distribution func-
tion H. Suppose that the two sequences {X;’} and {Y:} are independent. We
can observe only the pairs (X}, ), i=1,2,...,n, where X; is the minimum of
X’ and Y, and &; is the indicator function of the event X’ < Yiie.,

(1.1 Xi=X’A Y, and
1 if X'<v,
0 if X'>V1,

i=1,2,...,n. Hence the {Xi} are independent identically distributed random
variables with distribution function G given by

(1.2) 1-G(0)=(1—- FO)1 — H(r)), —oo<i<oo,

and the sub-distribution function of the uncensored observations is
Fy=PiXi<tand 6= 1}=[ (1 - H(s))dF(s).

This model is called the random censorship model from the right.
Kaplan and Meier (1958) introduced the product-limit (PL) estimator
F, for F, defined by

I n— R
—
1- F,?(t) ={ [l=sismXi<1] [ n—Ri+1

0 if 1= Xun,

Ji
] if 1< Xom,

where X,,= max (Xi,...,X,) and R; is the rank of (X;, 1—4) in the
lexicographic ordering of {(X;, 1 — )}, i=1,2,...,n.
The weak convergence of the PL-process

Bu(t) = n'P(F{(1) — F(f)), —oo<t<oo,

to a Gaussian process was proved by Breslow and Crowley (1974) and
Aalen (1976). Burke et al. (1981, 1988) established strong approximations
of B, in terms of appropriate Gaussian processes. Using time transforma-
tions of the approximating processes, S. Csérgé and Horvath (1986)
developed a family of confidence bands for F. For further results on the
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PL-process, we refer to Gill (1980, 1983) and Lo and Singh (1986).
A parallel problem to estimating F is that of estimating the quantile
function

Q(y)=inf{r F()=y}, 0<y<lI.

Computing the quantile function at specific values of y, we get frequently
used parameters of a distribution such as, for example, the median, the
quartiles and the interquartile distance. From a statistical point of view, the
distribution function F and its quantile function Q represent two natural,
complementary views of a distribution. In this paper we are interested in
the quantile function, because we have to estimate the length of those
fractures which occur at a given proportion.
A natural estimator of Q is the PL-quantile function

O.(y)=inf {t: A=y}, 0<py<l1.

A more direct way of describing Q. can be given in terms of those
observations U\",..., UM, arranged in increasing order, whose correspond-
ing indicator variables ¢ equal 1. This means that UM,..., UM are the

uncensored observations in increasing order.

UY i FAUP )<y FIUY), =1,

On(y) =
Xen if FAUM<y<1,
i.e., the values of Q, are the uncensored observations and Xun (Xnn = U™
if X... is uncensored). The PL-quantile process is defined as

pa(¥) =V FQUNQL) — Ou(3), 0<y<1,

where fis the derivative of F.

The weak convergence of p, was proved by Sander (1975). Aly et al.
(1985) proved strong approximation theorems for p,. For further use in the
sequel, we quote a result from Aly ez al. (1985). Let

A =J"_(1-G(s))*dE(s) .

THEOREM 1.1. Let tr=sup {x: F(x) =0} and Tr=inf {x: F(x)=1}.
We assume:

(1) Fis twice differentiable on (tr, Tr),

(i) f(t) =(d]d)F(t) > 0 on (tr, TF).
Then there exists a sequence of Wiener processes {Wn(): 0 <t < oo} such
that
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(1.3) sup [pn(1) = (1 = HWa(d(Q())| = 0(1)

y=t=po

Jorall 0 <y < poif G(Q(po)) < 1.
If, in addition to (i) and (ii), for some r > 0 and p* € (0, 1], we have

S0
(14 S oy <

then there is a positive constant C such that, with y(n) = Cn"' loglog n,

(1.5) sup | pa() = (1 = YWa(d(Q))|

y(nyst<po

2 O[n "*(log n)"*(loglog n',
if po<p* and G(Q(po)) < 1.

The first part of Theorem 1.1 states a weak convergence of p, to a
transformed Wiener process. The second part gives information on the rate
of convergence in this invariance principle for p,.

Though the quantile function is the inverse of the distribution function
and the PL-quantile function is the inverse of the product-limit estimator,
one cannot, in general, obtain an asymptotically correct confidence band
for Q by simply inverting the corresponding one for F. Indeed, unless F
has finite support, we have

Pilim sup [Qn(y) — Q)| =00t =1
n=x gcp<]
in the uncensored and censored cases alike. While it is true that the PL-
process f.(f) converges weakly to a mean zero time transformed Wiener
process over t € (—oo, T if T< Tg = Tr N Ty, where Ty is defined like Tr
in Theorem 1.1, the covariance function of this mean zero Gaussian
process is equal to (1 — F(s))(1 — F(2))d(s A t) with d(-) as in Theorem 1.1.
Thus, already for the PL-process ., we have a completely non-distribution-
free weak convergence. Hence, in order to obtain asymptotically valid, and
hopefully distribution-free, confidence bands for F, the PL-process 8, will
have to be transformed so that the limiting Gaussian process should
become free of F and H. The Efron (1967) transform of B, converges
weakly, as n — oo, to a standard Wiener process. This leads to confidence
bands for F which still depend on the usually unknown quantity d(7).
Gillespie and Fisher (1979) generalized this approach of obtaining d(T)-
dependent confidence bands for F, while Hall and Wellner (1980) trans-
formed the PL-process f, differently and obtained confidence bands, which
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again depend on d(T). To overcome the latter common difficulty of the
mentioned bands so far, Nair (1981, 1982 and 1984), following up an
earlier proposal of Aalen (1976), considered the process f.(2)/(1 — F())
between the boundaries =+ Ad,*(T), where A is a positive constant and
dn(+) 1s an appropriate empirical version of d(-) (cf. Section 2 for the
definition of d, in this paper). The resulting band for F is asymptotically
distribution and censor-free. The already mentioned family of confidence
bands for F developed by S. Csorgé and Horvath (1986) incorporates the
above bands and their relationship to one another within a comprehensive
theory of bands. Their thorough analysis yields narrower bands and
modifications which are asymptotically distribution and censor-free. A
look at the form of these bands (cf. pp. 133-134 of S. Cs6rgé and Horvath
(1986)) convinces one immediately that inverting these type of bands, so
that this inversion should result in asymptotically correct bands for Q, is
not at all immediate.

The approach taken by us here is similar to the above-sketched
procedure for constructing confidence bands for F in terms of the weak
convergence of f,. Accordingly, it is based on Theorem 1.1, which provides
us with an appropriate weak convergence setting for the PL-quantile
process p.. Adapting, then, the above-mentioned appropriate transforma-
tions of S, for now transforming the PL-quantile process p., we obtain our
asymptotically correct confidence bands for Q, as summarized by Theorems
2.1 and 2.2. The fact that the density-quantile function f(Q(-)) has become
a part of the PL-quantile process p.( - ) for the sake of an appropriate weak
convergence of the latter, makes this just-mentioned procedure of trans-
forming the process p, somewhat more cumbersome, though possible under
our conditions. Of course, if we estimate f(Q) in the definition of p,, then
Theorem 1.1 can be used to construct an asymptotically correct confidence
band for Q. This method, however, requires an extra density estimation
with all its inherent problems which we would like to avoid (cf. Theorem
5.2 in Aly et al. (1985), for an example). Hence the inversion approach
taken here to construct asymptotically correct confidence bands for Q.

In the uncensored case, Alexander (1980) proposed confidence bands
for the quantile function by simply inverting the corresponding one for F.
This inversion, however, cannot work in general, without any restrictions,
as recognized also by Alexander (1982). M. Cs6rg6 and Révész (1984) gave
sufficient conditions for the validity of this procedure. Aly et al. (1985)
constructed similar confidence bands for Q under the random censorship
model. Here in Section 2, we establish a larger family of bands for Q which
contain those of Aly et al. (1985). The properties of the obtained confi-
dence bands will also be discussed there. The methodology developed is
applied to estimate the quantile function of the length of fractures in the
granitic plutons near Lac du Bonnet, Manitoba, Canada.
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2. Confidence bands

Let
Gu) =n '#{l<i<n Xi<1}
and
F@=n'#{l<i<n Xi<tand =1}

be the empirical distribution functions corresponding to G and F. An
estimator of d then is

t e
d(t) =] (1= Gu(9)) 2dFy(s).
for which Burke et al. (1981) proved

2.1 sup |du(2) — d(0)] & O(n *(log n)'?),

o<

provided F(T) < 1. Let

_ 1—1¢ dn(Qn(t))
2D 5= a0

and let {W(¢): 0 < ¢ < oo} stand for a Wiener process.

i+ e (da(@u(P))'” |,

THEOREM 2.1. If (i), (ii) of Theorem 1.1 hold and 0 < ¢ < po,
G(Q(po)) < 1, then

li}g P{Qn(t — bu(1)) < Q1) < Qn(t + ba(D)): e <t < po}

dQE) _

=Py W) <cas+ . 40(p0) =

forall c;>0and ¢+ c2=0.

An obvious question is whether ¢ of this theorem could be replaced by
zero. It is shown in M. Cs6rgd and Révész (1984) that this cannot be done,
in general, in the uncensored case (cf. also pp. 35-36 in M. Csorgd (1983)),
and their counter-example also works under random censorship. Here too,
¢ can be replaced by a sequence of constants converging to zero slowly
enough.
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THEOREM 2.2. If (i), (ii), (1.4) hold and po<p*, G(Q(py) <1,
n"’e(n) — oo, £(n) — 0 (n — o), then
}zifg P{Qx(t — ba(2)) < Q(F) < Qn(t + bn(2)): €(n) < t < po}
=P{{W(s)| <as+c:0<s<1},

forallc;>0and ci + ¢2=0.

The proofs of these two theorems are similar. The proof of Theorem
2.2 is somewhat more involved, and this is the one we detail here.

PROOF OF THEOREM 2.2. We outline this proof only for the one-
sided case of Q(¢) < Qn(t + bn(1)). The complete proof goes along the same
lines. By the mean value theorem

P{O(1) < Qu(t + bu(2)): e(n) < t < po}

_JOw
F(Q( + ba(1)))

£ FQUNQ + ba()) — Q)): £(n) <1 = po }

S(Q@®)
S + ba(0)))

+ pa() = pu(t + ba(®) + /1 ba(2)

QW 1
HV/n b0 [f(Q(Qn(t))) : ] re(m)=t=po ] :

= P[ Pn(t) < pn(t) — Pn(t + ba(2))

= P{pn(t) < -1 ]pn(t + ba(2))

where
2.3) 1< O,(0)<t+ ba(2).
Next we show

(2.4) sup |pa(t + ba(2)) = pa(9)] = 0p(1) ,

e(n)<t=po

QW) _
(2.5) S(’glslgpn 700 + b)) 1| |pa(t + br(2))| = 0p(1)

and
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0o swp Wbl | 7ZEEWS 1| = ortt).
Using Step 3 in Aly et al. (1985) and (2.1), we get

@.7) Sup 1dn(Qa(0) — d(Q()] = 0r(1)
and hence also

(2.8) sup Vn |ba(0)| = O™ .

Since for each n =1, we have

{(1 = YWa(d(Q(1): 0= 1= po} 2 {(1 = HW(A(Q(®))): 0 < < po} ,

and the indicated Gaussian process has almost surely continuous sample
paths, by (1.5) and (2.8), we obtain (2.4). It follows from (1.4) that

FA(UO)]

ldt logf(Q(t))' [f(Q(z))]z”" ,

hence, we have

(2.9) [ nnn ] _ f(Q@) <[ LV ]r

uvenl f(Qr) Lunn

where a A b = min (a,b) and a Vv b = max (a, b). By (2.8) and n'’e(n) — =
(n — o0), we get

sup /7 |ba(0)/1] = 0p(1)

e(n)=t<po
and therefore by (2.9)
up | LLD___ |
e(n)=t<po f(Q(t + bn(t)))
mrid BRI Fer>rd B
< —= | -1+ su —— | — 1] =o0p(1).
e(n)<t<po [ t c(n)stgpo t+bn(t) P( )

Hence (1.5) and (2.8) now imply (2.5). Proof of (2.6) is the same. Combin-
ing (2.4)-(2.7) and (1.5), we have
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P{O(1) < Qu(t + ba(2)): e(n) < t < po}

d(Q()
(d(Q(po))"”?

=Pi(1-0W(dQW)<(1 -1 [ 13
+ cz(d(Q(po)))l/2 ce(n)<t<po ]
+o(l).

Using now the scale transformation of Observation of p. 29 in M. Csorgé
and Révész (1981), we obtain

d(Q()
(@(Q(po)"”

= P{W(s) < cis + c2: d(Q(e(n)))/d(Q(po)) <s<1}.

Py W(d(Q()) = a + c2(d(Q(po)) % () < 1 = po

Since d(Q(e(n))) — 0 (n — =), we have

sup |W(s)| = or(1),
0=5= d(Q(e(n)))/ d(Q(po)

and this also completes the proof of Theorem 2.2.

Theorem 5.3 in Aly et al. (1985) is a special case of Theorem 2.2.
Namely, ¢; = 0 gives the former result. Our confidence bands for Q are of
the form [Qn(z — bu(?)), On(t + ba(2))], where the random function b.(?)
depends on two parameters ¢; and ¢;. These can be determined from the
distribution of the weighted Wiener process. Indeed, in order to apply
Theorems 2.1 and 2.2, we need to know how to compute the following two
probabilities:

2.10)  wa(c, ) =P{{W®| <cit+c:a<t<1}, 0<a<l,
and

2.11)  w(e, ) =woler,e) =P{{W(@)| <cat+c:0<t=<1}.
Anderson (1960) gave a formula for

(2.12) LW, v, u,v)= P{ur + vt < W) <u+ot: 0<t<b}.

Using now the fact that the Wiener process has stationary independent
increments, we obtain
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(2.13) wa(ci, €2)
=P{—-c—ait+a)— W@ W(it+a)— W(a)
<aota(+ta—-Wa:0<t<1-a}

1 2
T [ ra(=a-h —ci.q=hc)e""dn,

where g = cra + ca.
For the case of a = 0, we have closed forms. Using (2.12), Gillespie and
Fisher (1979) arrived at

(2.14)  wlc, ) =28(c1 + c2) — |

+ 2 Z (_ l)ke—ZkZC\a

[PQR2ker + c1+ 1) — P2ke2— 1 — ¢2)] -

Here and throughout, @ is the standard normal distribution function.
Taking now ¢, = 0, we get

(2.15) (0, c2) =2P(c) — 1 +2 ki (= DDk + D) — B((2k — 1) )] .

Feller (1966) gave an equivalent form for the latter as follows:

_ 4z [M]
(2.16) w(0,c2)=— X —— T exp 8 '
Since
{W(t)~:OSt<oo}2{B(—t ):OSt<°°},
1+1¢ I+1

for any Brownian bridge {B(s): 0 < s < 1}, from (2.14) with ¢, = ¢z = ¢, we
obtain

2.17) w(c,0)= P{ ogstlg)/2 |B(t)| <¢ }

=2¢(2¢) — 1

+2 2% (- Dee * U2k + 1)e) — D2k — 1)o)] .
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S. Csorgé and Horvath (1983) tabulated the distribution function
w (0, c2) using the formula in (2.16). Extensive tabulation of w(c,c) are
given by Koziol and Byar (1975), and those of some selected percentile
points of yw(c,c) can also be found in Hall and Wellner (1980). A more
detailed discussion of formulae like those of (2.13)-(2.17) can be found in
Chung (1986). Chung (1987) provided a computer package which computes
the probabilities in (2.13) and (2.14).

Since the limiting distribution in Theorem 2.1 depends on the un-
known a = d(Q(¢))/d(Q(po)), it cannot be used directly for constructing
confidence bands for Q. However, on estimating a by d(n) = d.(Qx(¢))/
dn(Qn(po)), we have d@(n) — a a.s. (n — o). If we now fix ¢, there is only
one ¢;(n) so that

Wé(n)(Cl, 2‘2(?1)) =]l-a.

Using the monotonicity of y, we obtain immediately that é(n) — c; a.s.
(n — o0) and c; satisfies

Valcr,2) =1 —a.

We define b,(¢) so that we replace 2 by & (n) in the definition of b.(f) in
(2.2). Then

(2.18)  lim P{Qu(1 — bu(1)) = Q(1) < Qu(t + bu(1)): d<t1=po}=1—a.

If we wished to use Theorem 2.1 with ¢; = ¢,, then there is only one é(n) so
that

Wim(é(n),é(n)) =1—a.

Then defining b,(7) via replacing ¢1 = ¢2 by &(n), we have (2.18) again.
The width of the confidence bands of Theorems 2.1 and 2.2 is

An(t) = On(t + bn(£)) — Ou(t — bn(2))

which can be easily seen to converge as

lim n'"4,(1) = 2 7+ a@d@p)” | as.

=i [, 400
@) L [@(@(po)

for each ¢ € (0, po]. Consequently, in general, these band widths depend on ¢
as well as on F and H, also in the limit for whatever choice of ¢; and c».
Hence it is very difficult to give general advice on how to choose ¢; and c;.
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If the censoring is very heavy (we have only a few large uncensored
observations), then d(Q(po)), the variance at the endpoint of the confi-
dence band, is very large. In this case we prefer to have ¢, large and ¢
small. If ¢; =0, then the confidence band is usually very wide. If the
censoring 1s not heavy, then we can try ¢; = ¢; or take ¢, a little bit larger
than ¢;. We may always select a few ¢; and ¢; values, and then choose the
best available confidence bands.

3. Applications

The nuclear waste disposal program in Canada involves emplacement
of a vault containing waste in a stable geological formation such as the
granitic plutons in the Canadian Shield. The rock mass surrounding the
vault containing the waste acts as a natural barrier between the waste and
the biosphere. It is assumed, however, that the ground water system
contaminated with radionuclides from the waste eventually migrates through
the rock mass and reaches the biosphere. The fracture system in the host
rock forms the main migration pathways.

The fractures are approximately linear planes in nature, and we can
only see linear lines on the surface of the rock mass. A preliminary analysis
of the length of these fractures shows that they are spatially uncorrelated.
This suggests that measurements may be viewed as independent observa-
tions. What we observe are linear lines on the surface of the rock mass,
many of them partially covered by soil and vegetation. Coverage by soil
and vegetation is not related to the nature of the fracture system. Thus we
may assume that we are observing independent measurements which are
randomly censored. Hence, studying the distribution and the quantile
functions of the length of the partially covered fracture lines on the surface
under the random censorship model is a first step toward understanding
the fracture system in the host rock.

The granitic pluton near Lac du Bonnet, Manitoba, where the under-
ground Research Laboratory is being built for the nuclear waste disposal
program in Canada, is selected for our investigations here. Stone et al.
(1984) mapped the fractures on the surface in the granite. We chose a small
area from the map by Stone et al. (1984) for this study.

About 67% of the granite pluton is covered by soil and vegetation, and
thus we can only observe the fracture lines on the exposed areas (about
33%) of the granite. Consequently, most of the fractures are extended
beyond the exposed areas. We have observed 1567 fractures. Of these both
ends are shown only for 256 fractures in the exposed areas whose lengths
can be completely measured. The rest, namely 1311 fracture lines, are
censored. The lengths of the longest uncensored and censored fracture lines
are 0.991 and 2.361 (1 unit = 2.54 m), respectively. The length of the
shortest fracture, which happens to be uncensored, is 0.001.
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The product limit estimator Fi5; and the corresponding PL-quantile
function Qis¢7, based on the above discussed observations, are shown in
Fig. 1. Due to the heavy censoring, Fis(z) cannot be used for estimating
F(#) when 7> 0.9910, since there are only a few uncensored observations
which are larger than 0.9910. Similarly, and for the same reason, Qiseé7(y)
cannot be used to estimate Q(y) if y > 0.3403.

1.20
1

2. g
(=1 (=3
o0 _} o 4
S o 3
o =)
g5 N
5 °4 = O 4
o < (O .
= . :
= - .
2 o o :
< A
a 3- 5 /
~ — ;
g ]
=N =
8 8
= T T T T T 1 = T T T T 1
0.00 020 040 060 080 1.00 1.20 000 020 040 060 080 1.00

(a) (b)

Fig. 1. (a) PL-estimator Fis for F; (b) PL-quantile function Qiss7 for Q. F and Q are the
distribution function and quantile functions of the length of fractures in a part of Stone et al.
(1984) map of a granitic pluton near Lac du Bonnet, Manitoba, Canada.

As an application of Theorem 2.1, we construct a 95% confidence
band for the quantile function on the fixed interval [0.1,0.25]. We comput-
ed a(1567) =0.197. Using the computer package of Chung (1987), we
obtained Fig. 2 with é(1567) =1.27297. Now we use Theorem 2.2 to
construct a 95% confidence band for Q. Let ¢(n) = n ' logloglog n and
po=0.3. Here, ¢(1567) =0.0175. Using again the computer package of
Chung (1987), we obtain Fig. 3 with (ci, ¢2) = (0, 2.241), (1.273,1.273) and
(3.689,0.5).

The obtained results were quite distinct depending on the choice of the
parameters ¢; and ¢,. When a large value is chosen for ¢; as in Fig. 3(c), the
left tail ((1567) << 0.15) of the quantile function has a narrow band,
whereas the band for ¢ > 0.25 has a much wider width than the first two
bands in Figs. 3(a) and 3(b).

The graphs of Fi3; and Qise7 in Fig. 1 show that statistical inference
can be made only for the lower 0.3-quantile of the distribution at hand.
Also, for example, 90%, 85%, 80% and 75% of the fractures must be larger
than 0.53, 0.73, 0.97 and 1.37 m, respectively. From the confidence band in
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Fig. 2. 95% confidence band for Q on[0.1,0.25] with ¢(1567) = 1.27297.
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Fig. 3. 95% confidence band for Q on [0.0175,0.3]. (a) ¢1 =0, ¢ = 2.241; (b) c1 = c2 = 1.273
and (c) ¢ = 3.689, ¢; = 0.5.

Fig. 3(b) we can, in addition, conclude also that simultaneously with
probability 0.95 the errors of these four estimators are less than 0.26, 0.33,
0.47 and 1.03 m, respectively. Naturally, the width of this confidence band
increases as we approach 0.3, due to having progressively less uncensored
observations on the upper tail.
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