Ann. Inst. Statist. Math.
Vol. 42, No. 1, 1-19 (1990)

A BAYESIAN APPROACH FOR QUANTILE
AND RESPONSE PROBABILITY ESTIMATION
WITH APPLICATIONS TO RELIABILITY

MOSHE SHAKED' AND NOZER D. SINGPURWALLA?

' Department of Mathematics, University of Arizona, Tucson, AZ 85721, U.S.A.
?Department of Operation Research, School of Engineering, The George Washington University,
Washington, D.C. 20052, U.S.A.

(Received May 27, 1987; revised June 20, 1988)

Abstract. In this paper we propose a Bayesian approach for the estima-
tion of a potency curve which is assumed to be nondecreasing and
concave or convex. This is done by assigning the Dirichlet as a prior
distribution for transformations of some unknown parameters. We moti-
vate our choice of the prior and investigate several aspects of the
problem, including the numerical implementation of the suggested scheme.
An approach for estimating the quantiles is also given. By casting the
problem in a more general context, we argue that distributions which are
IHR or IHRA can also be estimated via the suggested procedure. A
problem from a government laboratory serves as an example to illustrate
the use of our procedure in a realistic scenario.
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1. Introduction and summary

In this paper we explore aspects of a problem which commonly occurs
in engineering reliability studies and biological life testing experiments. The
point of view that we adopt here is Bayesian.

Suppose that several specimens of an item of interest are tested at
distinct stress levels which could be chosen in advance of experimentation.
At each stress level, one or more specimens are tested and each specimen is
observed to either perform or fail to perform its intended function. Failure
to perform is referred to as a response. The probabilities of response at the
different stress levels may be different, and we assume that these do not
decrease with an increase in the stress. Given the outcomes of such tests,
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2 MOSHE SHAKED AND NOZER D. SINGPURWALLA

one goal is to estimate the probability of response as a function of the
stress. This, in many engineering applications, is referred to as damage
probability assessment. Another goal is to estimate the stress level for
which the probability of response is less than or equal to a specified value;
this, in some applications, is referred to as quantile estimation.

The above problem is not new in the statistical literature and has a
long history of development. For instance, it is encountered in the context
of biological testing under the names “bioassay” and “low dose extrapola-
tion studies”, and in the engineering reliability context under the names
“sensitivity testing” and “accelerated life testing”.

In bioassay, the dose levels of a drug constitute the stress levels and a
response implies failure to survive. In a typical bioassay problem the
interest mainly centers around the dose for which the probability of
response is .5 or under. Probit and logit transforms are the standard tools
used in the analysis of data from bioassay experiments. However, as
claimed by Ramsey (1972, 1973), these do not work when only one quantal
response is available at each stress level (Mantel (1973) has disagreed). A
nonparametric method of constrained maximum likelihood estimation
involving isotonic regression does provide numerical answers, but these are
not satisfactory because the estimated response curve has a tendency to
have jumps. Bayesian approaches to the bioassay problem and its related
questions have been proposed in the literature; the works of Kraft and van
Eeden (1964), Ramsey (1972), Bhattacharya (1981), Ishiguro and Sakamoto
(1983) and Kuo (1983, 1988) are noteworthy.

Remark 1. A related scenario in which the above problem re-appears
is the estimation of a (continuous) distribution function based on attribute
data. To see this, suppose that the stress is the age of the device, say 7, and
that the response is the failure of the device to survive until ¢. Then, the
response curve is the distribution function of the device. Using the methods
of this paper, the estimation of the response curve would correspond to the
estimation of the distribution function (see Remark 2 for further details).

In this paper we adopt the Bayesian theme proposed by Ramsey
(1972) and consider extensions of it which are motivated by engineering
scenarios. Our main extension involves the assumption that the probability
of response is a concave or convex function of the stress. (Note that the
response probability can be a convex increasing function of the stress when
the stress is bounded from above by some constant; see Section 3 for
details.) Other extensions, such as the assumption that the response curve
is like a distribution function which has an increasing hazard rate (average)
(IHR(A)) will also be addressed, albeit briefly—see Section 3.

It should be pointed out that our procedure can be also used for
estimating a distribution function which is assumed to be concave (or
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convex) and when the data are extremely censored, as described in Remark
1. Papers dealing with nonparametric methods of estimating concave
distribution functions for other kinds of censored data are by Denby and
Vardi (1986), Winter (1987) and the references therein. Schmoyer ((1984),
p. 449) considers the estimation of a concave response curve in quantal
bioassay. The key difference between this paper and the above reference is
that our approach is Bayesian.

2. Notation and preliminaries

Let R =[0,0) be the set of all possible stress levels S, and let p(S) be
the unknown response curve. We consider response curves which are
nondecreasing and are such that p(0) = 0 and p(e0) = 1. Furthermore, we
assume that p is right-continuous so that p(S) is a distribution function.
Let 0 < S;1 < -- < Sy < oo be M distinct stress levels at which the specimens
are tested. Assume that n; (= 1) specimens are tested at S;, i = 1,..., M. The
outcome at S; is a random variable X; representing the number of responses
at Si.. We shall assume that a specimen which survives at stress S: will not
be tested again at Sj, j>i. Let p; be the probability of response of a
specimen at S;; thus X; is binomial with parameters n; and p;. From the
assumed monotonicity of p(S), it follows that

2.1 O=po<pi<pr<--<puspus1=1.

Remark 2. As was mentioned in Remark 1, the above setting re-
appears in the problem of estimating the life distribution of a device based
on attribute data. Specifically, suppose that several specimens, say n;, of
the device are put on a life test at location i, i=1,2,..., M, and suppose
that each device can be observed for failure or otherwise only once, and
that at a predetermined time S;. Let X; be the number of devices which
have failed to survive by time S; at location i, i = 1,..., M. Then one has a
set of data as described above. The above form of testing is typical in
situations involving national security wherein only one person has the
necessary clearance to take an observation at location i. For such a set-up,
a non-Bayesian procedure for estimating the underlying life distribution,
under the assumption that it has an increasing hazard rate average (IHRA),
has been discussed by Shaked (1979, Subsection 5.2).

Given X = (Xi,..., Xu), our one goal is to estimate the unknown p;’s
subject to the inequalities (2.1). Another goal would be to estimate g = p(S)
for any specified S > 0. Clearly, if Si < § < Si+1, then the estimate should
satisfy p; < g < pi+1, i = 0,..., M; this corresponds to estimating the proba-
bility of response at a stress where no specimen was tested. Yet a third goal
would be to estimate the largest stress, say Se, for which p(S«) < a, where
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a € (0, 1) is specified; that is,
2.2) Se=sup{S:p(S)<a}, O0<a<l.

Ramsey’s (1972) approach is based on that of Kraft and van Eeden
(1964)—namely that a prior distribution is assigned to the entire response
function. This is done by assigning the Dirichlet as a prior distribution for
the successive differences pi, p2 — p1,...,pm — pm-1, | — pur, and then using
the modal value of the resulting (joint) posterior distribution—with respect
to some convenient measure—as an estimate of (pi,...,ps). The modal
value is computed with the inequalities (2.1) satisfied. Having estimated the
pi’s, the estimation of g and S« is undertaken via a linear interpolation.

Ramsey’s (1972) approach is quite general, since the only assumption
made is that p(S) be nondecreasing in S. In some situations there may be
additional information about the behaviour of p(S) that is available to an
analyst. The nature of such information and some motivation for it is given
below. When such is the case, it is desirable to incorporate this prior
information into the analysis. A purpose of this paper is to suggest a
possible approach for undertaking the above.

2.1 Motivation for the assumption of concavity

Assuming that p(S) is concave is equivalent to treating p(S) as the
distribution function of a nonincreasing density. To the best of our
knowledge, Grenander (1956) was the first to encounter concave distribu-
tion functions in his work on the theory of mortality measurement. Kiefer
and Wolfowitz (1976, 1979) and the references therein discuss concave
distributions in reliability theory. Szekli (1986) has derived the concavity of
the waiting time distribution in some GI/ G/1 queues.

In the context of a submarine hull damage prediction problem (see
Section 5), McDonald (1979) chooses p(S)=1—exp{— (AS)ﬁ}, A>0,
B >0, as his response curve; this function, which is like the distribution
function of Weibull, is concave when f < 1. McDonald’s choice of the
Weibull distribution parallels the choice of a Gaussian distribution in
probit analysis, the logistic distribution in logit analysis, or the rectangular
distribution in rankit analysis (cf. Elandt-Johnson and Johnson (1980), p.
204). The model based on the Weibull distribution is often referred to as
the “complementary log-log” model—that is, log[ — log (1 — p(S))] is a
linear function of the parameters. The “half-normal” (with density
V2r P! exp{—2"'c ’x"}, x=0), the half-logistic (similarly defined)
and the rectangular (with left endpoint 0) distributions are concave on
[0, o). The set-up of this paper would apply if the analyst does not wish to
specify any particular form for p(S) except that it is concave.

Similarly, in the reliability theory setting of Remarks 1 and 2, p(S)
(which is the distribution function of each of the devices) is concave
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whenever the devices have DHR.

Another motivation for the concavity of p(S) is due to Denby and
Vardi (1986). Consider a repairable system with many identical compo-
nents having independent lifelengths with a common distribution F having
a mean u. Suppose that we start observing the system after it has been
working for a long time. Then the time to failure of each of the working
components, as measured from the time we begin our observation, has the
distribution function

S
p(8)=p' [ [1- F)ds, $>0.

Since 1 — F(s) is nonincreasing in s it follows that p(S') is concave.

In this paper we will introduce a Bayesian procedure which can take

into account various forms or prior information about p(S) such as:
() p(S)is a nondecreasing concave function of S.

(i) p(S) is a nondecreasing convex function of S.

(iii) p(S)is an IHR (DHR) distribution.

(iv) p(S)is an IHRA (DHRA) distribution.

Case (i) will be worked out in detail and a numerical example will be
given. An indication as to how to take assumptions (ii), (iii) or (iv) into
account will be given in Section 3.

3. Developments of the prior distribution

Consider the situation wherein p(S) is assumed to be concave and
nondecreasing. Let So =0 and let Si+1 be the right endpoint of the support
of p, i.e., Su+1=sup {S: p(§) < 1}; Su+1 may be co. Thus po=p(So) =0
and pu+1 = p(Su+1) = 1. The likelihood of the response probabilities at the
observed stresses S; < Sy < -+ < Sy is

3.1 L=1I

i=1

niy x ni— X,
F(l=p) .
(Xi)p (1=p)

Let4;i=Si— Si-1,i=1,..., M + 1; note that Ap+1 = oo if Sa+1 = 0. Let
Zi=(pi—pi-1)] 4, i=1,..., M + 1; note that if Ap+ = oo, then Zy+1 = 0; in
such cases we define Ay+1Zu+1 = 1 — py. The monotonicity of p(S') ensures

M+1
that Z;=0, i=1,...., M+ 1. Also ;1 A;Z; = 1. Furthermore, if Yi=Z;—
Ziv1, i=1,..., M+ 1 (here Zy+>»=0), then the concavity of p(S) implies
M+1
that ¥;=>0,i=1,.... M+ 1. Since Z;= Y;+ -+ + Yum+1, and *2'1 4:Z;i=1, we

have
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Y1+ 4+ 4)Y+ - +di+ -+ A4)Yi -
+di+ -+ A ) Y =1,

or, equivalently,
(3.2) S$1Vi+ 8o+ -+ Sy Yy =1.
Motivated by (3.2), we define

U=S8Y=S8(- Aglpi~1 + (Ai-l + Ai-+11)pi — Ai—+llpi+1) ,

i=1,.

and note that

and

U+U;+ -+ U+ Uys1=1.

SM+1,

(*)

(%)

The restrictions (*) and (**) imply that U= (Ux,..., Un+1) can be
regarded as a vector of probabilities, and so a meaningful prior distribution
on U would be a Dirichlet distribution. Specifically, we assume that for

M+1

some constants «; >0, i=1,..., M+ 1, and >0, with ‘21 a;=1, the
i

random vector U has the prior density at u = (u1, ua,..., um+1)

(33) f(ul,...,uMH)

I'(Bai + - + Ba - . .
= (ﬁ ;W+1 ﬁ M+ 1) u]ﬁ -1 . uﬁ}lu lug;ihll 1 ,
' r(pa)

M+1
where ;= 0,i=1,...., M+ 1 and 21 u; = 1. It is well known that

i=

(3.4) EUi=a, i=1,.,M+1,
and that
(3.5) Var(up=24-9

p+1 °
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By writing p = (p1,..., pu+1) as a transformation of U (details in Subsection
3.1) we can obtain the prior density of p.

Remark 3. It is of interest to point out the limiting behavior of our
prior as the 4;’s go to 0. If S is fixed and 4; and 4:+: go to 0, then, for a
“smooth” p(S), Y: looks like — p”(S)4(S:), where p” denotes the second
derivative of p and 4(S)) has an obvious interpretation. The constraint (3.2)
corresponds then to the relation

[ spr(s)ds =1

provided ls1£% Sp’(S)=0 and }1}2 Sp’(S) =0, where p’ denotes the first

derivative of p. Thus, our approach, “in the limit”, amounts to assuming a
Dirichlet prior for the function

(3.6) ¢(8)= — [ p"(ydt = Sp'(S) — p(S) .

That is, the quantities

Si
B Vi= — [ priydi=Sip(Si-1) = Sp(S) + pi— pi-i

have a joint Dirichlet distribution. Our method can be regarded as a
particular discretised approximation to (3.7), but bearing in mind that (3.6)
and (3.7) lack a natural interpretation.

The definition of the U’s (particularly the fact that they satisfy (*) and
(**) which enables us to assign a meaningful prior to them) illustrates the
idea underlying the above transformation. Specifically, given prior informa-
tion of the type (i)-(iv), we look for a transformation U of p which satisfies
(*) and (**) (or even just (*)), assign a meaningful prior on U and then use
the inverse transformation U — p to obtain the prior of p.

For example, suppose that p(S) is convex. Then the right endpoint of
its support, say A, must be finite. Often, when p(S) is convex, the value of
A is known (for example, the statistician may know from past experience
the maximal value that the underlying random life may take on). In this
case Sy+1 = A. Let 4; and Z; be as defined before, but instead of consider-
ing the Y’s as Z; — Zi+1, let Yi=Z—Zi-1,i=1,.... M + 1 (here Zo=0). The
convexity of p(S) implies that ¥;>0, i=1,..., M+ 1. If we set U;=
i+ -+ A1) Yi= (Smue1 — Si-) Y, i=1,..., M + 1, then

(38) U]+"‘+ UM+1—_—1 .
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Thus the U’s also satisfy (+) and (**) and so we can assign to them the
Dirichlet prior density (3.3). By transforming U — p one can obtain the
prior density of p.

The above strategy (of finding a transformation of p which satisfies (x)
and (**)) has also been used in the more general context of what is known
as “non-parametric Bayesian problems”, in which the estimation of a
general distribution function is of prime concern. To see the above, recall
that Ramsey (1972) assigns a Dirichlet prior on (using our notation)
AZ,,...,AuZm, Am+1Zm+1; here the A;Z7s satisfy (x) and (x%). Ferguson
(1974) and also Antoniak (1974) observe that this is equivalent to choosing
a Dirichlet process prior for the response curve p(S). It should be
emphasized, however, that what Ramsey (1972) ends up with is the
posterior distribution of p (using our notation)—not the posterior distribu-
tion of the whole curve p = { p(S), S > 0}. Ramsey then obtains an estimate
of p(§) by first obtaining point estimates of p;, i = 1,..., M, and then using
an interpolation procedure.

The observation of Ferguson (1974) and Antoniak (1974), mentioned
above, indicates a method of assigning a convenient prior distribution to p
in cases (iii) and (iv) as follows.

If p(S) is assumed to be an IHR distribution (case (iii)), then the prior
on it can be assigned via the following consideration: Let {w(S), S = 0} be
a right-continuous stochastic process, nondecreasing and nonnegative and

which satisfies fow w(S8)dS = a.ss. The process {w(S), S=0} can be

thought of as a random hazard rate and p(S) is obtained from the
transformation

(3.9) p(S)=1 —exp{—fosw(v)du } $>0.

The joint prior distribution of p; = p(S)),..., p» = p(Su) can then be found
from (3.9). See Dykstra and Laud (1981), Padgett and Wei (1981), Burridge
(1981) and Ammann (1984) for treatment of (3.9) and further references. In
a similar manner we can assign a prior on p(S) if it is known that p(S) is a
DHR distribution.

If p(S) is known to be an IHRA distribution (case (iv)), then we can
get a prior on it by letting {w(S), S = 0} be a right-continuous stochastic
process which satisfies:

w(S) is nondecreasingin S a.s.

lim Sw(§)=0 a.s.
-0

?52 Sw(S§)=c as.
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and then letting
p(S)=1—exp{—-Sw(S)}, S§=0.

Similarly, one can assign a prior if it is known that p(S) is a DHRA
distribution.
In this paper, only case (i) will be discussed in detail.

3.1 Interpretation of the prior

Whereas Ramsey (1972) assigns a Dirichlet prior distribution on the
differences of the response probabilities p; — pi-1, i=1,..., M + 1, we, by
assuming concavity of p(.S), assign a Dirichlet prior distribution on

U= 8i(—- Ai_lpi—1 + (A,_I + Af+11)pi— Ai_+11pi+1), i=1,...M+1.

By transforming U — ¥, ¥ — Z and Z — p, a straightforward compu-
tation yields the prior density of p = (pi,..., pu) as

F M+1 Si
(3.10) f(p1,...,pM):7qrrLﬁ)— ,'1:11 (Z)

T I(pay ' 4
M+1

x 11 (S — 47 'pi-1 + (4 + A7) pi

_ Ai_+11pi+ 1]}ﬂﬂi— 1 ,

where po =0, py+1 = pu+2 = 1 and (3.10) is defined for p = (py,..., pu) With
the p/’s satisfying

S Ais1+ div2 Aiva
i SpS " pi ———Divs, i=1,..,M.
Si+1 pr1=p di+s Pix1 Ai+2p 2

3.11)

To interpret this prior we find it convenient to use the notation
“X ~ Beta (a, B, a, b)” which denotes the fact that X=a+ (b —a)Z, a<b,
where Z is a standard beta distribution on (0, 1) with parameters o and f;
that is, for a > 0, f > 0 the density of Z is

F@th) o oo
farp) - 1
feap-| Morp’ 477 0<i<h
0 otherwise .

Let ai= Zl a;. A lengthy, but straightforward calculation shows that
I=
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(3.10) and (3.11) are equivalent to saying that

S
3.12) pu~ Beta(ﬁaM, Boanr+1, S > 1 ) 5
Sum+1
3.13) pum-1lpm
Sup-1 Ay + Aprer Ay )
~ Bet - -
ea(ﬁaM 1, B, S0 Dum, At Pwm Auer )

and

(3.14) (pilpi+1,...,pm)

Si Aiv1+ diva Ai+ )
~ Beta ai, POi+1, —— Pi+1, ————— Pi+1 — —— pDi s
(ﬁ Bais Si+1p+I Ai+a P Az‘+2pJrl

i=M-1,M-2,..1;

((pilpi+1,...,pu) denotes the random variable p; conditioned on pi«y,..., par
being given).

Equations (3.12)-(3.14) give a new interpretation to the prior density
(3.10), and they also suggest an inductive procedure of developing the prior
for p. Furthermore, from (3.12)-(3.14), we see that

Su Arer
Epy= +
P Sm+1 Sm+1 aw
(lf Ap+1 = oo, then EpM = aM),
Snm-1 Aum ( Sum+1 ) 7Y
E - = + -1]—
Lpa-ilpa] Sum p Ar Swm pu ay

(if Apre1 = oo, then E[ pu-1|pa = (Su-1/ Sm)pu + (A u] S par(0iae/ ans)), and

Si Aivy | Si+2 Qi +1
E[pilpi+1,---,PM]=THPi+1+E(—STIPH1—P:'+2) P
i=M-2,..1.

Also,

| Ame V? amomer [ Amer V(1 = oare1) Qare
(3.15) Var(pM)—( ) 541 —( ) 51

SM+1 SM+1
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(if Ap+1 = oo, then Var (pu) = amon+1/(f + 1)),

Aum ( Sm+1 1)]2 am-10m

Sm b= arm(famu + 1)

AM+1

Var (pm-1lpm) = [

and

Var( | )_[Ai+1(Si+2 o )]2 a0+
Pilpistse s PM) = 0 s P TP )] CdR (Ba + 1)

i=M-2,.,1.

3.2 Choosing the prior parameters

Let p*(S), S=0, be the best prior guess about p(S), S =0, such that
p*(S) is a concave distribution function. Let p§ =0, pl+1 = pir+2=1 and
p¥ =p*(S), i=1,..., M. In choosing the prior parameters a;, i = 1,..., M + 1,
we make use of equation (3.4) and the fact that U= Si[4: (pi — pi-1) —
A7 (piv1 — p)), i=1,..., M + 1. A natural strategy, then, is to set

(3.16) ai:Si[Afl(p?:—p?‘—l)—Ai_Jrll(pz*ﬂ'pz*)], i=1L.. . M+1.

If, in a particular application, it is not possible to elicit the prior guesses
pf, then one approach would be to let p*(S)=1—-exp {— S}. A justifica-
tion for this arbitrary choice is the empirically claimed result of Ramsey
(1972), that often the posterior distribution is not very sensitive to the
choiceof i, i=1,..., M + 1.

In order to choose B we need to have some idea about the uncertainty
associated with our choice of pi. This, in practice, can be expressed in one
of the following ways:

(a) Suppose that in addition to pj, our best guess about the variance
of pu is Var (pa). Then, substituting a1 = Aa+1Su+1(1 — piy) in (3.15),
we have

Am+ )2 (1 — oare1) oar+1

Var (91 = PR

Snm+1
so that

_ (Su+1p% = Sm)(1 = ph)
SM+1 Var (pM)

B 1

(if Spr+1 = oo, then f = (var (pu)) 'pidl — pi) — 1).
(b) Often in practice (see, e.g., McDonald (1979)), associated with
the very best guess value pi;, a user is able to specify two numbers,
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air> Sm/ Sm+1 and bir < 1, such that for some yu (specified by the user),
0<yu<l,

playi<pu<bid=1-yy.

Since py ~ Beta (B(1 — aum+1), Bonsi, SM/SMH,‘I), given pir, we set ope =
Mt 18Su+1(1 — ply) and find the value of [ such that

b3 AM+1 )—ﬁ+1 r(ﬂ)
3.17 .
( ) LM ( SM+1 F(ﬁaM-'.l)r(ﬂ(l - aM+l))
S B —amen) -1 .
x(PM_ 9, ) (1= pa)" ™ dpre=1—yps .
SM+]

Suppose further that for any one or more of the indices i, i=
M —1,..., 1, a user is also able to specify two numbers a > S;31Sip1 and
b¥ < Ai2((div1 + div2)pliy — 4ivipfis) such that for some y; (specified by
the user), 0 <y: < 1,

P{aF < p¥ < b¥|pk1,...,pi}=1—yp;.

Then, using the fact that the density of p; given pi+1,...,pu is (3.14),
denoted by f(pilpi+1,....pm B, a1,..., ) say, we can find, for a fixed i, a
value of f, i say, which satisfies

br
(3.18) [ FDpisisecespa By sy addpi= 1= 3,

with a;, i = 1,..., M, given in (3.16).

Denote the smallest §; by B* and let this be the choice of . A
computer program which determines the smallest value 8* is available; the
details of this program are given by Mazzuchi and Soyer (1982).

Our reason for choosing the smallest value of f stems from the fact
that large values of f§ tend to make the mode of the posterior distribution
not too different from the mode of the prior distribution. That is, a large
value of f causes us to put more “faith” in the prior, with the result that
even a large amount of failure data will not change our prior distribution
by much.

4. The posterior distribution

The joint density function of the posterior distribution of p,..., pa is
proportional to the product of the prior density (3.10) and the likelihood
function (3.1). Thus,
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4.1y  f(pi,..,pml X1seos Xnr)

Mo(ni) n-x L) M S
(oo (5

0 r(pay =~ 4
M1 Di-1 1 1 ) Di+1 ]}5“"‘
Imy{Si|l—-——+1—+ P —
s { [ 4i (Ai Ai+1 p Ain
for
Si Ais Ai+
(4.2) pmSpiS( 1+ 1)Pi+1——lpi+z, i=1,.,M,
Si+1 i2 Aiva

where po=0 and py+1 = pu+2 = 1.

It should be noticed that the posterior density (4.1) is a finite mixture
of densities of the form (3.10). This can be shown by using the methodology
of Antoniak (1974) and Bhattacharya (1981) who have obtained analogous
results by showing that, for the model of Ramsey (1972) which was
described in Section 2, the posterior density of p is a mixture of Dirichlet
distributions.

We have not tried to write explicitly the posterior marginal densities of
pi, i=1,..., M, nor have we tried to obtain the posterior marginal moments.
Consequently, we obtain the mode of the posterior density (4.1) and use it
to estimate the response curve. Thus we need to find the M-dimensional
point ( p1,..., Pm) which maximizes (4.1) subject to the constraints (4.2).

A way to accomplish the above maximization is using the “Sequential
Unconstrained Minimization Technique” (SUMT) of Fiacco and McCormic
(1968). A computer code which adopts SUMT for the specific problem
considered here is described by Mazzuchi and Soyer (1982). This code has
been used on several sets of data taken from various sources, and has
proved to be successful. It should be mentioned that in order to be able to
implement the SUMT algorithm, and also in order to ensure that (4.1) has
a unique mode, we need all the (fa; — 1)’s to be nonnegative. To achieve
this, Mazzuchi and Soyer (1982) followed the scheme proposed by Ramsey
(1972) by replacing fa;— 1 by Ba;. Thus their code finds the p which
maximizes, not (4.1), but some modification of (4.1).

A result of Fahmi et al. (1982) can be used in the present setting to
analyze the influence of the sample on the posterior distribution. Rewrite
4.1) as

130 =0 Haxop) | o
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where gi(x,p)=p* (1 —p)"*, i=1,...,M. It is easy to verify that, for
i=1,..,M,

gi(x,p)gi(x",p") = gi(x’, p) gi(x,p’)

whenever x < x” and p < p’, that is, g; is a totally positive of order 2 (TP,)
function. Hence, specializing Theorem 4 and Remark 2 of Fahmi ez al.
(1982), it follows that, marginally, p; is stochastically increasing in X;
i=1,.,M.

We note in passing that the conclusion of Theorem 5 or even of
Remark 4 of Fahmi et al. (1982) (that is, that p; is stochastically decreasing
in X;, j # i) need not be true in the present setting.

4.1 Interpolation procedure and the estimation of quantiles

The M-dimensional point p = (p,...,Pu) is our estimate of p =
(p1,-..,pm). The following problem, regarding our method, should be
pointed out. Suppose two persons with the same prior beliefs about the
function p(S) use our procedure, but with different choices of the stresses
S = (S1,..., Sm+1). Then it is possible that they may end up with different
estimates of p = (p,..., par). At first glance this does not look surprising,
because they will have different sets of data. But even if they have the same
set of data, but different choices of stresses (for example, if the second
person has all the S’ of the first person, and also some additional
“dummy” S/’s, that is, Si’s which have no observations associated with
them), then they may end up with different estimates of p = (pu,..., pm).
That means that in our method an approximation is involved somewhere.

Suppose we wish to estimate g = p(S) or some specific S where, for
some io € {0, 1,..., M}, Si, < S<Si+1. Two approaches to this problem are
possible.

(a) If S has been determined in advance of experimentation, then it
can be added to the set {Si,..., Si} with the interpretation that this .S is not
an observational stress level. The g, then, has a best guess g*, the
dimension of p, then, will increase to M + 1 and the previous analysis
applies to the new setting just as before with M replaced by M + 1, and
then n and the X, which are associated with ¢, are identically 0.

(b) If we want to estimate g after we have obtained p, then g, the
estimate of g, can be obtained by linear interpolation. Similarly, S., the
a-th quantile (0 < & < 1), can be estimated by linear interpolation.

Roughly speaking, approach (b) corresponds to the estimation of the
function p(-) by a piecewise linear function over the interval [0, Si]. This
function is obtained by connecting the points (S;, ) and (Si+1,pi+1) by
straight lines, i=0,1,..., M — 1. On the other hand, approach (a) cor-
responds to a recomputation of the pi’s by adding one more stress level.
Approach (a) requires a redetermination of the prior parameter o’s and f
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(which can be done, e.g., as described in Subsection 3.2); using this
approach, M + 1 o’s are to be determined as compared to the original M
a’s. It is seen at once that the two approaches usually yield different
estimates of p(S) for any specific S.

Approach (b) is easier to perform since it requires only a simple
computation of linear interpolation. But approach (b) does not take into
account any prior information which one may have regarding the specific
S. When such prior information is available, it can be incorporated into the
computations by having an additional a. In that case approach (a) should
be used. Roughly speaking, approach (b) is an approximation to the
“correct” approach (a).

It should be pointed out that a desirable property of an estimation
procedure for the problem at hand is that it should enable extra points to
be included without recalculating the prior. But our method, described in
Subsection 3.2, requires this. This shows that the method of Subsection 3.2
is necessarily an approximation.

5. Anillustrative example

The following description of what is known as the “submarine pressure
hull damage problem” is based on McDonald (1979).

A diminutive model of a submarine pressure hull is subjected to an
underwater shock wave created by an explosion. The explosion is caused
by either a nuclear device or a more conventional chemical device. The
strength of the shock wave is determined by, among other things, the
magnitude of the change in the explosion and the location of the epicenter
of the explosion from the model of the hull. It is common to refer to the
strength of the shock wave as the “stress” to which the model is subjected.
The main items of interest in the submarine damage assessment problem
are: the stress which the model can withstand without any damage to it,
and the stress which assumes damage to the model. More generally, we are
interested in an assessment of the effects of the various stress levels on the
probability of damage to the model.

In order to achieve the above, a copy of the model is subjected to a
particular stress and a record is made of whether the model is damaged or
not damaged. This procedure is then repeated over a range of appropriate-
ly chosen stress values. Because of economic as well as practical considera-
tions, it is possible to test only one copy of the model at each stress level.
The results of the test are given in Table 1. The notation used in Table 1 is
explained in Sections 2, 3.2 and 4; the data have been altered for reasons of
confidentiality.

Following the discussion given in Section 2, it was felt reasonable to
assume that the probability of response p(S) is a concave function of the
stress S. This requirement is therefore satisfied by the best guess values pi*.
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Results of tests on submarine hulls at stress levels .S;, best guess values of the probabilities of

damage p; with their 90% coverage probabilities, and their posterior model values p;.

Index i 1 2 3 4 5 6
Stress levels S; 1.20 2.10 2.90 4.20 4.70 4.90
Response X; 0 0 1 1 1 1
Best guess values pi* .30 .34 .36 .385 .393 .395
Prior 90% probability

of coverage values [.12,.74] [.17,.86] [.20,.92] [.25,.96] [.26,.97] [.27,.97]
for p¥, [aF, b¥]

Posterior modal values

Pp: assuming concave .384 445 474 .505 Sl4 516
response

First moment of the

marginal posterior

distribution of p, 378 441 482 518 524 528

assuming response is
an increasing function
of the stress

The best guess values p¥, together with the 909% probability of coverage
intervals [a, b¥], a < b¥, i=1,..., M = 6, were given to us by McDonald
(1979) who obtained them using engineering and other subjective prior
considerations. These are given in Table 1 and also shown displayed in Fig.

1.
Indicates response
1.0
90% probability - T T
of coverage values
'8_.for Di
T Modal values of
3 posterior distr.
(=]
S 6l of pi
% .
2 /
ot
3
2
= 44
£
2 ! \\ Best guess
2 values of
~ L 7 prob. of
24 L response, p¥
t } + + t
0 1 2 3 4 5 Stress

Indicates non-response

Fig. 1.
and their posterior values.

Best guess values of the probability of damage p;, their 90% coverage probabilities,
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We note that these values appear to be inconsistent with the data. This
is not too surprising, because the best guess values are given prior to
observing the data and furthermore, in this case, are based on an engineer-
ing analysis.

The prior parameters a;, i = 1,..., 6, were computed via the relationship
(3.16) and the smoothing parameter f was determined to be 9 using the
computer code described in Subsection 3.2.

The mode of the joint posterior distribution (pu,..., s) was determined
using the computer code described in Section 4. The values p; are given in
Table 1 and are also displayed in Fig. 1. Not surprisingly, we note that the
data have caused us to revise (increase) our prior guesses of the probabili-
ties of failure by an appreciable amount consistent with the constraint of
concavity.

5.1 Discussion and critique of the data analysis

It may be of interest to compare the pi’s to the estimate of the pi’s
when we delete the constraint that the probability of response be concave.
Using the prior best guesses of Table 1 we can determine the prior
parameters for the joint distribution of pi,p2 — p1,...,pm — pm-1,1 — pu as
described in Mazzuchi (1982). Then the moments of the marginal posterior
distributions of p; can be obtained using the formulas of Mazzuchi (1982).
In Table 1 we give the first moments of these marginal posterior distribu-
tions. An inspection of the last two rows of Table | shows that the
posterior probabilities of response with and without the assumption of
concavity are not too different. The little difference between the two (in
particular at the higher stress levels) is systematic in the sense that
concavity causes the response curve to have a decreasing slope. The above
exercise addresses the question as to how much could be lost by not
assuming concavity and by working instead with priors on the wider class
of all distributions. The exercise shows that, at least for the example
considered here, not much seems to be lost. This implies that a justification
for using concavity (and the technical paraphernalia that accompanies it) is
that when appropriate—and opinion about this should be strong—incorpo-
rating concavity in the analysis is the proper thing to do.

Another issue pertains to the fact that the proposed method appears to
give a lot of emphasis to the prior inputs, since all the posterior model
values p; are less than .52, whereas the data contain 1I’s for the last 4
observations. The maximum likelihood estimates of the p/’s under the
assumption of concavity turn out to be .29, .50, .69, 1, 1, 1 and these
appear more palatable than the p/s. The implication here is that there
should be a strong justification for a particular choice of the best guess
values pi. This latter point is particularly germane since we have not been
able to provide a measure of precision (i.e. interval estimates) of our
estimates p..




18 MOSHE SHAKED AND NOZER D. SINGPURWALLA

Finally, analyses of the type discussed here should be cast in a decision
theoretic framework in order to consider the consequences of actions based
upon their results. If the problem involves the safety of personnel within
the submarine hulls, then the consequences of a bad decision could be
severe. In that case, the expected payoff in terms of increased precision due
to using correct prior information may not compensate for the expected
loss if the prior information turns out to be misguided. If the problem is to
assess the failure characteristics of consumer items, such as refrigerators,
then the situation may well be reversed. Thus, different settings may call
for different degrees of detail, attention, and procedures, even if the data
were to be identical.
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